On sign-changes in the remainder-term of the prime-number formula, IV

by

J. KACZOROWSKI (Poznań)

1. The subject of this paper is to pursue some further questions concerning the oscillatory nature of the “Abel mean” of the remainder-term of the prime-number formula:

\[A_5(x) = \sum_{n=2}^{\infty} (A(n)-1) e^{-n/x}, \quad x > 0. \]

(1.1)

In contrast with part III of this cycle [3], our main results are unconditional.

Let \(V_5(T) \) denote, as usual, the number of sign-changes of \(A_5 \) in the interval \((0, T]\).

Theorem 1. For \(T \) tending to infinity we have the estimate

\[V_5(T) = o(1/\log^2 T). \]

(1.2)

Let us remark that (1.2) cannot be much improved without an additional information about the distribution of zeros of the Riemann zeta-function near the line

\[\sigma = \Theta := \sup \Re \zeta. \]

(1.3)

For example, if \(\Theta > 1/2 \) and there exist a positive-valued function \(g \), monotonically decreasing to zero, and a sequence of zeta-zeros \(\zeta_m = \beta_m + i\gamma_m \), \(m = 1, 2, \ldots \), such that

\[\beta_m \to \Theta, \quad \gamma_m \to \infty \quad \text{as} \quad m \to \infty, \]

(1.4)

and if region \(s = \sigma + it \),

\[\beta_m - g(\gamma_m) \leq \sigma \leq \Theta, \]

(1.5)

\[0 < t < \gamma_m / g(\gamma_m) \]

(1.6)

contains only one zero \(\zeta_m \), then

\[V_5(T) = \Omega (g(\log T) \log^2 T). \]

(1.7)
This follows easily from the well-known explicit formula

\[A_2(x) = \sum \Gamma(\theta) x^\theta + O(1), \]

where \(\Gamma \) denotes the Euler gamma-function.

We shall deduce Theorem 1 from Theorem 5.1 of [3] and the following

Theorem 2. Suppose \(\Theta > 1/2 \). Then for every \(\epsilon > 0 \) there exist two positive constants \(c_0 \) and \(T_0 \) depending on \(\epsilon \) such that, for every \(T > T_0 \),

\[
\max_{T \leq x \leq (1+\Theta)T} |A_2(x)| \geq c_0 T^{\Theta - \epsilon}.
\]

Our main tool in the proof is the power sum method due to P. Turán. According to the considerations in Sections 11–14 of [3], we have, under the Riemann hypothesis, the inequality

\[
\max_{T \leq x \leq (1+\Theta)T} |A_2(x)| \geq c_1 T \sqrt{T},
\]

satisfied for every positive \(\epsilon \) and sufficiently large \(T \). Thus we can formulate a completely unconditional theorem concerning “large values” of \(A_2 \):

Theorem 3. For every positive \(\epsilon \) there exist two positive constants \(c_2 \) and \(T_1 \) such that

\[
\max_{T \leq x \leq (1+\Theta)T} |A_2(x)| \geq c_2 T^{1/2} \quad \text{for} \quad T \geq T_1.
\]

This theorem is for large \(T \) much stronger than the result of S. Knapowski and W. Stas [5], with regard both to the localization and to the lower estimate. However, our estimate (1.11) is ineffective.

2. For the reader’s convenience we now state all necessary lemmas.

Lemma 1. Let \(m \) be a non-negative number and \(z_1, z_2, \ldots, z_N \) complex numbers such that

\[
1 = |z_1| \geq |z_2| \geq \cdots \geq |z_{m-N}|,
\]

\[
|z_m| \geq 2N/(m+N).
\]

Then there exists an integer \(\nu \) with

\[
m \leq \nu \leq m+N
\]

such that

\[
|\sum_{r=1}^N b_r z_r| \geq \left(\frac{2N}{3(2N+m)} \right)^\nu \left(\frac{1}{24e^{2N+m}} \right)^\nu \min_{h \leq s \leq N} |b_1 + \cdots + b_s|.
\]

This is Turán’s second main theorem in the form given by S. Knapowski [4]. Let us notice that Knapowski has formulated a somewhat less precise

inequality, with the factor \((|z_m|/2)^\nu \) in place of \(\left(|z_m| - \frac{2N}{3(2N+m)} \right)^\nu \), but in fact his proof leads to (2.4).

Lemma 2. Let \(\lambda_j = \sigma_j + it_j, \ j = 1, \ldots, N, \) denote complex numbers such that

\[
\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_N.
\]

Let further

\[
f(t) = \sum_{j=1}^N b_j e^{\lambda_j t}, \quad t \in \mathbb{R},
\]

where \(b_j \) are arbitrary complex numbers.

Suppose \(\xi \) and \(\eta \) are real numbers satisfying

\[
|\sigma_j - \sigma_N| \leq \xi,
\]

and

\[
a \geq 2e^\eta.
\]

Then for every \(d, 0 < d \leq 1 \), and every \(h, 1 \leq h \leq N, \) we have

\[
\max_{0 \leq k \leq h} |f(t)| \geq e^{\eta|\sigma_j - \sigma_N|} \left(24e^{1+\eta\varepsilon} \left(2 + \frac{a}{d} \right) \right)^{-N} \min_{0 \leq k \leq h} \sum_{j=1}^N |b_j|.
\]

Proof. To prove (2.9) it suffices to apply Lemma 1 with

\[
z_j := \exp \left(\frac{\lambda_j - \sigma_N}{N} \right) \quad \text{and} \quad m := \frac{aN}{d}.
\]

Let us only remark that, by virtue of (2.5), condition (2.1) is satisfied. Further, (2.7) and (2.8) imply (2.2) for all \(h \).

Moreover,

\[
\left(\frac{|z_m| - \frac{2N}{3(2N+m)}}{|z_m|} \right)^\nu \left(\frac{1}{24e^{2N+m}} \right)^\nu \geq \left(1 - \frac{2e^\eta d}{3a} \right)^\nu \geq \exp \left(-\frac{4\varepsilon^d}{3a} \right) \geq \exp(-3\varepsilon N),
\]

so that

\[
\left(\frac{1}{24e^{2N+m}} \right)^\nu \left(\frac{|z_m| - \frac{2N}{3(2N+m)}}{|z_m|} \right)^\nu \geq \left(24e^{1+\eta\varepsilon} \left(2 + \frac{a}{d} \right) \right)^{-N} \left| \sum_{r=1}^N b_r z_r \right|.
\]

and the assertion follows.
Lemma 3. Let $\sigma \geq 1/2$, $T > 0$ and let $N(\sigma, T)$ denote the number of zeros $\rho = \beta + iy$ of the Riemann zeta-function in the rectangle $\sigma < \beta < 1$, $0 < |y| < T$. Then

$$N(\sigma, T) \ll T^{4\epsilon \theta(1-\sigma)^{-\epsilon}}$$

for every $\epsilon > 0$.

This is a well-known density estimate, first proved by F. Carlson [1]. Much better estimates are also known, but (2.10) is sufficient for our purposes.

3. Proof of Theorem 2. It suffices to prove the theorem for ϵ small enough. Let us assume that

$$0 < \epsilon < \Theta - 1/2$$

and let us fix a real number Θ_1 with

$$1/2 < \Theta - \epsilon < \Theta_1 < \Theta.$$

There exists $\lambda_0 \in (0, \epsilon/2)$ such that

$$|\sum_{\rho : \beta > \lambda_1} \Gamma(\rho) e^{\epsilon \rho}| = 3\lambda > 0,$$

λ depending on ϵ.

Let $\rho_0 = \beta_0 + iy_0$ denote a zeta zero with

$$\Theta_1 < \beta_0 < \Theta$$

satisfying the condition

$$\sum_{\rho : \beta > \lambda_1} |\Gamma(\rho)| e^{\epsilon \rho} < \lambda.$$

Using (3.1) we can write

$$A_5(e^{\Theta_1 + \lambda_0}) = \sum_{\rho : \beta > \lambda_1} \Gamma(\rho) e^{\rho(t + \lambda_0)} + O(1) = F(t) + O(e^{\Theta_1 t}),$$

where

$$F(t) = \sum_{\rho : \beta > \lambda_1, |\rho| < T} a_{\rho} e^{\rho t},$$

$$a_{\rho} = \Gamma(\rho) e^{\rho t}.$$

In order to find “large values” of F we apply Lemma 2 with the numbers $\rho = \beta + iy$, $\beta > \Theta_1$, $|\rho| < T$, taken for λ_1's (arranged according to decreasing real parts), with the numbers a_{ρ} as h's, and with $N = N(\Theta_1, T)$, $a = T$, $d = \epsilon/2$, $\kappa = 1/2$. Moreover, let $h, 1 < h \ll N$, be the integer for which $h = \lambda_0$. Then, owing to Lemma 2, we get

$$\max_{T \leq t \leq T + \epsilon} |F(t)| \gg e^{\eta T} T^{-2N} B_{\epsilon_0},$$

where

$$B_{\epsilon_0} = \min_{A} \sum_{t \in A} a_{\rho},$$

and the minimum is taken over all sets of zeros contained in the rectangle $\sigma > \Theta_1$, $|\rho| < T$ and containing all zeros $\rho = \beta + iy$ with $\beta > \beta_0$, $|\rho| < T$.

Lemma 3 implies that, for sufficiently large T,

$$N = N(\Theta_1, T) \ll T^\delta \log T \quad \text{with} \quad 0 < \delta_0 < 1.$$

Thus

$$T^{-2N} \gg e^{-2T^0} T^{-2N} \gg e^{-\frac{\beta_0 - \Theta_1}{2} T}$$

for T large enough.

Further, (3.3), (3.5) and (3.10) imply

$$B_{\epsilon_0} \gg \sum_{\beta > \Theta_1} \sum_{|\rho| < T} \sum_{\beta > \beta_0} \sum_{|\rho| < T} a_{\rho} e^{\epsilon \rho} \gg 3\lambda - O(e^{-\Theta_1 \epsilon}) \gg \alpha$$

for large T.

Estimates (3.9)-(3.13) yield

$$\max_{T \leq t \leq T + \epsilon} |F(t)| \gg e^{\eta T} T^{-2N} B_{\epsilon_0},$$

Hence, using (3.6) and (3.14) we get

$$\max_{T \leq t \leq T + \epsilon} |A_5(e^{\Theta_1 + \lambda_0})| \gg e^{\eta T} T^{-2N} - O(e^{\Theta_1 T}) \gg e^{\Theta_1 T},$$

and the result follows.

4. Proof of Theorem 1. We may assume that $\Theta > 1/2$, since otherwise our assertion (and even more) follows from Theorem 5.1 of [3].

Let us fix $\epsilon > 0$. We shall prove that the function $A_5(e^z)$ changes sign at most ϵT times in every interval of the form $[T, T+1]$, for sufficiently large T. The theorem hence easily follows.

We shall use the same method as in the proof of Theorem 3.1 of [3].

As in [3], we consider the function

$$G(z) = A_5(e^z),$$

which is regular in the strip $|\text{Im} z| < \pi/2$.

Then for every $z = x + iy$, $|y| < \pi/4$, we have

$$|G(z)| < e^{\pi x}.$$
From Theorem 2 we know that there exists x_0 in the interval $[T, T+1]$, $T \geq T_0(\varepsilon)$, such that

$$|G(x_0)| \geq c_0(\varepsilon)e^{\theta - nT}.$$

Let τ denote the conformal mapping defined for $|w| < 1$ by the formula

$$\tau(w) = x_0 + \frac{1}{2} \log \frac{1 + w}{1 - w}.$$

Then there exists a real number r, $0 < r < 1$, independent of x_0 and ε, such that

$$[T, T+1] = \tau(K(0, r)).$$

The number of sign-changes of $A_\varepsilon(\varepsilon)$ in the interval $[T, T+1]$ is less than or equal to the number $n_0(r)$ of zeros of the function

$$G_1(w) = G(\tau(w))$$

in the disc $|w| < r$. Using the Jensen inequality and (4.2), (4.3), we get

$$n_0(r) \leq \log \left| \max_{|w| < (r+1)/2} |G_1(w)|/|G_1(0)| \right|$$

$$\leq \log \left| c_3(r)e^{\theta r}/c_0(\varepsilon)e^{\theta - nT} \right| \leq \varepsilon T + O(1).$$

The proof of Theorem 1 is thus complete.

Remark. The author wishes to avail himself of the opportunity to correct some misprints in part II of this cycle of papers (see [2]): in formula (3.10) \max has to be replaced by \max; in formula (3.20) replace $\lim_{1 \leq p < k_{\eta}}$ by \lim, and on page 73 (lines 2 and 7 from below) replace R^+ by R^*.

References

