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Note on a problem of Chowla
by

B. J. Bmern and H. P. ¥. SWwINNERTON-DYER (Cambridge)

1. In a lecture given to the American Mathematical Society some
years ago [2], Chowla listed a number of problems connected with the
zeta-function; one of these was to estimate the number of values taken
by a polynomial in a finite field. Precisely, let f(z) be a polynomial of
degree ¢ defined over the finite field & with ¢ elements, and let N(f)
be the number of distinet values of 4 in % for which at least one of the
roots of

(1 - @) =y

is in %; then we must estimate N (f), at least for “general” polynomials
1(@).

It turns out that we can express N (f) in terms of the numbers of
points on a certain finite set of curves, with an error which is bounded
independently of g; and we can estimate these numbers by using the
well-known results of Weil [5]. We thus obtain

THEOREM 1. For “general” polynomials f(z) we have

1 1
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1
@) ¥ =di—g 4

where the constant implied depends only on d.

The principal term in (2) had already been conjectured by Chowla
and others. )

We have now to explain what we mean by “general”. Write G(f)
for the Galois group of the equation (1) over k(y), and G+(f) for it Galois
group over k+(y), where %+ is the algebraic closure of k. We can identify
G+(f) a8 a subgroup of G(f). It will appear from the proof that Theorem 1
holds for all polynomials f(z) such that G+(f) is the symmetric group on
d elements: more generally we have
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THEOREM 2.
N(f) =g+ 0(g'"),

where A depends only on G(f), G*(f) and d.

The proof of Theorem 2 provides an explicit method of calculating .

Tt is well known to anyone who has tried it that finding the Galois
group of an equation is by no means straightforward. We therefore
obtain simple sufficient conditions for G*(f) to be the full symmetrie
group. Though not necessary, these are in fact satisfied by almost all
polynomials. We give also some illustrative examples.

The remarks above require the polynomial f(z)—# to be separable
over k(y). This is so unless f(«) is a polynomialin 4, where p is the cha-
racteristic of k. But in this case f() = [¢()]", where g is a polynomial
in % of degree d/p; and N (¢) = N (f). Our results may therefore be applied
to inseparable polynomials as well; however from now on we shall always
assume f(z)—y separable.

We are indebted to Prof. EH. Davenport and Dr. J. W. 8. Cassels
for their helpful comments on an earlier draft of this 110}70.

2, It is convenient to rephrase the problem in geomstrie terms.

For r=2,3,...,d, take m,..., %,y as coordinates in (r--1)-dimen-
sional affine space; we shall need to consider the set of points given by
(3) @) =...=flz) =y.

This is the union of a finite number of irreducible curves (each defined
over k%). We denote by 7T, the sum of those curves which do not lie en-
tirely in any hyperplane @; = ay; then it is clear that 7T, is defined over %.
If we write n, for the number of points of T, rational over k, then Weil’s
results show that

(4) n, = g+ 0(g'")

where 3, is the number of those components of 7, over &* which are
defined over k. (The error introduced by the possible singularities or inter-
sections of components of T, is 0(1).) In particular, if T, is an irreducible
curve then v, = 1 and n, = g+ 0(¢"*).

We now show that the decomposition of 7, is determined by the
Galois groups @(f) and G*(f). Suppose that # is generic over k. Then
P =(&,..., &, n) is on T, if and only if the £ are distinct roots of
f(#) = 5. Clearly, P is simple on T, and so T, has a unique component
O containing P, By the decfinition of the Galois groups, the points in
which C meets y = » are just the ¢*P with ¢t in G+ ; and the points
in which some conjugate of ¢ over k mects y = 7 are the oP with ¢ in
G. In particular, O is defined over % if and only if every oP is a o*P.
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We can therefore put the curves ¢ in one-one correspondence with the
sets of r-tuples of roots of f(z) =y equivalent under ¢*(f); and a com-
ponent € is defined over % if and only if the corresponding set of r-tuples
is still complete for equivalence under G(f). This proves that , depends
only on G(f) and G*(f); in particular, if @*(f) is the full symmetric group
then all r-buples are equivalent under G+ (f) and so T, is an irreducible
curve.

Now let us return to the original problem. Let n (r = 2,38,...,d)
be the number of solutions in % of

o) = ... =(a)
for which ,, ..., 2, are all different; then
(5) e = 1+ 0(1),

the error arising from those points of T, which lie on some hyperplane
@ = @;. Again, let m, (r =0,1,...,d) be the number of y in % for
which the equation f(#) =y has exactly r distinet Toots in %. Clearly

(6) N(f) = m+mgt...+mg;
and since to each » in % corresponds just one Y,
(7) q = my+2my+...+dmg.
Also, from the definition of n,,
, (r+1)! al
Ny = 7M.+ Tm,+1+...+mmd;
that is '
7, 1 d
7; = m,+ (Hl' )m,+,+...+(d_r)md.
Hence
n, o
Y TR S

e ()

= My 2yt ...+ (@ —1)mg = g— N (f),

by (6) and (7); for the coefficient of m, in curly brackets is the bino-
mial expansion of {(1—1)"—1+7}. Substituting for the n, from (4)
and (5), we find

¥ =afi- 2l

31 th%+MW.
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Since the », depend only on the Galois groups, this proves Theorem 2;
and since when GH(f) is the full symmetric group » =1 for all 7, The-
orem 1 follows at once.

In the particular case d = 3, it is easy to show that T, and T, are
in general irreducible curves of genus zero. Now the error term in (4)
and 8o also in Theorem 1 is only O(1); and since we know how the error
arises it would be eagy to give an exact result.

3. There is in principle no difficulty in finding the Galois group
of a given equation. Corres ponding to any subgroup I' of the symmetric
group there is a finite set of polynomials in. the roots ; of the given equa-
tion with the property that I' contains the Galois group of the equation
if and only if these polynomials have values in the field over which we
are considering the equation. (For example, the Galois group is con-
tained in the alternating group if and only if the diseriminant of the
equation is a perfect square; the corresponding polynomial is TT (o — )
taken over all pairs ¢, § with ¢ < j.) Thus the determination of the Galois
group is merely a matter of examining a certain finite set of equations;
see for instance van der Waerden [4], § 61. However, as a practical method
this is not attractive.

Our primary problem is the calculation of G*(f); in particular we
want sufficient conditions for it to be the full symmetric group. For this
we have been forced to a rather inelegant device: we lift f(x) to a poly-
nomial F(z) in characteristic zero.

Write Q* for the algebraic closure of the rationals, and write €
for the field of complex numbers. Once and for all, we pick a detinite
specialisation of @ to k¥, and a definite embedding of @ into €. There
is a polynomial F(z) over @* which specialises into f(x); denote by
G* (F) the Gelois group of F(z)—y over Q* (y). Then it is clear that
G* (F) is just the Galois group of F'(»)—y over C(y); and to find this
we may use the properties of Riemann surfaces.

Let § be the Riemann surface of F(w) =y over the y-plane; it
has branch points at intinity and at the 100ts of I'(z)= 0. Let 75 = 00,
s, ..., n¥ be the points of the y-plane lying under these branch points.
The offect of making a small closed circuit in the y-plane about one of
these branch points is to permute the sheets of of; woe will denote the
corresponding permutation of the roots of F(z) =y by i thus, p; is
an element of G*(F). Let I' be the subgroup generated by these r+1
permutations; any one of them is redundant since the sum of circuits
round each 7} (in the right order) vanishes, and so there is an expres-
gion for any one generator y; of I' in terms of the rest. I" is transitive,
gince & is connected.
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. PEI\.EMA L. G*(f) may be idensified as
if is g‘wen then G (f) is isomorphicfto G+ (1;’) ;ol:'bg;::zt Oaél (c;;a(fo:)c;e::?;ewer
o This m{my be. proved by the method of van der Waerden; h ovor
it is mo:e uminating to return to the ideas of the previoa owever,
;Vr;tsae f’f(: H;fo;‘( Tshel sum* of cu::ves obtained from F(z) in the :va?c?](:;lf:
: };-e ety h%),e ref Py = (51,* -++y £3, 7%) be one intersection of Ty with
o Wh -YPerp 9*.116' ¥ =17, and Jet P* be any other such intersec-
lon. 'W. e_n we spe:amahse 0 characteristic p, P* specialises int
cific pou‘m -P,,, an intersection of 7; with Y = no- and one ' Pm'O hoses
z}fletxlsll())c;czﬂllsatio?t? of all the P* are determine’:d. Now ;* (;v’)lsczggi;?;
those permutations of the first @ i i i
a P* on the same irreducible componen?nozid-fll’?te;hgv h;t?a}jcefjket P
Lemma now follow from the facts that T4 splits af least asg enlsl . t}ie
and for almost all p splits no more than T3 (Shimura [3]1)11110 w
Th(? identification of the lemma is not unique, since it tie d
the choice of Py; but for our Purposes we may reg;rd it as na,tgj:’» o
@ Cl?o state the next lemma, we need a definition. The point 17" on
e y-plane under one or more branch points is simple for p it disi;' t
roots of the equation F(z) — #} specialise into distinet Toots gf f(z) =-_uj70
" LEI\}:MA 2. Let % be t.he generator of I' corresponding to the point 17’-:'
en if the order of yy is prime to p and ¥ is simple for p; G (f) contains o
Let I be the order of y;. We know that if y— 4 — ¢ then ¢ is a m:;
formising parameter for the branch points of o above 7t; thus we .
expand the roots of F(z) =y as v o

o0

(8) = 5}"-{—2%#’,

y=1
where the £ are the roots of F(z) = #; and the a,; are algebraic num-
pers: From the algorithm which gives the expansion (8) we see that in
flirldm% the a,; we divide only by factors of I and roots of non-vanishing
£'m-§,,; and since none of these specialise into zero, all the a,; remain
finite under specialisation. Moreover, if & is an r-fold root of F'(im) =9
then the first non-vanishing a, is that with » = lfr; and then a,; is 2:1;
Uth root of a product of non-zero &), — & and so ‘does not specialiie into
zero.

. It follows that we can specialise the expansion (8) into formal power
series with coefficients in &*; and that when we do so the transformation
(corresponding to ;)

t— ot,

whgre o ig a primitive Ith root of unity, will have order.l as a permu-
tation of the formal power series. This therefore induces an element
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of order I in the Galois group of f(z) = m-{—t’ over the field of formal
power series in 1 with coefficients in &+, and so a fortiori in G+(f); and
this proves the Lemma.

LEMMA 3. GT(f) is the symmetric growp on & elements if either
(i) ¥ (&) = 0 has d—1 distinet roots giving rise to distinct values of y = f(»);
or
(i) & s prime, there is o value of y for which flx) =y has d—1 distinat

roots, one of them with multiplicity two, and p =2, d.

In case (i), p # 2, sinee otherwise f'(x) could not have distinet
roots. All the finite branch points of & are points at which only two sheets
mect, and they are all simple for p. Hence on the one hand G+ (f) containg
T, and on the other hand [" is a transitive group gencrated by transpo-
sitions and therefore is the full symmetric group.

In case (ii) we have a finite branch point at which just two.of the
#; are interchanged, and this is simple for p; thus @* (f) containg & trans-
position. Further, since the point at infinity is simple for p, 6*(f) con-
tains, after suitable renumbering, the permutation (12...d). Hence,
d being prime, G*(f) is primitive as well as transitive. Since it contains
a transposition, it must be the full symmetric group ([1], Theorem I,
p. 207). This proves the Lemma.

We may rephrase (i) in a more euphonious form, suggested by Daven-
port:

G (f) is the symmetric group if the discriminant of the discriminant
of f(w)—y does not vanish.

Finally, we give some illustrative examples.

(i) f,(@) = #*—aw, where @ > 2 and a 5 0.

G*(f,) is the full symmetric group by Lemma 3(i), so long as
p¥2d(d—1).

(ii) f,() = 2%, where phd.

Gt (fy) is cyclic with 4 elements, while G(f,) depends on g ec.d.
(p, a—1).

(i) fy(a) = (@ —1), p #2.

G+(f;) is the quaternion group. In this case all the branch points
join just two sheets, but two. of them lie above one another.

(iv) fale) =32’ §a’+a, p 2 7.

fal®) = (#*—1)*, so the discriminant of f,(#)—y is a perfect square
in y. We deduce that G+(f,) is the a;lter\nating grouyp.

() fs(2) = e®—ax®?, where d > 2, py2d(d—1), and a # 0.
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It d is prime, G (f;) is the full symmetric group by Lemma 3 (ii);
if d is not prime, this criterion is no longer applicable, but G*(f;) is the
gymmetric group none the less.
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