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Diagonalizable indefinite integral quadratic forms
by

DownaLp G. James™ (University Park, Penn.)

1. Introdection. Let L be a Z-lattice on an indefinite regular quadratic
O-space V, of finite dimension n 2 3, with associated symmetric bilinear form
[ VxV— Q. Assume, for convenience, that (L, L) = Z, namely the scale of
Lis Z. Let x4, ..., x, be a Z-basis for L and put d = dL = det f{x;, x;), the
discriminant of the lattice L. We study a Hasse principle for diagonalization,
that is, we investigate the set @ of discriminants with the property that all
indefinite lattices with discriminant in &, which diagonalize locally at all
primes, also diagonalize globally over Z. Since all lattices diagonalize locally
at the odd primes (see O’Meara [5]), the local condition is only significant
for the prime 2. A result of J. Milnor states that all odd lattices L with dL
=="4 1 have an orthogonal basis (see Serre [6] or Wall [7]). Thus +1e 2. It
is also shown in James [3] that +2ge¢ < for all primes g = 3 mod 4, but
241¢ 9. We prove here the following

THeorEM. Let p=1mod4, p=5Smod8, g=3modd and g

= 3 mod 8 be primes with Legendre symbols (ﬂ) = (P—) = —1. Then +tde%
P r.

jor the following values of d:
1,2,4,q,2q. g% 24%, 2q9¢', 2, pq, 2pa, 2pp’, 207, 2p'q.

For each of the discriminants 4 considered in the above theorem, except
d =4, the local condition that L, diagonalizes is equivalent to the global
condition that L is an odd lattice, namely the set | f(x, x)| xe L} contains at
least one odd number. An exact determination of % appears very difficult. In
fact we will exhibit de % with d containing arbitrarily many prime factors
(sec Proposition 2). .

Let i = i(L) = i(V) be the Witt index of V. Then (i) denotes the set of
discriminants of lattices: L on spaces V with Witt index at least / which
diagonalize over Z whenever the localization L, diagonalizes. It is also useful
to introduce the stable version % (co) of discriminants where dLe % {c0)

* This research was partially supported by the National Science Foundation.
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means the lattice L L H™ diagonalizes for m sufficiently large, assuming £,
diagonalizes, where H™ is the orthogonal sum of m integral hyperbolic planes

‘ 01 iy
H corresponding to the matrix |: ] OJ' Trivially,

P =G EGQR)S... & F(w).

We also establish some results for the sets %{i). For example, +4¢" is in
@(2) for primes g=¢ =3mod4, but +gq is not in %(1). Thus
Z(1) # €(2). On the other hand, the discriminants p, 4p, p*, pl and 4pl are

{
not in @(oc) for any primes p,! with p=1mod 4 and (E) = 1.

Although the theorem above only states the existence of a diagonalized
form for any lattice with the given discriminant de %, the proofs are
constructive and will determine a diagonal matrix for the form {(which need
not be unique).

2. Preliminaries. It is convenient to adopt the convention that p is
always a prime with p = 1 mod 4, while g is a prime with ¢ = 3 mod 4. Let
{ay, ..., ay» denote the Z-laitice Zx, L.... 1 Zx, with an orthogonal basis
where f(x;, x) =a, 1 <i<n Most of our notation follows O'Meara [5].
Thus L, is the localization of L at the prime p, while S,L is the Hasse
symbol of the local space on which L, lies. Let s(L) =s(V) denote the
signature of the space V. _

Since we only consider indefinite lattices L, the genus and the class of L
coincide, provided the discriminant dL is not divisible by any odd prime
power [° with exponent e 2 $n(n—1), nor by 27 (see Earnest and Hsia [2],
Kneser {4]).

We also need to know when two Z-lattices L and M with the same rank
n and discriminant d are locally isometric. At the infinite prime the spaces
must have the same signature. General conditions at the finite primes I are
given in O’Meara ([5], § 92, 93). Assume first, as is necessary, that I; and M,
have the same Jordan type. We will use the following special cases.

() If L; and M, are unimodular, then L; = M,.

(i) Let Ly=J; L by and M, =K, L {I ¢ with J, and K; unimodu-
lar, of the same rank, and b, ¢ [-adic units. Assume / an odd prime, Then I,
= M, if and only if S;L, =S, M,, that is, if and only if the Hilbert symbal

be, 1Y .
(2! )_1,

Fiii_) If L, and M, are diagonalizable and have the same Jordan typ.e
consisting of a unimodular and a 2-modular component, then L, and M, are
isometric by O’Meara ([5], 93:29).
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3. Main results. The theorem stated in the Introduction, along with the
other comments given there, are consequences of the following more specific
results and techniques.

Proposimion 1. Let +d be a product of g distinct primes g = 3 mod 4.
Then

(i) £1, +£2, +4e 2,

(ii) 4, 2de P(g),

(iii) 2de Z(g—1), provided g = 2. and there exisis a prime ¢ =3 mod 8
dividing d. ‘

Proof. Let L be an odd lattice with d = dL, rank » > 3 and index i(L)
zg>1 Let g be a prime dividing 4. Consider the two Z-lattices N
=J 1 <g>and N' =K L {—g> where J and K are diagonalized lattices and
AN = dN' = bgq, where (b, g) = 1. Since ¢ =3 mod 4, we have

= (2)-(7)- ()
e (52)-(4)-)

Hence we can choose M equal to N or N such that S, M = §, L. In fact,
more generally, since i(L) =g, we can choose )

M: <i511: -l—_q2= RS iq!;-; il, -y il}

such that dM =dL=d, rank M =n, s{M)=s(L) and §, M =S, L for all
primes g dividing d: Then S, M =8, L and §; M = §, L for all odd primes L
By Hilbert reciprocity, S, M =5, L and hence M and L can be viewed as
lying on the same quadratic space. By earlier remarks, L and M are in the
same genus and hence the same class. Thus L diagonalizes and de % (g). A
slight modification of the above, introducing a +2 term into M, shows that
2de % (g). This proves (ii). The above argument also holds, with minor
modifications, when g = 0 and d = +1;, 2 or 4. In the case d = +4, the
sign of ¢+2?> in M must be chosen to ensure M, = L, if L, has a 4-
modular component. This proves (i).

Now assume dL = 2d and there exists a prime ¢ = 3 mod 8 dividing 4.
Consider N =J L {g> and N' =K L {2¢q) with J and K as before. Since

(%) = —1, it follows that S, N = —§;N'. A similar conclusion holds for the
q
pair J L. {—g¢> and K 1 {—2g)>. Hence we can again arrange that S, L

=S8, M by using the factor 2 and save one choice of sign. Thus L now
diagonalizes if i(L) = g—1 =1, proving (iii).

and

T — Acta Arithmetics L3
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Remark. Proposition 1 ecstablishes +g¢q'e #(2) for primes g =g’

= 3 mod 4. However, +g¢' is not in Z({1}. We may assume (57 =1. By

l I
Dirichlet’s Theorem there exists 4 prime { = 3 mod 4 with — (E) = (~) =1.

q
Then (_‘_7‘1_‘1“): 1 and there exists ce N with ¢* = —gg’ mod [. Put a = (¢?

+4qq’){ ' & N and let B be the binary Z-lattice corresponding to the symme-
tric matrix [l C]. Put L=<1,1,...,1, —1> LB, Then L has index i(L) =1
c a

!
and dL= —gqq'. Also §, L = (5) =1 and §; L= —1. if L diagonalizes, then

L=UL1J where U= (1, 1,...,1> and J is one of the five lattices i, 1,
—qq'y 1, —1,49) {1, q, —q¢'>, {1, —4, 4> or (—1, g, "> But none of
these five lattices has the same Hasse symbols as L at g and ¢'. Hence L does
not diagonalize and --gq' is not in % (1). The lattice obtained from L by
scaling by —1 also does not diagonalize. Hence ggq’ ¢ % (1),

PropostTiON 2, Let p; =5 mod 8, 1 < i < m, be distinct primes with (B’«>
P
=1L 1<i#j<m and d = £2p, py...p,. Then d and dq are in @ for any
prime g = 3 mod 4.
Proof. Consider the binary Z-lattice B = {—p,...p,, 20,41 ... Pm> Where
0 <r < m By varying r and permuting the primes p,, there are 2™ distinct
choices for B. Since, for 1 <i<r,

S, B = (M): (g_)z -1,
D Pi

while for r+1<j<m,

o (o),
J pj

the values of the Hasse symbols S, B are distinct for each of these 2™ choices
of B. Let L be an odd indefinite Z-lattice with dL = d. Then we can find M
=ULB with U=<{%1,..., £1% and rank M =rank L such that s{M)
= (L) and S;M = S;L for all odd primes L Again, by Hilbert reciprocity,
S;M=S5,1L so that M and L are on the same quadratic space and are
isometric. Thus L diagonalizes and de &.

. Next consider (4> LB, and (-g¢> i B, where B, and B, are variants of
B with dB, = --dB, achieved by changing a sign in the coefficients (since

—1 ..
(T)= 1, this has no effect on S, B). These two lattices have the same
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Hasse symbols at all odd primes except ¢ where they have the opposite
values. Proceeding as before, we now have dge .

Remark. Many variations of the above two propositions can be
established for other combinations of primes. Also the method can be used
when d is not square free, although there will now be more Jordan types to
consider. For example, as is indicated in the statement of the main theorem,
it can be shown that +¢* and +2¢? are in & for any prime ¢ = 3 mod 4.

On the other hand, there are many choices for d = dL of a similar
nature where L need not diagonalize.

I
Prorosition 3. Let p =1 mod 4 be prime and D, Ee N with (E) =1 for
any prime | dividing D. Then + pDE2¢ 9 (c0).
Proof. By Dirichlet's Theorem there exists a prime g = 3 mod 4 with '

(E)= —1. Hence there exists ceN such that ¢*p= —~1modg. Put a=
4
(1+c*p)g~'eN and let B = Zx, -+ Zx, be the binary lattice where /' (x, x,)

=a, fi(x;,x)=pc and f(xy,x,)=pg. Then dB=p. Let L=U
1 {—~DE*> 1 Bwhere U = (%1, ..., +1)is unimodular. Then Lis an indefini-
te lattice with dI. = £pDE? and the localization L, diagonalizes. If L
diagonalizes, then L =2Zx LN with ord,f(x, x) = 1. Hence f(x, L) & pZ
and consequently x = pu+4v+w where uel, v=ax+fx,eB and w
g ¢(~DE*} with f(w, w) = 0 mod p®. Hence

f(x, x) = f(v, v) = a* a+2afpc+ B pg mod p>.

Consequently p divides o and f(x, x) = B> pg mod p*. Let f(x, x) = pb. Then
b divides DE? and (é) = —1 by choice of g. If I is a prime dividing b, then
P

{ . . . .
either I divides D and hence (~ =1, or [ divides E in which case ord; b is
p
even (from considering the Jerdan type of L;). This leads to the contradiction

(2) == 1, since p = 1 mod 4. Hence L does not diagonalize and, since U can
P : )
have arbitrarily large index, necessarily dL = +pDE? is not in & (c0).

. i :
Cororrary., If p=1mod4 and | are primes with (;)zl, then

+d¢ & (c0) for d=p, 4p, pl and 4pl.

Remark. By varying the choice of B in the proof of Propesition 3, it is
possible to produce more discriminants d¢ (o). We give three further
examples. Let D, Ee N.
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(i) Let p =p'=1mod 4 be primes with (%) = —1, Then
tpp’ E* ¢ 7 (c0).

-~1. Then

(i) Let p=p'=1mod § be primes with (%)
+2pp’ E* ¢ 7 (o0).

[
(iii) Let p =1 mod 4 be a prime with (p)= 1 for all primes | divid
D. Then

+p? DE* ¢ & (o0).
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