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1. Introduction. Let Re Z[x] be a polynomial, and let b # O and k = 1 be
integral numbers. Let N, = N u {0}.
In this paper we deal with the equation

(L.1) Y fOFE+R(x) = by
i=0
for periodic functions f: Ny—Z.

We find some natural subclass of the class of all periodic functions
[+ Ny—Z such that: the number of solutions of the equation (1.1) in integers
x = 1,y, z> 1f{orf from this subclass and for any R € Z[x] is finite. Here we
exclude the cases k <3 and k =35. For example, all periodic functions
f: Ng—{£1} with the period not divisible by 4 belong to the above
considered subclass. '

We give also examples of periodic functions F: N, — {41} such that for
some ReZ[x], beZ, b+ 0, and for large k in comparison with above
excluded k < 3, k =5, the equation (1.1) has infinitely many solutions in
integers x > 1, y, z > 1. For example, it suffices to take a periodic function f
with the period of length 4 satisfying f(0) =f(3) =1, f(1) =f(2) = —1 and

=121, 22, 2% 2% or 2'°. In general, we may take in the last example k = 2",
where » 2 1 and 2"+ 1 is a prime number,

We conjecture that there exist a periodic function f: Ny—{+1} and
infinitely many k such that the equation (1.1) (for this f and each k) has
infinitely many solutions in integers x > 1, y, z > 1 for some Re Z[x] and
beZ, b # 0 (dependent on f and k).

The results in the present paper are generalizations of results of [10]. We
follow ideas of this paper. Similar problems were dealt in papers [8], [5] (here
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as in [10] f = 1), and [3], [4] (here f was a quadratic character). All results in
the paper are consequences of papers of Schinzel and Tijdeman [9], of
LeVeque [7], and of Brindza [1], [2].

I wish to express my thanks to J. Browkin and A. Schinzel for their advice
and encouragement.

2. Generalized Bernoulli polynomials. We use the notatton from Chapter 13
in [6].

Let x > 1 be a natural number and let f be a function defined on a set
containing {0, 1, ~1}

The polynomlals BEW(T) defined by

e(u—l- ™ o k

Z M= Z ka)(T)—-

~are called generalized Bernoulli polynomials belonging to [ and x. The
generalized Bernoulli numbers are defined by

By = BEHO).

Of course B+ belong to a field generated by f(a), a€{0, 1,..., x—1} over
0 and

k i )
e BeHT = 3 ()

im0
If f = 1 then BEMNT) = B,(T) and B, = B,, where B, (T) and B, are ordinary
Bernoulli polynomials and numbers respectively.

It is known that the following formulas held for k = 0 (see [6]k

0:2) mym =%, s@n (1),
(.3 T IO = B = B

Let A < N, and let f'be defined on 4. We say that fis periodic and x, is its
period, if x, is a minimal natoral number satisfying

Jlitxo)= 1)

LeEMMA 2.1 (see [6]). Let x, and x be natural numbers and let x be divisible
by x,. If f is a periodic function on a set containing {0, 1, ..., x—1} with the
period x then for k = 0:

BYH(T) = BEP(T)

3. Formulas for BfY. Let x be a natural number and let f be a function on

a set containing {0, 1, ..., x~1}. We use following formulas for generalized
Bernoulli numbers:

for every i, i+x,€A.

{and consequently B = B{Y).
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3.1) BEr = X B (5o +fO)+ 5228, ks +2 T (f)(zﬁl)xi'lz'“*“zsﬂ,
I=0

where
(x~1)j2

Sp = ; [f@)+(—- D" f (x 2077,

for 24x and k = 2; and

1k x
(3.2) B = bemgheit Z ()Bxx‘ e,

where .
= 3y fOf,
=0

for any x and k =
We prove that (3 1) ((3.2) is an obvious corollary from (2.2) with T = 0 and
from (2.1)). From (2.2) and from

B,(1-T) = (= 1)By(T)

we gel for 24x

By ="t Y fOB/XT X 1f (i} B, (i/x)
osigx—1 oSisx—
2.4 2|3
=~ Y fE-DB T Y f@Bx).
1<i€x-1 0€isx—1
2ii ‘ 20i

Hence and from (2.1), (3.1) follows.

4. B modulo powers of 2. Let x >
a function of a set containing {0, I,
For integral r denote

1 be a natural number and let f be
, x—1} into Z.

a =y, Jl (s0 apta = ty)y b= P AN
Coogisa-l . 0€i<z—1
i e{mad2) i=r{med4)
o= Y S0
0€igx—1
i=r{mod8)

The symbol a|ib for a, be Z, a # 0 means that alb and a, b/a are co-prime.

LuMMA 4.1, Let x and [ be as above. We have:
L If 24 then 2B{ for k 2 1 and By, are 2-integral and

2B = 2B, (mod 2) for k 2
BfY, = ty (mod 2).
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I If 2||x then 2B for k 2 0 are 2-integral and
2B{ = 2B,a, (mod 2) for k=2
2B{, = a, (mod 2),
2B§, = 1, (mod 2).
L If 2%|x and o0 = 2 then 2°BY) for k 20 are 2-integral and
2B =a,(mod2) forkx=1
2B =ty (mod 2).
Let a, be even and ler ¢, 8, g =0 or 1. If

)

C.q =Co3+d+g-+1(mod2)
b, = by = 26+2(mod 4)

by = by +4(e+5+p0+1) (mod 8)

by = b; = g (mod 2)}-
by = by +2¢{mod 4)} or

=g—1
4 B=wa-2
then for k = 2: 28 B are 2-integral and
(4.1) 2ﬂB§,’2,~ = 2B+, (mod 2)

unless k=2 and b, is odd in the second case; then (4.1) changes into the
congruence

2By = 2By sy 3 (mod 2),
Remark. The congruence (4.1) states thét for k=2
2*B{¥ = 2B,, 2B,4+;, | or 0(mod2)
according as the 2-tuple {&, o} equals |
{0,1}, {1, 1}, {1,0} or {0,0}.
Proof. We consider the case I. From (3.1) we have in this case for k > 2
B = x*"1B,{s, -+ £ (0)) + 2-integral.

Therefore for 2k, k # 0 it suffices to use the von Stdudt“CIal.l%ﬂ theorem for 2,
ie., to use the congruence

2B, =1 (mod 2)
and to observe that for 2|k

for 2Jk, k # 0

So+7(0) = t,.

For 2.tk, k # 1 the case I follows from B, =0.Fork

< litis an immediate
corollary from {2.2). -
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From (3.2) we have in the case 2|x for £ = 2
1k .
4.2) B = USSR + 2-integral.
x
Hence we have for 2jk, k#0
1
(4.3) B{) = —t, +2-integral
x

so in the case I, ie., if 2jx
2By, =1, = a, (mod 2).
But in the same case for 2.tk, k# 1

235(’,‘) =l -y = xil f(i)i"'l(i—l) = 0 (mod 2).
i=0

Therefore to prove I it is sufficient to use the von Staudt-Clausen theorem for
2, again, For k < 1 the case II is an immediate corollary from (2.2).

We consider the case IIL The first congruence of it is an immediate
consequence of (4.2) because o > 1. The second one is an obvious corollary
from (2.2). Let a, be even. To prove (41) it suﬂices to observe that if
{ = r{mod 4) then for 2|k, k = 2 and 2kr we have i* = 1 (mod 8), but for 2t k,
k=3 and for 2¥r we have i = i (mod 8). Hence

3

4.4 b = Z Z S
r=00gig<x~1
f=r{mad4)

b,+by{mod8) if 2]k, k>4 or k=2 and 2)b,,
b,+by+4(mod8) if k=2 and 21b,,
b, +3b,+4ic_+c_3)(mod8) if 24k and k=3

f

because for 2.k, k =3 we have

o fF= Y feisr Y fO+HCH4) Y fO
Ogsisx—1 o€igx—-1 0€igsx~1 o=itx—1 ’
i r{modd) i =r{mod4) i=r(imod8) i=r+4{mod8)
=r Y f@+4 Y. f@) =rb+4c 4 (modB).
Ogigx—1 0€igx—1
jmr(modd) izr+4(mad8)

It ¢, = by +b, = 0{mod 2) then for k = 2, t;—, = 0 (mod 2) and from (4.2) we

get (4.3). Now, it is sufficient to use the tables:
A. Let b,=r,(mod4) for i=1 and 3, and t, = 5, (mod 4), where
0<r, s, <4
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For k = 2 we get from (4.4)

Sy
Ty I3
2k | 24k
1 1
2 ¢ .
3 3
1 3
0 2
3 {
0 0
4]
2 2
0 2
2
2 0

_B. The case r;, =ry; =0 or 2 we consider in more details. Let b,
=r(mod8) for i=1 and 3, and 1, = §,(mod 8), where 0 <7, 5 <8.

&
Fy Ty 21k k=2 2tk
k24| 2b, |2Fb, ] e +eny (2Fe_ ey
0 0
0 4 0 4
4 4
o 0 4
rio=ry=0
4 0 4 0
4 0
2 2
4 0 0 4
6 6
Ty =2
2 6
0 4 4 0
6 2

We investigate the first subcase of ITI using the table A, the second one using

the table B. The congruence {4.1) follows from the von Staudt-Clausen theorem
for 2. Lemma 4.1 is proved.

COROL‘LA.RY 4.2. Let x = | be an integer, and let f be a function defined on
a set containing {0, 1, ..., x—1} with values in Z. We take the notation from
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Lemma 41, Put =1 for 4¥x. Let
(a) 2¥x and 2Xt,, or
(b} 2|x and 2Xa,, a,, or
(¢) 4x, 24b, and b, = b;,,{mod 4) for i =0, 1.
Then for k = 0, 2B} are 2-integral and the following congruences hold:

28B{). = 2B, (mod 2).

Proof. The corollary in the cases (a) and (b) follows immediately from the
lemma. The case (c) for k = 2 follows from the first subcase of IIl for ¢ = 0and
¢ =1, but for k<1 from (22) for T =0.

Remark. The corollary is also true in the second subcase of 111 of Lemma
4.1 with ¢ = 0 and ¢ = 1, and with some additional conditions.

5. The facts from the theory of diophantine equations. We use the following
theorems from the theory of diophantine equations:

LemMA 5.1 (see [9]). Let b be a nonzero integer, and let P be a polynomial
with rational coefficients with least two distinct zeros. Then the equality

P(x) = by?,

in integers implies that z < C, where C is an effectively computable constant
depending only on P and b.

LemMMA 5.2 (see [7] and [1], [2]). Let Pe@[x],

> 1

1

P(x) = agx" +a;x" '+ .. tay = Gy [l Ge—a)7,
i=1
withag # 0 and o, # oy fori #j. Let 0 3 be Z, meN and define v, = mf(m, r}).
Then the equation

P(x) = by"
has only finitely many solutions x, y€ Z unless {vy, ..., v,} is @ permutation of
one of the n-tuples {v, 1, ..., 1},v= L or {2,2,1, ..., 1}. These solutions can be

effectively determined.

6. The equation (1.1). We extend Lemma 4 in [10].

Lemma 6.1. Let x, 2 | be an integer and let [ be a function of a set
containing §0, 1, ..., xo— 1} into Z such that for some B = 1and forany k = 0,
B are 2-integral, and the following congruences hold:

{6.1) . 2B = 2B, (mod 2).

Let R*e Z[x] be a polynomial. Set for n >3
P(x) = BE(x)— BLY +nR* (),
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Then:

(i} P(x) has at least three zeros of odd multiplicities unless n = 3, 4 and 6.

(ii) For any odd prime p, at least two zeros of P(x) have multiplicities prime
to p unless n = 4.

Proof. Since Bffe @ by (2.1) we can choose deN such that
dP(xye Z[x].

Let 4 € N be minimal satisfying this condition. Using the same arguments as in
the proof of Lemma 4 in [10] we get by the congruence (6.1): 2%|d unless n = 2"
for some r = 1. In this case 2F 71| d.

We distinguish two cases:

(a) Let n > 3 be odd. To prove the lemma in this case for n > 3 it suffices
to repeat the part A of the proof of Lemma 4 in [10] with d as above. In this
case the polynomial P(x) has at least three simple zeros so it satisfies (i) and {ii).
Similarly, if n = 3 then P(x) has at least two simple zeros, so it satisfies (ii}.

(b) Let n > 4 be even. First, we prove {i). In the case 2|n we consider two
subcases as in [107. First, let n = 2' for some r 3 1. Then 287! |4 and to prove
(i) it suffices to repeat the part B of the proof of Lemma 4 in [10]. Thus using
the same arguments as in this proof we get for r = 3

(6.2) dP(x) = d'x*+2x> + x2* 4 2x° (mod 4),
where s = n/4 and
dB§Y = d’ (mod 4).
Let
(63) dP(x) = T*(x)Q(x),

where T, Q e Z[x] and ) contains each factor of odd mu1t1p11c1ty of dP exactly
once. Assume degQ < 2. From (6.2) we get

(6.4) T2(x)Q(x) = x> (d'x* + 1) (mod 2}.

Therefore T?(x) must be divisible by x*~2 modulo 2. The rest of the proof goes
like the part B of the proof of Lemma 4 in [10]. So

T(x) = x" 1T, (x)+ 2T, (x),
T2(x) = x¥* 2 T3 {x) +4T,{x),
where T, T,, T; e Z[x] and the last identity for n > § (ie. s > 2) is incompat-

ible with (6.2) because of the term 2x*. So we have proved (i) for n = 27, r > 3.
If n =8 then the congruence (6.2) holds with § = 2. We get

(6.5) dP(x} = d'x®+ 2x® + x*+2x? (mod 4)
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and
(6.6) T?{x) = x? TZ(x)(mod 4).

Since T, (x) % 0 (mod 2) the polynomial 7 (x) modulo 4 is monic. Moreover we
have

deg(T¢(x) mod 4) = 2deg(T, (x) mod 2).
Hence and from (6.3) and (6.6) we obtain
deg({dP(x) mod 4) = 2+2deg(T; (x) mod 2)+deg(Q(x) mod 4),
so, from (6.5),
6 if d # 0(mod 4),
4 if & = 0(mod 4).

Therefore the 2-tuple {deg(7}(x}mod 2), deg(Q(x) mod 4)} equals
1° {3, 0} or 2° {2, 2} if 4 # 0 (mod 4); and
¥ {2,0} or 4° {1, 2} if & =0 (mod4).
We prove that the case 1° is impossible. Let

2deg{T, (x) mod 2)+deg(Q(x) mod 4) = {

T(%) = x*+ ... +¢(mod 2), where ¢ = 0 or 1,
and let |
Q(x) = q(mod 4), where g = 1,2 or 3.
Here TZ(x) = (x*+ ... +¢)*(mod 4). Hence and from (6.3), (6.5) and (6.6) we get

by comparing the coefficients of x&
g = d'(mod 4).

Therefore if & = + ! (mod 4) then by comparing the coefficients of x> we find

that
c*g=2(modd) so %= 2{mod 4.

We obtain a contradiction. Let d = 2{mod 4). Theﬁ we have ¢ = 2 (mod 4) so
Q(x) = 0(mod 2). It is incompatible by {6.3) with (6.4) for s =2, We consider
the case 2° Let
T (x) = x* +ax+b(mod 2), where a,b =0 or 1,
and let
0(x) = px*+gx+r (mod 4),

Then T2(x) = (x?+ax +b)? (mod 4). Therefore we get from (6.3), (6.5) and (6.6)
by comparing the coefficients of x®

p = d'(mod 4)

where p,g,r=0,1,2 or 3 and p #0.

5 — Acta Arithmetica Lt4
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and by comparing the coefficients of x*
br=2(mod4) so b=1andr=2(mod4).
Hence by comparing the coefficients of x* we get
g+4a=0(mod4) so g=0(mod 4).

Let &' = 2 (mod 4). Then p = 2 (mod 4} and Q(x) = 0 (mod 2). It is incorgpat-
ible with (6.4) for s = 2. If d = +1 (mod 4) then by comparing the coefficients
of x° in both sides of (6.5) by (6.3) and (6.6) we find that
24+d'(2+4a*) = 2 (mod 4).
Therefore
d{2+a?) =0{mod4) and a*=2(mod4d)

We get a contradiction, too.
Now, let 4’ = 0(mod 4). We consider the case 3° Let
T,(x)=x*+ ...(mod 2),
and let :
0O(x) = g(mod4), where g=1,2 or 3.

Here T2(x) = (x*+ ...)*(mod 4} and we get from (6.3) and (6.6) by comparing
the coefficients of x® in both sides of (6.5)

g=2(mod4), ie, O()=0(mod2).

Therefore we obtain a contradiction with (6.4) for s = 2, again. We prove that
the case 4° is impossible. Let

Ty(x) = x+a(mod2), where a=0 or I

and let
Q(x) ez px*+ gx+r (mod 4),

Here T2(x) = (x+a)*(mod 4). Therefore we get from (6.8), (6.6) and (6.5) by
comparing the coefficients of x®

p = 2 (mod 4)

and by comparing the coefficients of x*

where p,g.r=0,1,2, or 3 and p # 0.

@r=2(modd) so a>=1, ie, a=1 andr=2(mod4).
Therefore it is sufficient to compare the coefficients of x? and we obtain
g = 0 (mod 4).

Hence Q(x) = 0 (mod 2) and we get a contradiction with (6.4) for s = 2, again.
We have proved (i) for n = 8, too.

2ar+atq = 0 (mod 4), e,
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Now, let n % 27 for any r. Put n = 27, where r > 1 and u > 1 is odd.
Then (:’) is odd and 2% d. To prove (i} it is sufficient to repeat the part C of the

proof of Lemma 4 in [10]. In the case 227'B§Y = 1 (mod 2) and » > 10 the
proof is the same as the part C of that proof.
Let

2671BE = 0(mod 2), e,
Here 427 and by (2.1) and (6.1) we get

dB§Y = 0 (mod 4).

(6.7) dPix) = inx“_lic)x"—2+ +(’f)d3sff)x"-"+ i(;)xzfmod 4).
i
Put (6.3) and let
T(x) = x"+x24 ... x(mod 2),

where I, > I, > ... > [, 2 0. Then

(6.8) T x) = x*14+ x4 . +xM 123 p,x'(mod 4),
1

where p, is the number of solutions of +1, =1t, I, <l, 1 <L j<m
Assume degQ < 2 and let

O(x) = ax* +bx+c,
where a, b, ce Z.

We consider two cases: 2|n (r = 1) and 4[n (r > 1). In the first case,
comparing

(6.9) T2(x)Q(x) = ax®'*2 4+ hx*' "1+ | (mod 4)

and (6.7), we get ¢ = 0 (mod 4) and b = 2 (mod 4). Therefore ¢ must be odd. In
this case {; = (n--2Y2.

In the second case we note that 4 i(n) for 1 <i<2 unlessi=2""or2".
. 1

In these cases 2“(; 1) and 2,{’(;). Therefore, comparing (6.7) and (6.9), we get

by (6.1} @ = 2 {mod 4) and b = 0(mod 4). Therefore ¢ must be odd, again. In
this case I, = (n—2"""—2)/2.
In both cases Q(x) = 1 (mod 2) and
6.10) dP(x) = T?*(x) = x* +x*2 ... +x2(mod 2).
Denote as in [10]

L={. 1., L}
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By (6.7 we have from (6.10}
6.11) leLew2<2<n—2 and (2[) is odd.

On the other hand from (6.3) and (6.8) in the case 2|n
AP(x) = ¥ (2x* 4 ex?)+2 ) poxt(mod 4).
t

lel,
Therefore by (6.7)

lel

l< [1} = Pajtq iS Odd.

Now it is sufficient in this case to repeat the part C of the proof of Lemma 4 in
[10]. Here it must be n > 10 (e, n # 6). Now, let 4|n. From (6.11) we conclude

that ( n ) is odd so (2 T 2) is odd. We get a contradiction for r 2 3 because,
4
1

ny .
for I<i< 2, () is even.
1

Let 7 = 2. Then 0, 1¢ L and 2 L. On the other hand, in the case 4ln we
have from (6.3) and (6.8}

dP(x) = Y (2x¥"2 4 ¢x*)+ 23 p,x'(mod 4).
t

leL

In the case r = 2 we have
Y (2x2*2 4 ox?) = . +ex*(mod 4).

lel,

Moreover, from the definition of p,, if 23 p,x' # 0(mod 4) then
¥
deg(2 ¥ p,x'(mod 4)) > 2.

Thus we get a contradiction with (6.7) because of the term i(;)xz.

The proof of (i) is complete.
Now, we prove (ii). If n # 2" for any r then to prove (ii) it is sufficient to
repeat the beginning of the part C of the proof of Lemma 4 in [10].
Lét n = 2" for some r = 3. From (6.6) if d' is odd then
dP(x) = x*{x - 1*(mod 2},

where x4 = n/2. Since u is prime to p for any odd prime p, the polynomial P{x)
has at least two zeros of multiplicities prime to p and (i) is proved in this case.
Let d be even and let p be an odd prime number. Assume that

{6.12) dP(x) = cT?(x)(ax+b),
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where Te Z[x], a, b, ceZ, cisoddand 0 £ k< p—1, If a =0(mod 2) or
k =0 then we pet from the congruence (6.4)

21 = 25 = pdeg(T(x)mod 2).

It is impossible so @ = 1 (mod 2) and k = 1. Moreover it follows from (6.4) that
b = 0 (mod 2) and

2/t = 25 == pdeg(T(x) mod 2)+k.
Therefore 2s—k > 0 must be divisible by p and
T(x) = x!2*~ 97 (mod 2).

Hence

p—-1
TP x) = x 7 @ 9{mod 4)
and

-1

TP(x) = x 7 ** ¥ T(x)(mod 4).

Therefore (6.12) is incompatible with (6.2) because of the term 2x* unless r == 3,
k=1, p=3 and b =2(mod4). Precisely, we have T(x)# O(mod4), ie,

deg(T(x)mod 4) = 0 and %{2S—k}+k1 > s, where k, =k if b = 0(mod 4)

or b=2(mod4) and k= 0(mod?2), and k; = k—1 if b=2(mod4d) and
k= 1(mod?2). In the case b =2 (mod 4} we have used the congruence

(e + 2V = (ax? + 2k(axi ™ Hmod 4).
Forr=3(ie, n=28), k=1 p=73 and b= 2(mod 4) we have

T3(x) = x2T(x)(mod 4).

. Hence and from (6.12) we get

dP(x) = x*T(x)(+x+2)(mod 4).
Let T(x) = ... +gx+r(mod 4}, where g, r = 0, 1, 2 or 3. We obtain by (6.5)
that r =1 or 3 and
+r4-2g = 0 (mod 4).

It is impossible. We have proved (i) in the case n = 2" for some r 2 3. The
proof of Lemma 6.1 is complete.

Remarks.
1 (On the case n = 3). If n =3 then by (2.1)

P(x} = BE9x* +3B{9x® + 3B5 Y% x + 3R*(x).
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“ Moreover, we get from (2.2) that

¢ ¢, t ) xo’fo
gol = 0 gt =t 0 apd  B§ --———t +=52
Bg, xos 1,3 xo 2 I .() 6
where
xg— 1
= Z fr.
i=0
Therefore

2x, P(x) = x(2x% + xZ)to(mod 3).
Hence if 3.)¢;x, then

P(x) = £x(x+1){x—1)(mod 3)

so P(x) has at least three simple zeros in this case. If 3x,4|t, then we can choose
a polynomial R* € Z[x] such that deg P < 2. Therefore (i) for n = 3 need not
be satisfied.

2 (On the functions f not satisfying (6.1)). In Lemma 6.1 we have proved
that if fand x, satisfy (6.1) (i.e,, (4.1) with £ = 0 and ¢ = 1) then the polynomial
P(x), for any polynomial R* € Z[x], satisfies (i) and (ii). For example, it holds in
the cases (a), (b) and (c) of Corollary 4.2. In the remaining cases, i.e., if ¢ % 0 or
¢ # 1, the situation is more complicated. For example, consider the first
subcase of IIl in Lemma 4.1 for s =1 and ¢ = 1. Let f: {0,1,2,3}>Z be
a function such that:

(6.13) t,=0, 2}fbfori=0,1,2,3, and b, # b,(mod4).

Here § = 1 in the notation of Lemma 4.1. We have in this case that B{*y e Z.
The condition t, = 0 implies that By, = 0, of course. Take a prime number
n=p=2"+1,r 2 1. In general, for n = 2+ 1,r > 1, we have for 0 < i < n,

2'(:’) unless i = 0,1, n—1 or n Since by (4.1) in this case

2B(p4ll.f = 2BF = O(mod 2),

p|(’:)35¢} ez,

Therefore all the coefficients of the polynomial B{¥,(x) — B{*) are integral and
divisible by p. Consequently we can find a polynomlal R"‘ e Z[x] such that
P(x) = B¥.(x)— B+ pR*(x) has zeros of any prescribed multiplicities.

we get for 0 <igp—1
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ExampLEs. 1. Let f: {0,1}—=Z be a function satisfying f(0) = —
f(1) = 1. Then
B} (x) = B,(x)—2"B,(x/2).
It is an immediate consequence of (2.2) for above f and of
2" 1B {(x+1)/2) = B,(x)—2" "' B,(x/2).

The last equality is also a consequence of (2.2) for f = 1. In this case the
polynomial P(x) from Lemma 6.1 satisfies (i) unless n < 4. If n =6 then

P{x) = 3x° + 43 x* + 5 x% + 6R*(x).
Hence
(6.14) 2P(x} = 2x° + x*+ 3x%(mod 4).

Put (6.3) with d = 2 and assume degQ < 2. The polynomial T*(x) is monic
mod 4 because by (6.14) T(x) # 0 (mod 2). Moreover we have

deg(T?(x) mod 4) = 2deg(T (x) mod 2).
Hence and from (6.14) we find that
2deg (T (x) mod 2)+ deg(Q(x) mod 4) = 5.
Therefore deg(7T(x) mod 2) =2 and deg(Q(x) mod 4) = 1. Let

T(x) = x*+ax+b(mod2), where a,b=0 or 1
and '
0(x} = px+q (mod4), where p,g=20,1 or 3 and p #0.
Here
T3(x) = (x*+ax+ b)*(mod 4).

Therefore we get from (6.3) (with d =2) and (6.14) by comparing the
coeflicients of x°

p = 2 (mod 4}.
Moreover

b*q = 0 (mod 4).
If b =0 then by comparing the coefficients of x* we have
, a’¢=3(mod4) so a=1and g=3(mod4).
Here T2(x) = x*+2x*+x*(mod 4) and Q(x) = 2x+3 (mod 4) so

T2(x)Q(x) = 2x°+3x* +3x*(mod 4).
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It is incompatible by (6.3) with (6.14). If b= 1 then g = 0(mod4) so
Q(x) = 0 (mod 2). Hence by (6.3) 2P(x) == 0 (mod 2). It is incompatible with
(6.14), again. Therefore P(x) for n = 6 satisfies (i).

2. let f:{0,1,2,3}>Z be a function satisfying
fO=fB3)=1 and [f()=/@2)=~1

This function satisfies the conditions (6.13). Let n = 7. Of course 7 is not of the
form 2"+ 1. Here

BM(x)— B, = 21x% =192 5t — 140x% 4 233 x2 - 336

so there exists a polynomial R* e Z[x] such that

P(x) = — 3% (x2~5),

This P{x) satisfies (ii) but it does not satisfy (i), of course.
Now, we generalize Theorem of [10].

THEOREM 6.2. Let x4 = 1 be an integer and let

fi Ny~ Z

be a periodic function with the period x, such that for some f = 1 and Jor any
k=0, 2B are 2-integral and the congruences

2B = 2B, (mod 2)

hold.
If Re Z[x] is a fixed polynomial and b0 and k = 4, k % 5 are fixed
integers then the equation

x

Z (i)i* +R(x = by*

has only finitely many solutions in integers x > 1, y, z > 1. These solutions can
be effectively determined.

Proof. Note that for every x, < x, the equation

igo f(i)ikJ‘;R(xi) = by*

has finitely rnany solutions in integers v, z > 1.

Let x 2 x4 and let x = r (mod x,), where 0 < r € x,—1. We can rewrite
the equation (1.1) in the form

xpx'—1

T SOF S (o x)xg X+ (0 + D)0+ L+

Z /(93 R(x) = by,

where x = x,x'+7.
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Then we get from (2.3} and Lemma 2.1

;C-———[B’:eaf( —A— B 4 T [0y D0 i+ RGO = by
+] i=0

Therefore we can rewrite the equation (1.1) in the form

(6.15) k I—lEB{‘xI LX) — B, o1+ R*x) = by,

where
= R{x+r+ E fOx+ifeZ[x].

Note that to prove the theorem it suffices to prove that the equation (6.15) has
finitely many integer solutions x = x, and y,z > 1 for any polynomial
R*e Z[x] (not necessarily for R* of the above form). Let R* e Z[x] be any
polynomial. From Lemma 6.1 putting n = k-1 we conclude that

P(x) = - [BE ()~ BT+ R*(3)

satisfies (i) and (ii). Thus it is sufficient to use Lemmas 5.1 and 5.2 and similarly
as in [10] the theorem follows.

COROLLARY 6.3, Let f: No— Z be a periodic function with the period x,.
Let R e Z[x] be any fixed polynomial and let b # 0 and k= 4, k # 5 be fixed
integers. If f and x, satisfy the conditions (a), (b) or (c} of Corollary 4.2 then the
equation (1.1} has findtely many solutions in integers x =1, y,z> 1. These
solutions can be effectively determined.

Proof This is an immediate corollary from Theorem 6.2 and Lemma 4.2.

Hence we have

COROLLARY 6.4. Let f: Ny~ {1} be a periodic function with the period x
and let

4| %4,
4
txo  or {bi = b, (mod4) for i=0,1.

If Re Z[x] is any fixed polynomial, and b # 0 and k=4, k # 5 are fixed

integers then the equation (1.1) has finitely many solutions in integers x = 1,
y, 2> 1. These solutions can be effectively determined.

Remark. The last coroliary is also true for 8jx, with some additional
conditions (see¢ the remark after Corollary 4.2).

Exampres, 1. Let /1 Ny—+Z be a function defined by
f=(=0"*" for ieN,.
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It is a periodic function with the period of length 2. We get from Theorem 6.2
and Example 1 after Lemma 6.1 that the equation

(6.16) FDF g (=17 L R(x) = by

for any Re Z[x], be Z, b # 0 and k > 4 has only finitely many solutions in
integers x = 1, y,z > 1.

We cons:der the equation (6.16) for k = 2 and 3 and fixed z = m > 1. Put
in Lemma 6.1 n = k+1. If n = 3 then 2P(x) = x(x — 1)(mod 2). Therefore by
Lemma 5.2 the equation (6.16) for k = 2 has finitely many integer solutions
unless m = 2. Let SeZ[x] be a polynomial. Put

R*(x) = x(x—1)(28%(x) +28(x)).
The equation
(6.17) Fx(x—1)(2S(x)+1)* = by?

reduces to Pell's equation so it has infinitely many integer solutions x = 1,
y > 1 for infinitely many choices of . Thus it has infinitely many solutions
such that x is even or it has infinitely many solutions such that x is odd. Putin
the equation (6.16)

(6.18) R(x) = R*(x+1)

according as the equation (6.17) has infinitely many solutions with even or
odd x. Then the equation (6.16) for this R{x) has infinitely many solutions with
even or odd x because it reduces to (6.17). Therefore the equation (6,16) for
= 2 has infinitely many solutions for suitably chosen b and R,
Similarly, if k = 3 (ie, n = 4) then we hdve P(x) = 2x% — 3x* + 4R*(x). Let
p be a prime number and let SeZ[x] be a polynomial. Put

R*(x)+x* or

R*(x) ={ x? i ( )21 2 (23(x)+1)i+x<pS(x)+B:_.1“)+1 it p=3,

[=2 2
x{(2x—3)(S*(x) + S(x)) it p=2.

The equations
(6.19) x*[2x(28(x)+ 1)+ 1]" = by",
(6.20) $x(2x—3)(2S (x)+ 1)? = by?

have infinitely many integer solutions x 2 1, y > 1 for infinitely Tany choices

of b. Thus each of them has infinitely many solutions such that x is even or

each of them has infinitely many solutions such that x is odd. Put in the

equation (6.16) z = p and R{x) as in (6.18). Then the equation (6.16) for this

R(x) has infinitely many solutions with even or odd x because it reduces 1o

(6.19}if p = 3 and to (6.20) if p = 2. Therefore the equation (6.16) for k = 3 and
= p can have infinitely many solutions for suitably chosen b and R.
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Before two next examples, we have the following remark. Take the
notation of Theorem 6.2, Let R*e Z[x] be a polynomial. Put for r = 0

R(x) = R¥(x—r)— i f(Dlx—r-+i
i=0

Note that if the equation
(6.21) Pix) = by?,
where

P(x) = (B4 ()~ By 1+ R*00)

has infinitely many integer solutions x > 1, y, z > 1 then this equation has
infinitely many integer solutions x = 1, y, z > 1 such that x = r (mod x,} for
some 0 < r € x,— 1. Therefore the equation (1.1) for k = n—1 with Re Z[x]
defined above has infinitely many integer solutions x = 1, y, z > 1| such that
x =r(mod x,) so it has infinitely many solutions, in general.

2. Let x, = 4 and let f: Ny—{ £ 1} be a periodic function with the period
x, defined by means of f{0) = f(3) = 1 and f(1} = f(2) = ~1. Then for these
fand xg: by = by = 1 and b, = b, = —1 and they satisfy the conditions (6.13).
We use Remark 2 after Lemma 6.1 and Lemma 2.1, Take k = 2", r 2 1 such
that 2" +1 is a prime number. Let n = k41, Then we can find a polynomial
R* e Z[x] such that the equation (6.12) has infinitely many integer solutions.
Therefore the equation (1.1) with R & Z[x] defined above has infinitely many
integer solutions, too.

3. Let x, = 4 and let f be as above. Consider the equation (1.1) for k = 6
and for fixed z = m > 1. We use Example 2 after Lemma 6.1 and Lemma 2.1,
Here

2P(x) = x*(x— }{x+ 1){mod 2)

so in view of Lemma 5.2 the equation (1.1) has only finitely many integer
solutions x, y for any ReZ[x] unless m = 2.
Let SeZ[x] be any polynomial. Put
R*(x) = — 15x%(x®—5)(25*(x)+ 28 (x))— 3x* +20x* —48x.
Then for m = 2 the equation (6.21} takes the form
—4ix?(x2 —~5)(2S(x)+1)* = by*.

It amounts to Pell's equation baving infinitely many integer solutions x, y for
infinitely many choices of b. Therefore the equation (1.1) with above defined
ReZ[x] has also infinitely many integer solutions.

Remark. The cases k=1,3,5 for f = 1 are discussed in [10].
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On the average number of direct factors of a finite
Abelian group

by

Exxroarpd KritziL (Jena)

1. Introduction. Let G be a finite Abelian group. Let ©(G) denote the
number of direct factors of G and

T(x) = 2. 7(G),

where the summation is extended over all Abelian groups of order not
exceeding x. B. Cohen [1] proved the representation

T(x) =y, x(logx+2C =1} +y; s X+ 4(x),

where 4(x) is estimated by

A(x) € \/J—clogzx.

In this paper we improve this result by

A(x) = 72,1/ X(H0gx+2C = 1) 472,24/ %+ O (x*/ *log* ).
In these formulas € denotes Euler’s constant, and 7y 5. ..
(22)-(25).
A similar situation takes place when we consider the unitary factors of G,
that is, the total number of direct decompositions of G into 2 relatively prime
factors. Let t(G) denote the number of unitary factors of G and

T*(x} =} t(G),

where again the summation is extended over all the Abelian groups of order
not exceeding x. Here E, Cohen [1] proved that

., ¥2,» are given by

TH(x) = o1y x(logx+2C = 1)+ ¢y x+4%(x),  4*(x) < /xlogx.
In this paper we prove
A*(x) = ¢54/ %+ 0(x'*log? x),

where ¢, 1, ¢;,2, ¢, are defined by (13), (14).
It is not hard to prove this estimate for 4*(x), Therefore, the main point of



