On the congruence \(f(x^q) \equiv 0 \mod q \), where \(q \) is a prime and \(f \) is a polynomial

by

J. Wójcik (Warszawa)

The aim of this paper is to prove the following theorems:

Theorem 1. Let \(\alpha \) be an algebraic number different from zero and not a root of unity. Let \(n \) be its degree. Let \(k \) be an arbitrary natural number. We have

\[
\alpha = \beta n^{\gamma},
\]

where \(n = (k, c(\alpha)) \), \(\beta \) is cyclotomic, \(\gamma \in \mathbb{Q}(\alpha) \).

Further, let \(K_0 \) denote the maximal cyclotomic subfield of \(\mathbb{Q}(\alpha) \) and put \(K_1 = K_0(\beta) \). Let \(f_1 \) be the conductor of \(K_1 \) and \(G_1 \) the group of rationals \(\mod f_1 \) corresponding to \(K_1 \). Put \(G_2 = G_1 \cap E_k \). The group \(G_2 \) is uniquely determined by the algebraic number \(\alpha \) and the positive integer \(k \). For any positive integers \(D \) and \(r \) such that \((D, r) = 1 \) and the residue class of \(r \mod D \) contains a rational integer \(\alpha \) is \(k \)-th power residue \(\mod q \). \(N_q \equiv r \mod D \), \(N_q \equiv 1 \mod k \). The Dirichlet density of this set of prime ideals is equal to

\[
\frac{n(k, c(\alpha))}{C(\alpha)kp([D, k])} [K_1 : \mathbb{Q}(\alpha)] [K_1 : \mathbb{Q}].
\]

The meaning of \(c(\alpha) \) and \(C(\alpha) \) is explained later.

Theorem 2. Let \(f \) be a polynomial with rational integral coefficients, irreducible, primitive, with a positive leading coefficient. Assume that \(f \) is different from \(x \) and \(f \) is not a cyclotomic polynomial. Let \(k \) be any positive integer. Let \(\alpha \) be any root of \(f \). We have

\[
\alpha = \beta n^{\gamma},
\]

where \(n = (k, c(f)) \), \(\beta \) is cyclotomic, \(\gamma \in \mathbb{Q}(\alpha) \).

Further, let \(K_0 \) denote the maximal cyclotomic subfield of \(\mathbb{Q}(\alpha) \) and put \(K_1 = K_0(\beta) \). Let \(f_1 \) be the conductor of \(K_1 \) and \(G_1 \) the group of rationals \(\mod f_1 \) corresponding to \(K_1 \). Put \(G_2 = G_1 \cap E_k \). The group \(G_2 \) is uniquely determined by the polynomial \(f \) and the positive integer \(k \). For any positive integers \(D \) and \(r \) such that \((D, r) = 1 \) and the residue class of \(r \mod D \) contains a rational integer...
belonging to \(G_2 \) there exist infinitely many primes \(q \) such that \(q \equiv r \mod D \), \(q \equiv 1 \mod k \) and the congruence \(f(x^q) \equiv 0 \mod q \) is solvable in \(x \in \mathbb{Z} \). The Dirichlet density \(\delta \) of this set of primes satisfies the inequality

\[
\frac{(k, c(f))}{C(f)k\varphi([D, k])} \leq \delta \leq \frac{\varphi([D, k])}{|K_1|}.
\]

where

\[\varphi([D, k]) \]

is the degree of \(f \). The meaning of \(c(f) \) and \(C(f) \) is explained later.

In [2], we proved Theorem 2 with the additional assumption that \(f \) is \(k \)-normal obtaining a stronger assertion on \(\delta \):

\[
\delta = \frac{(k, c(f))}{C(f)k\varphi([D, k])} \leq \frac{|K_1 \cap P_{[D,k]}|}{|K_1|}.
\]

Notation. \(\zeta_m = e^{2\pi i/m} \) \(K \) denotes an algebraic number field. \(P_m = Q(\zeta_m) \). If \(\alpha \in K \), \(\zeta_m \in \mathbb{K} \), \(\zeta_m = 0 \), \(b \) is a fractional ideal of \(K \) then \(\left(\frac{q|K}{b} \right) \) is the \(m \)th power residue symbol. \(D(\alpha) \) denotes the discriminant of \(\alpha \). If the extension \(K/\Omega \) is abelian, then \(f(K/\Omega) \) is its conductor. \(f_a = f(K(\sqrt[K]{a})/K) \) is also the conductor of \(\left(\frac{q|K}{b} \right) \). \(E_m \) is the group of rationals congruent to \(1 \mod m \) call a set \(G \subseteq Q \) a group of rationals \(m \mod m \) if \(i \in G \), \(ii \) \(G \) is a multiplicative group and \(iii \) every element of \(G \) is prime to \(m \) (clearly \(G/E_m \) is a group of residue classes \(m \mod m \)). If \(K \subseteq \mathbb{P}_m \) then a group \(G \) of rationals \(m \mod m \) is said to correspond to \(K \) if \(G/E_m \) is the maximal subgroup of \(Gal(\mathbb{P}_m/Q) \) which leaves \(K \) fixed. \(\left(\frac{q}{b} \right) \) denotes the least common multiple. \(|K| = (K: Q) \). For a finite set \(S \), \(|S| \) is its cardinality. \(K^{\text{cyc}} \) denotes the maximal cyclotomic extension of \(K \). Let \(\alpha \in K^{\text{cyc}} \). Consider the equation in unknowns \(n \), \(\beta \)

\[
\alpha = \beta^n, \quad n \text{ natural}, \quad \beta \in K^{\text{cyc}}
\]

(3)

Put

\[
C_\mathbb{Q}(\alpha) = \left\{ \begin{array}{ll}
\text{maximal } n \text{ satisfying (3)} & \text{ if the equation (3) has only a finite number of solutions,} \\
\infty & \text{ otherwise.}
\end{array} \right.
\]

Let \(f \) be an arbitrary polynomial with rational coefficients irreducible over \(Q \) and let \(\alpha \) be a root of \(f \). Put

\[
c(f) = c(\alpha) = C_\mathbb{Q}(\alpha), \quad C(f) = C(\alpha) = (Q(\alpha): K_0) = n/K_0
\]

where \(n \) denotes the degree of \(f \) and \(K_0 \) is the maximal cyclotomic subfield of \(Q(\alpha) \).

Lemma 1. Let \(\alpha \) be an algebraic number different from zero and not a root of unity. Then (1) holds. Put \(k_1 = Q(\alpha), k_2 = k_1 P_{k_1}(\beta) \). Let \(K_0, K_1, f_1, K_1, G_1, G_2 \) have the same meaning as in Theorem 1. Let \(D \) be an arbitrary positive integer and \(F \) an arbitrary positive integer divisible by \(k_1 D \) and by the conductor of the power residue symbol \(\left(\frac{\alpha}{K_1} \right)_k \). We have

\[
k_2 \cap P_{F} = K_1 P_{F} = k_2 \cap Q^{\text{cyc}}.
\]

Let \(r \in G_2 \). There exists an ideal \(\alpha_1 \) of \(k_2 \) such that

\[
\left(\frac{\alpha_1}{k_1} \right)_k = 1.
\]

The group \(G_2 \) is uniquely determined by the algebraic number \(\alpha \) and the positive integer \(k \).

Proof. See [2], p. 155–156. We only have to prove the last statement of the lemma. Assume that we also have

\[
\alpha = \beta^\gamma, \quad \beta' \in Q^{\text{cyc}}, \quad \gamma' \in Q(\alpha).
\]

We have

\[
\alpha = \beta^n, \quad \beta'_1 = \beta' \gamma', \quad \alpha = \beta^n, \quad \beta_1 = \beta\gamma.
\]

By Lemma 4 of [2] \(K_0(\beta) = K_0(\beta') \) is the maximal cyclotomic subfield of the field \(k_1 \mathbb{Q}(\beta) = k_1(\beta) = k_1(\beta_1) = Q(\beta_1) \). Analogously, \(K_0(\beta') \) is the maximal cyclotomic subfield of the field \(Q(\beta'_1) \). We have

\[
\beta'_1 = \zeta_m, \quad \text{ and } \quad Q(\beta'_1)_P = Q(\mathbb{Q}, \beta_1)_P = Q(\beta_1) P_{k_1|k}.
\]

Put \(K'_1 = K_0(\beta'_1) \). Hence by Lemma 4 of [2]

\[
K'_1 P_{k_1} = K_0(\beta') P_{k_1} = K_0(\beta') P_{k_1}.
\]

This means that \(K_1 P_{k_1} \) is uniquely determined by the algebraic number \(\alpha \) and by the positive integer \(k_1 \). \(k_1, f_1 \) is uniquely determined by \(\alpha \) and \(k_1 \). Since \(G_2 \) is the group of rationals \(m \mod m \) corresponding to \(K_1 P_{k_1} \), \(G_2 \) is uniquely determined by \(k_1 \) and by \(\alpha \).

Lemma 2. Let

\[
C = \left\{ a : a \text{ an ideal of } k_2, (\alpha, F) = 1, N\alpha \equiv r \mod F, \left(\frac{\alpha}{N\alpha} \right)_k = 1 \right\},
\]

where \((r, F) = 1, r \in G_2 \).

\[
C' = \{ a_1 : a_1 \text{ a prime ideal of } k_1, N\alpha_1 \equiv r \mod F, \alpha \text{ is a } k-\text{th power residue } \mod q_1 \},
\]

where \((r, F) = 1, r \in G_2 \).
Then if \(a_1 \in C\) is a prime ideal of \(k_2\) of degree one over \(k_1\), and \(Nq_2\) is sufficiently large then there exist exactly \(|k_2|/|k_1|\) prime ideals \(q_2\) (\(r \in G(k_2/k_1)\)) of degree one over \(k_1\) belonging to \(C\) and dividing a certain prime ideal \(q_1\) of \(k_1\) belonging to \(C\) (\(q_1 = Nq_2a_1q_2\)). Conversely, if \(q_1 \in C\) is a prime ideal of \(k_1\) and \(Nq_1\) is sufficiently large, then \(q_1\) splits completely in \(k_2\) and each of its prime divisors \(q_2\) in \(k_2\) belongs to \(C\).

Proof. See [1], p. 160. By Lemma 1 the set \(C\) is non empty. We only have to prove that if \(q_1 \in C\) is a prime ideal of \(k_1\) and \(Nq_1\) is sufficiently large, then \(q_1\) splits completely in \(k_2\). Put \(f_2 = [k_2, f_2]\). We have \(k_2 = k_1 P_2 = k_1 Q(\xi) P_{k_2} = k_1 K_2 P_k\). We have \(K_2 P_k = \mathbb{Q}(\xi)\), \(k_2 = k_2(\xi)\). Let \(Nq_1 = q_1 f_2 \in G_2\). We have \(K_2 P_k \subseteq P_{f_2}\). Hence \(\xi = h(f_2), h \in \mathbb{Q}[x]\). Since \(Nq_1\) is sufficiently large, we have

\[
\xi^{Nq_1} = h(f_2)^{Nq_1} \equiv h(f_2) \equiv \xi \mod \mathfrak{Q},
\]

because \(G_2\) is the group of rationals mod \(f_2\) corresponding to the field \(K_2 P_k\), where \(Q/\mathfrak{Q}\), \(\mathfrak{Q}\) is a prime ideal of \(k_2\). Let \(\eta\) be an arbitrary integer of \(k_2\).

\[
\eta = \sum_{i} a_i \xi^i, \quad a_i \in k_1.
\]

By Fermat's theorem, \(a_i^{Nq_1} \equiv a_i \mod \mathfrak{Q}\). Hence by (4)

\[
\eta^{Nq_1} \equiv \sum_{i} a_i^{Nq_1} \xi^{Nq_1} \equiv \sum_{i} a_i \xi^i \equiv \eta \mod \mathfrak{Q}.
\]

This means that \(q_1\) splits completely in \(k_2\). The lemma is proved.

Proof of Theorem 1. Put

\[
A = \{a: \text{a an ideal of } k_2, (a, F) = 1\},
\]

\[
H_1 = \{a: \text{a an ideal of } k_2, (a, F) = 1, Nq_1 \equiv 1 \mod F\},
\]

\[
H = \{a: \text{a an ideal of } k_2, (a, F) = 1, Nq_1 \equiv 1 \mod F, \left(\frac{a}{k_1}\right) = 1\},
\]

\[
h = (A: H).
\]

By Lemma 2 and Hecke's theorem

\[
\frac{1}{h} = d(C) = \lim_{s \to 1+0} \frac{1}{|Nq_2|} \log \frac{1}{|k_2|/|k_1|} = \lim_{s \to 1+0} \frac{1}{|Nq_1|} \log \frac{1}{|k_2|/|k_1|} = \llbracket k_2/|k_1| \rrbracket d(C),
\]

\(|k_1| = n\), where \(q_2\) are prime ideals of \(k_2\) of degree one over \(k_1\).

Hence

\[
d(C) = \frac{n}{\llbracket k_2/|k_1| \rrbracket}.
\]

By Lemma 1 and by the argument of [2], p. 158 we have

\[
d(C) = \frac{n(k, c(a))}{C(a)k\varphi(|F|)}.
\]

Assume first that \(D \equiv 0 \mod [k, f_1]\). Put

\[
C'' = \{q: q \text{ a prime ideal of } k_1, Nq \equiv r \mod D, Nq \equiv 1 \mod k, \alpha \text{ is a } k\text{th power residue mod } q_1\},
\]

where \((r, D) = 1\) and \(r \in G_2\).

By the argument of [2], p. 158–159, we have

\[
d(C'') = \frac{n(k, c(\alpha))}{C(\alpha)k\varphi(|D|)}.
\]

Thus we have proved the theorem for \(D \equiv 0 \mod [k, f_1]\).

Let \(G_1 = r_1 E_{f_1} \cup r_2 E_{f_1} \cup \ldots \cup r_t E_{f_1}, t = (G_1 : E_{f_1})\). Let \(D\) be any positive integer. Put

\[
C_j = \{q: q \text{ a prime ideal of } k_1, Nq \equiv r_j \mod D, Nq \equiv 1 \mod k, Nq \equiv r_j \mod f_1, \alpha \text{ is a } k\text{th power residue mod } q_1\},
\]

where \((r_j, D) = 1\) and there exists a rational integer \(r_j\) such that

\[
r_j \equiv \begin{cases} r \mod D, \\ 1 \mod K, \\ r_j \mod f_1. \end{cases}
\]

Obviously

\[
C_j = \{q: q \text{ a prime ideal of } k_1, Nq \equiv r_j \mod [D, k, f_1], \alpha \text{ is a } k\text{th power residue mod } q_1\},
\]

where \((r_j, [D, k, f_1]) = 1\) and \(r_j \in G_2\).

By (8) (the theorem for \(D \equiv 0 \mod [k, f_1]\)),

\[
d(C_j) = \frac{n(k, c(\alpha))}{C(\alpha)k\varphi([D, k, f_1])}.
\]

Put

\[
C'' = \{q: q \text{ a prime ideal of } k_1, Nq \equiv r \mod D, Nq \equiv 1 \mod k, \alpha \text{ is a } k\text{th power residue mod } q_1\},
\]

where \((r, D) = 1\) and the residue class of \(r \mod D\) contains a number belonging to \(G_2\). By the argument of [2], p. 159–160, we have

\[
d(C'') = \frac{n(k, c(\alpha))}{C(\alpha)k\varphi([D, k])} \llbracket K_1 \cap P_{[r, k]} \rrbracket.
\]

The theorem is proved.
Proof of Theorem 2. Let \(f(x) = a_0 x^n + \ldots + a_n \) be a polynomial satisfying the assumptions of the theorem. Let \(\alpha \) be any of its roots. By the assumptions, \(\alpha \) is different from zero and is not a root of unity. Put \(k_1 = Q(\alpha) \).

By Theorem 1 we have (2), since \(c_1(\alpha) = c(\alpha) = c(f) \). From the Theorem of [2] and the remark at the end of that paper it follows that the group \(G_2 \) is uniquely determined by the polynomial \(f \) and the positive integer \(k \).

Put
\[
C = \{ q \in \text{prime ideal of } k_1, Nq \equiv 1 \mod k, Nq \equiv r \mod D, \alpha \text{ is a } k \text{th power residue } \mod q \},
\]
\[
B = \{ q \in \text{prime number, } q \equiv 1 \mod k, q \equiv r \mod D, \text{the congruence } f(x^q) \equiv 0 \mod q \text{ is solvable} \},
\]
where \((r, D) = 1 \) and residue class of \(r \mod D \) contains a rational integer belonging to \(G_2 \).

By the same argument as in [1] we have
\[
\frac{1}{n} d(C) \leq d(B) \leq \frac{1}{n} d(C).
\]

By the definition of \(c(f) \) and \(C(f) \), \(c(\alpha) = c(f) \), \(C(\alpha) = C(f) \). Hence by Theorem 1
\[
d(C) = \frac{n(k, c(f))}{C(f) k \varphi([D, k])} \frac{|K_1 \cap P_{[D, k]}|}{|K_1|}.
\]

By (11)
\[
\frac{(k, c(f))}{C(f) k \varphi([D, k])} \frac{|K_1 \cap P_{[D, k]}|}{|K_1|} \leq d(B) \leq \frac{n(k, c(f))}{C(f) k \varphi([D, k])} \frac{|K_1 \cap P_{[D, k]}|}{|K_1|}.
\]

Theorem 2 is proved.

References

[2] — On the congruence \(f(x^q) \equiv 0 \mod q \), where \(q \) is a prime and \(f \) is a \(k \)-normal polynomial, ibid. 41 (1982), 151–161.

Received on 22.11.1982
and in revised form on 9.1.1987

Multiplicative functions and Brun’s sieve

by

KRISHNASWAMI ALLADI (Gainesville, Florida)

1. Introduction. Let \(g \) be a strongly multiplicative function. That is
\[
g(n) = \prod_{\substack{p \mid n \leq \text{prime} \quad \text{prime} \leq n \leq p \leq \text{prime}}} g(p).
\]

The truncation of \(g \) at \(y \) is
\[
g_y(n) = \prod_{\substack{p \leq y \quad \text{prime}}} g(p).
\]

As is customary null products have value one.

For any set \(\mathcal{A} \) of positive integers we let \(\mathcal{A}(x) \) denote \(\mathcal{A} \cap [1, x] \). The problem we consider here is the estimation of
\[
S_y(\mathcal{A}(x), y) = \sum_{n \leq x \in \mathcal{A}(x)} g_y(n)
\]

for sets \(\mathcal{A} \) satisfying certain conditions to be specified in Section 2. We were motivated to study this sum because it turns out (as will be seen in Section 3) to be a natural generalization of a typical sieve problem. We show that Brun’s sieve could be used to estimate \(S_y(\mathcal{A}(x), y) \) when \(-1 \leq g \leq 1\), provided \(x = (\log |\mathcal{A}(x)|)/\log y \) is not small (see § 5–§ 7) and for this we make use of an interesting ‘monotonicity principle’ (see § 4).

Previously [1], [2], [3] we had investigated such sums when \(0 < g \leq 1 \). In this case \(g \) may be written as
\[
g(n) = e^{\sigma f(n)}
\]

where \(u < 0 \) and \(f > 0 \) is a strongly additive function. So the sum in (1.1) can be interpreted in terms of the Laplace transform of \(f \), which is the truncation of \(f \) and \(y \). Such an approach led to a new method of estimating the moments of \(f \) using the sieve. For the sake of completeness we shall state (without proof) towards the end of Section 6 some results for the case \(0 \leq g \leq 1 \) but in a slightly stronger form than was utilized by us earlier. The main interest in the present paper lies in showing that the sieve can be employed to deal with such