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On some expansions of p-adic functions
by

J. Rurrowskl (Poznan)

Introduction. Throughout this note, Z,, 3,, £, and C(Z,, ©,) denote the
ring of p-adic integers, the field of p-adic numbers, the completion of the
algebraic closure of @, and the algebra of continuous functions f: Z,—€Q,
respectively (p prime). We also put No=Nw {0} and E= {0, 1, ..., p—1}%

For an arbitrary prime number p, we define a system (@, )men, Of elements
of C(Z,,, £2,). The definition is similar to the known definition of Walsh (p = 2)
and Chrestenson (p > 2) systems in real analysis (see [5] and [1]). We
investigate the main properties of (¢,,) and consider some questions concerning
the expansions of functions belonging to C(Z,, Q,) with respect 10 (9,0
Finally, we give some examples of such expansions.

2. Definition and main properties of the system (@, )meno- Let P be an
arbitrary fixed prime number. We denote by { an arbitrary fixed primitive
pth root of 1 in €, If m is an arbitrary nonnegative integer and
m=cy+e pt ... +¢p° where ¢;e E for j=0,1,...,s then we put

M Pty +aiptagp?t ) = {roet s tTes,

where a,+a,p+ ... is a p-adic number written in the Hensel form (i.e. a; € E).
From the above definition one easily obtains:

Tueorem 1. (i) For every me N, the function @, is CONEINUOUS.

(ii) For all x e Z, we have |, (x)|, = 1, where | |, denotes the p-adic norm.

(it) The set {@y}men, forms an abelian group under the ordinary multi-
plication of functions.

(iv) If I, me N, and neN then

L if m=1(mod p"),
(2) p" Y enler )= {0 otherwise.

i=0
() If x, ye Z, and neN then

ot - 1 if x=y (mod p),
- 1 -
@) . P ,,.>;0 On(3)om"0) {0 otherwise.
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(vi) The sequence @4, @, ..., Qpn—y is a basis of the 2 -vector space
Vo={feCZ, Q) A x=ymodp")=f(x) =10}

xyeZy
Proof. Properties (i}-(iii) are obvious. For the proof of (iv) we put
m=cotc,pteop’+ ..oand = go+g,p+g,p*+ ... where ¢;, g€ E for all
jeNgand ¢; = g; = 0 for almost all j & N,. Then (2) follows from the equalities

=1 p—1 p—1 -
Z oo 1) = Z Z Pmldotap+ ... +a,.p"h
(=0 ap =19 -1 =0
x"f’l”(“o"‘”tl-"" oo Fa, L ptY)
-1 pP=1
== Z e Z qocu(aﬂ)(pq(al)"' (Pc,,_l(an—‘l)
=0 fn-1=0
X 0o (o) g, (@) ... Dot (A, )
n-1 p—1
- n Z Cﬂk(fk—mc)_
k=0 a;=0

For the proof of (v) we put x = a,+a,p+ ... and y=bhy+b p+ ...
where a;, b;eE for all je N,. Now, it suffices to notice that

il | r—1 p—1
2 on¥ent) =Y ... ¥ Do), (ay) .. @, (a,_,)
m=0Q co=0 tnny1=0

X @ (o) (by) ... 0ot (byy)
=1 p—-1
= H Z C(ﬂk—bk)uk.
k=0 0.=0 )

We now prove (vi). The relation x = y (modp™) divides Z » Into p” disjoint
classes, hence the vector space ¥, is p"-dimensional. Therefore it is sufficient to
show that every feV, can be written as a linear combination (over Q) of
Pos @15 -y Ppn—y. Lot xe Z, and ae N, satisfy x = a (mod P, 0<a<p.
Using (3) we obtain :

n--g ey
16 =1@="T SO0 S o.0076)
P 1
= };0 (™" Z,O T Den D)9 ,(0).
Hence ' l
i -l ..
@ 1= 507" Y SGon Glon

The proof of Theorem 1 is complete,
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Taking into account property {ii) we shall also write @,, instead of ¢, t.

3. Expansions of functions from C(Z,, Q,) with respect to (@,)men,. Lot
b,eQ, for m=0,1,2,... From Theorem ] (i) it follows that the series

Y. by, is convergent if and only if lim &,, = 0 (in Q). 1fb, —0then } b, .,

m=0 "> o

is a continuous function as the sum of a uniformly convergent series of
continuous functions. For this reason we shall expand only continuous
functions with respect to the system (@)

Let feC(Z, Q). It is clear that f= lim Lo where £ (x) = f(x™)
(n=1,2,...) and "

(%) (@t+aptap?+ ) =agtapt ... a,
According to Theorem 1 (vi) we have

i
(6) L =% b, (),

m=0

where the numbers b are defined as follows:
pr—1

(7 R =p™ ¥ font.
i=0

Basing on the above considerations we introduce the following definition.

DermNiTION. Let fe C(Z,, 2,). We say that a function f has an expansion
with respect to the system (¢,) if:

0 AV b= tim b,
maNg bmel2y n—w
) | lim b, = 0.

In that case the series ) b, ¢, is called the expansion of f with respect to the
system (@, men,, and we write

fN E bm(pm'
m=0

gl

Remark 1. The limit lim p~™" )’ f() (if it exists) plays very important
= o i=0

role in p-adic analysis (see e.g. [4]) and can be used to define the p-adic integral
over Z,. Therefore we can write the coefficient b, as

b= [ féndu
Z,

or in the form of “inner product™ b, = {f, ¢,.>.
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The system (¢,) is orthonormal, ie. {9, @;» = J; where &; is the
Kronecker symbol.
We now prove the following

Tueorem 2. If f = 3 d,o, then f ~ Y d, 0,

m=0 m=0
Proof. From Theorem 1 (ii) and the condition d,—0 we get

-1 3} pe—1

b =p" Z (i d 0 ()P, (0) = Z d, Z P ()@, ().

E=

Applying (2) and the condition d,~0 we obtain lLim by} = d,,. For every

me N, we have b,, = d,,, and so condition (I) is satisfied. Condition (If} is also
obviously satisfied.

COROLLARY 1. Suppose that f and g are continuous functions having
expansions which converge to f and g respectively. Then the product fg has an
expansion converging to fg.

Proof. We can multiply term by term the series representing f and g and
rearrange the products so as to obtain a series of the form } h, ¢,,. This series
represents fy. Application of Theorem 2 finishes the argument.

CoroLLARY 2. The set of functions f having expansions converging to f forms
a subalgebra of C(Z,, Q).

COROLLARY 3, If the series Y, by @, Y. bm@,, converge to the same function
then b, = by, for meN,.

Even if f has an expansion, it need not converge to f. In fact, we have
THEOREM 3. There exists a functionf € C(Z ,, £2,) such that f = 0 and f ~ 0.
Proof. We first define inductively the values of f on N,; these values will

be integers. Put f/(0) = ... =f(p—2) =1 and f(p~1) = | ~p. For any ne N,
re{0,...,n—1} and ao, o, e E we write
S.(ags ..., a,) = )y S
0gi<pn
) izag+aip+.. tapp(modpr 1)
p-1 p—1 ]
(= 3 ... flagtap+ ... +a,_p" "D
e =0 dn-1=0

Assuming that f(i) is already defined for 0 < i < p?'*!, where I & N, we put

flag+ ... +aup*  if a,# p—1 for some

' fe{l+1,...,21+2}
flag+ .. +ay,p" %) = Y '
° a flag+ ... +aup™)—p*Sa.qi(ag, ..., @)

otherwise.
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We shall prove that for any [eN

(A) /\ /\ PZI_ |87ie1(ags .-, a,),
L<r< 2| ag,....areE
(Bl) /\ /\ S21+1(a01 EERE ar) =0

0<r </ ao,...,arck
Notice that the (A;) conditions with » = [ imply the continuity of f on N,.
So f can be extended uniquely to a continuous function on Z,, since N, is
dense in Z, and Z, is a compact metric space. At the same time, the (B)
conditions imply that for any ne Ny we have b, = lim b = 0. In fact, b = 0

if p™ "2 > m+1. Therefore f ~ 0.
We first prove the (B} conditions. (B,) reduces to S;(a,) = 0, which
follows at once from the equality

f(ay) if a #p—1or a, #p—1,
flag+a;p+ayp) = {(1 p2)f(a,) otherwise,

n-troo

and the definition of Si(ag). If [ >1 then it is sufficient to prove that
Sy41(ag, -5 a;_,) = 0. We have
Soe1{ags s a_y)

= ¥ flapt ... +ayop? P+ -1)p* - 1)p*)

dr,....ﬂz[—zEE

+@*=10 Y. fla,+ ... +ay-2p* %)

8iyenndzr —28E

= Z Slagt ... +ag- 2P21 2)

Alyeras 33 - 268
a; ¥ p~ 1forsomeiefl,..., 21— 2}

+f(@gt .o+ p T+ E-DP+ . +-1DP)
—p*S5i=1(8gs s 4o ) H @ = 1S5 1 (@05 -5 3y)
=80 1(agy -err @) =P85 _((ag, s @ y)
+(p?=1)85-1(@g, «os @y} =0
Next, we prove the (A) conditions by induction on I.
(A.,) follows from the equality
Sa(q, 41) = {gf ;)2) Flag) :)ft}(:ér:isi.‘ b
If Iz 1 and I+1 < r < 2! then we have
Sa+3lag, -5 a,
P*Syii@os oer @) if a, #p—1
= for some te{l+1,...,1},
P2S010 {80, s @)= P*83141(8g, ..., a)  otherwise,
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MOTeover,

NPYII (- Y Sy |

pf(ag+ ... +ayp™) if a, # p—1 for some
= te{l+1,..., 2i+1},

pf(ag+ ... +aup*y—p*Ss4 (ag, ..., @)  otherwise.

Now, it is sufficient to apply the inductive assumption to the sums §,,, (...).

The proof of the theorem is complete.

Let us now formulate a sufficient condition for a function fe C(Z,, Q) to
have an expansion converging to f.

TreorEM 4. Every function f belonging to C(Z,, Q,) and satisfying the
conditions

(A) AV A A BEO—b, <,

> ONE = NOSm=<pn

(B) ANVAN A

>0 N(g)n>NpnEm<pnt!

b+, <

has an expansion with respect to {®,)men,, and the expansion converges to f.

Proof. Let fe C(Z,, ) satisfy (A) and (B). Condition (A) implies that for
any fixed m the sequence b{ converges to some b, €£2,, so that (I) is fulfilted.
Condition (B) and the equality

bu=bE U+ T Gt bY)
k=n+1
imply (II). Hence f has an expansion with respect to (¢,,).

We now prove that the expansion converges to f. For this purpose note
that (A) implies
ANV A N BR=b, <.
>0 Ny >N OSm<pn

Thus for any &> 0 and sufficiently large n we have

e

ol =1
}f_ Z(] bm(Pm|p= |f— Z bsr':)(pm—" Z (bg;)“bm}(lpmlp

m=0 =0
=1
= mElX(Ef““‘f;Jp: Z (bl('r'll}—"bm)cpmlp)
m=qQ
< max(|f—fl,. | max (bf—b,)l,) < e.
O€Em=<pn

The proof of the theorem is complete.
Let us now introduce the following definition:
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DEFINITION, We say that a differentiable function f'e € (Z,, &,) is uniformly
differentiable if

AV A /\0<;t|p<5=.w~ff(x) <.

>0 6()> 0 xeZp 16Z P

Using Theorem 4 we shall prove that every uniformly differentiable
function f € C(Z,,, ) has an expansion which converges to f. It follows at once
from the definition that the derivative f* of a uniformly differentiable function I
1s continuous. Moreover, every amalytic function on Z, (in particular, every
polynomial) is uniformly differentiable.

THEOREM 5. Every uniformly dz)j’erentzable Junction f has an expansion
converging to f.

Proof. Let fe C(Z,, .} be uniformly differentiable. We show that then
J satisfies condition (A). Fix ne N,. Then for any m such that 0 < m < p* we
have. .

g
=y “ri: T Sl RS RSWCEND
— pret kzo 2 L (k+p"D— (K11 (1)
- PZI l”"z'lf(ker DS @
‘1p211"35 [f—(“pplﬁ =il f'(k)]cﬁ,,.(k)
VST rwee
= §,+5,.

The uniform differentiability of f and Theorem 1 (i) imply that the p-adic norm
of §, is arbitrarily small for »n sufficiently large. We show that the same is true
of §,. The continuity of f* mentioned above and the compactness of Z imply
the uniform continnity of /. Hence for any & > 0 we can choose r € N such that
for all k,leN

(7) f e+ P D=1 (R)l, < e.
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If n>r then

00 =T Y S Ere
pl"—l pn—r—l
S TE DS 616,04
k=0 I=0

r-1 pror-1
+ 3, k) Y @ulkApl) = 82+53.
k=0 =0
By virtue of Theorem 1 (i) and (7) the norm of §3 is less than &. As to 83, it is
sufficient to note that | |, is bounded on Z, and for any k satisfying 0 < ke < p”
the sum .
JR—

:L Pulk+p"])

is either 0 or p"~”. Hence for n sufficiently large the p-adic norm of §, is
arbitrarily small. This proves that f satisfies condition (A).

Now, we show that f satisfies (B). Take natural numbers r, m such that
PrEm< Pt Let m=¢y+e pt . —I—cnp" be the p-adic expansion of m.
Then ¢, # 0. Denoting m™ = ¢y+ ... +¢,_,p""' by my we have

prtieg p-1p—1
B =T R fOG = 27 1k20 L D@k +p")
ph—1p—1
= p "t kzo ;Z [ k+p"DG,, K)B,, (D
m—-1p—1

=S Y e~ (016,090

S i, 05 L

Proceeding now as in the proof of (A) we arrive at (B). The proof of the theorem
is finished.

Remark. There are differentiable functions which de not have expan-
sions with respect to (¢,). As an example, we can take the function

fx) =

Py (k)

p2n1+a2pnz-b§m Fa PP T L if x = p
or x =p"t+a,p4 ... ap™+ ...,
with a,, a;,... %0,
Ry <30y <py <y < <y, < 0L,

0 otherwise.

icm
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In [3]J. Mina¢ shows that f is differentiable on Z, and f” is unbounded. Hence
f is not uniformly differentiable. For the proof that f does mot have an
expansion with respect to {p,,) it is sufficient to show that the sequence (55" )
is not convergent in ,. We have

3n
In+1 —3n—-1
Bt = pm—1 ¥ 5
k=1
where

pinti—q

S = -g* f(l)s

the symbol * indicating that the sum is over all i for which n; = k. Itis easy to
calculate that

(1 —(p/2p>tdpSn L 1 < k<,
IR if n<k<3n.
Hence |s,, = p~2" and |s|, < p~2" for k # n. Therefore
1b§1n+1)ip = pt1,

Thus the sequence b§"* 1 is not convergent.

4. Examples of expansions

(a} The function “s-th digit”. Let se N. The function i,; Z,— E is defined
as follows: if x = a,+a; p+a,p*+ ..., where g, & E for ie N, then i(x) = a,.
For an arbitrary ke E we have

p-1 1 ifk=a
8 -1 —Jk . . = s
® F EOC @i ) {0 if k # a,.
Therefore
p—1 r—1 .
i) = % (70 % KT )@pelx)-
i=0 k=0

(b) The characteristic function of a residue class. Let t=1i,+1,p

+ ... +t,_,p"" ', where tjeE for j=0,1,...,n—1, let
={acZ, t {(mod p"3},
and let x,: Z,{0, 1} be the characteristic function of 4. It is. c:lear that
n—1
ra) =1 (p7" Z {7 jpnlx)).
5= =0

Therefore

-1

XA(x Z bmqom (x)
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+e,-q0" ! (c;€ E),

1
- L talg

bm — P_ni: =0

where for m = cy+c p+ ...

(c) Digit functions.

DeriviTioN. A function f: Z,—-Q, is called a digit function if there

exists a function t: E~ €, such that for every x = ag+a;p+ ... (4,6 E,
j=0: 1129"')5
©) flag+ap+azp*+ ...) = tlag)+ila)p+i{a)p’+ ...

For example, the function f (@y+d,p+a,p*+ ...) = @i+ aip+aip*+ ..
is a digit function for which t(a) = a2. In [2] J. Dieudonné showed that
this f is not differentiable if p > 2.

We have the following obvious theorem:
TasoreM 6. The set of all digit functions forms a linear subspace of
C(Z,, Q,). Every constant function on Z, is a digit function.
If £ 18 a digit function then we can write
o p- r—1 i
= 2 (X tlp™" 3 heprt
s=0 k=0 j=0

Therefore

o p—1

p=1
(kypo+ 2. 2 (P77 Xtk
s=0 j=1 k=0
It is clear that if £(i) = x(i), where y is a Dirichlet character modulo p then
p-adic Gauss sums appear on the right side of (10).
Putting (i) =i in (10) we get the expansion

(10  f=[pd-p? Z

w p—1 -1
Ly x= =4+ 3 Y S KR g,
g=Q j=1 k=0
and so
w p—1
(12) x= -3+ ZO 21 PE =17 pplx).
s j=

If p =2 then the expansion (12) reduces to

(13) X = “‘% 2°(34(x).

g’,MS

&

(d) Powers of digit functions. Since every digit function / has an expansion
with respect to (¢,,), and the expansion converges to f, it follows from Corollary

icm
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1 that the same is true for every natural power of /. In particular, for each
ne N, the limit
-1

¥ 6
i=0

exists. Moreover, applying Theorem 6 we see that for every ne N, the limit

bo(f") = lim p* 0% = 1)

k—wo

i

k EZO g" (i)

also exists, where g(x} = f(x)—f(0) for xe Z,. Evidently, f(0) =
Introducing the notation

bo(g") = lim p~ 0°=1),

k=

t(O)/(1 —p)-

a4 B, =bol/") (neNg)
we deduce that for every m = ¢y+c¢ p+ ... +¢p* (c;6E,j=0,1,...,5) we
can write
-1
bu(f™ = lim p™* 37 f"(),,(D)
k—+m i=0

P.H-!._l kaswi_l

= lim p™* Y

koo i=0 Jj=0

LAO+p™ (] @mli) -

pr-s-1—1

Pty It +1)( k+s+1 Z
-s-1 5 - ]
izo Z () F

=0

gUNS " Dm0

lim p
k-+a0
_-ps+1 1

=i(ﬁwwmm,szmmm
! i=0

i=0

Note that we do not suppose that ¢ % §. Putting m = 0, we obtain the
recurrence formula

Pl+]—-1

n
Bn,f e Z ('I‘)pu—n(w 1)Bl‘g igo fn—t(i)_

=0
If s =0, we get the relation

as) B,, = Z()‘Wwﬁf"‘

1=0

The formula (15) together with the obvious equalities

B,, = 5’: (n)Bz,f(_f(O))"_! (neN,0%°=1)

i=0 !

enables us to determine successively the coefficients B, , and B, .. If m % 0 then

(16) b, (f") = i() G-nernp,

+1—1

Y, /7060

i=0

4 — Actp Arithmetica LL 3
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(€) The function a*. If ae 1+pZ, then the function ¥ = exp(xloga) has an
expansion with respect to (¢,,), converging to a*, because a* is analytic on Z,
(see Theorem 5). If @ = 1 then & = @ (x). Now suppose that ae 1+pZ, and
a# 1.Im=co+e,p+ ... +ep'lc; €E forj=0,1,...,s)and a”" # 1, then

pErl—1 preseia

by=limp* Y Y

ai +jps " m"l (i)

| 3md-s} i=0 =0
ar’k—'—l ps-t-l—-l
- _k e #
= lim p~*—mr—r i Y dg,
ko a -l =0

loga P2} Pt
a‘w_+l—"“1*' Z -

T Ydp=0 dy=0

aﬂ‘nd‘pdi + ...+p-’d,Cﬂ(dncn R 3

_loga H a1
= apa“'"l_,':oapjg_”—l'

In particular, b, = loga/(a—1).
(f) The functions exp(ax), sin{ax), cos(ax). Let
D= {xef,: |x|,<p "V}

and let a be a fixed p-adic number in D. Then the series

= (ax)" o (_l)n(ax)2n+1

L 2 @+

n=0 nl n=0

(= 1)"{ax)*"
o (2!

18

I

n

define functions, analytic on Z,: exp(ax), sin{ax), cos{ax) respectively (see [4]).
Therefore for every aeD each of the above functions has an expansion
converging to it. It is easy fo calculate that if m = ¢o~c p+ ... e Pt
(g» €1 -+-» Cs—y € E) then the coefficients of the expansions are the following:

exp({ax):
. P
bo = alexpa—1)"", b, = alexplap)— 11" Y, exp(a)@,();
i=0
sin{ax):
a . _,apP?PCt .
by, = —af2, bmzism"‘wé-« Y, [sina(i~p*/2)] @,,();
i=0
cos{ax):
' a a ca, _,ap't3t it s g
by = ECOtE’ b, = 7sin 1—2— i;ﬂ [cosali—p/2)]¢,,(9).

(If p = 2 and a/2¢ D then by cot(a/2) we mean the quotient {1+ cosa)/sina.)
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