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A feature of Dirichlet’s approximation theorem
by
S. HARTMAN (Wroctaw)

In [2] T have proved that the inequality |az—y| < ¢/ has for each
irrational o infinitely many integer solutions with o = a(mods), y =5
(mods), the numbers a, b, s being prescribed arbitrarily and the constans
¢ depending only on s (compare also [1] and [8]). A related problem appears
when we try to impose such supplementary conditions in the case of the
classical theorem of Dirichlet stating that for any a and ¢ > 1 there are
integers « and y with

(1) <o <1,
o1
@ " o=yl < —.

However, the result turns out to be different: the congruence conditions
for # and y are in general inconsistent with this statement, even if (1)
ig replaced by

(1" O<a<<e (e>1).

This is shown by the following

THrOREM 1. For any prime p there is a real o such that, whatever
be the constant ¢ > 0, one has laz—yl =1/t for some t > 1 and for each
positive © < et which is not divisible by P.

The inconsistency of the congruence conditions with the assertion
of Divichlet’s theorem is not of “exceptional” character because of the
following

TrEOREM 2. For almost every a, whatever be the constant ¢ > 0, there
is @ t>1 such that lax—y| = 1/t for each odd positive integer x < ot.

First we prove two lemmas.

Lmyma 1. If the inequalities (1') and (2) are fulfilled by two pairs of
indegers (wy, 1) and (@5, ¥s) (@1, @y > 0), and z,y,—y,%, 7 0, then (w;,y;)
<2 (6=1,2)
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Proof. We have
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Hence 0 < |wyy,— Y1) < 2¢, which yields the assertion.

Tor the next lemma we restrict ourgelves to the cagse when ¢ is an
integer and ¢ > 4.

LEMMA 2. Denoting by p;/q; the comvergents of the number o represen-
ted as a continued fraction and assuming, for a fived i,

= 2,

b= o

we have (L) and (2) for some @ > 0 and y with (@, y) = 2.

Proof. Write lag;—py) < 1/gs < 1/e*qy. Then [2eaq,— 2ep,| < 2[cg,
=1ft.

Thus, » = 2¢¢; and y = 2¢p; give the required solution.

From these lemmas it follows that

(%) If gyafg; > o® and © == Jog; (¢ >4 integer), then all solutions (z, )
of the system (1) and (2) are proportional to (g, ps)-

Proof of theorem 1. If the assumptions of Lemma 2 are fulfilled
and if plg;, then (*) implies that there is no solution with & not divisible
by ». Thus, the theorem will be proved if we construct a continued frac-
tion (0;ay, ay, ...) such as to have p|g; for infinitely many indices and

lim(g;,41/¢s) = oco. Ep =2 put @y =ay=a; =1 and 4, =4. If p>2

put @; = @, = 1 and ¢, = 3. Then p¢g;,_, and, since p is a prime, the con-
gruence rq; ;g _, == 0(modp) can be solved in r. 1f r,is a positive so-
Iution, put a;, = 7,. Thus, we have pig;,. Choose a;, 4y = ¢;. Then g, ,1/¢;,
> ;. Sinee p.g; 41, we can solve the congruence rgy i+ gy, = 0 (modp)
with a positive » = r, and pub a, ., = 7,. Write ¢, == 4,--2. Then we have
Plgs, and ehoosing ay, .y == i, We get ¢;,,:1/¢s, > 4,. Proceeding in this way
we satisfy the required conditions with 4 = 4,--4, 4, == 4,-+6 ete.
Proof of theorem 2. If suffices to show that given any constant
¢ >0 almost every continued fraction « has a convergent p,/q; with
even ¢; and g;y,/g; > ¢ Indeed, if the fixed ¢ > 4 is an integer, then (x)
implies that for ¢ = }eg; there is no solution of (1') and (2) with an odd .
Hence, taking the sets of o’s with the above property for ¢ = 4, 5,...
and considering their common. part, we obtain the assertion. Hvidently
we can restrict ourselves to odd integer values for ¢.
~Assume to the contrary that for some odd ¢ there is a set of positive
measure of o’s for which if a ¢; is even then ¢;,,/¢; < ¢% Denote by &(a)

icm
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the transformation sending the number a = (0; a;,@,,...) into (0; a,, as, ...).
Then, according to the ergodic theorem for continued fractions proved
by Ryll-Nardzewski [4], for any function feL(0,1) one has

1 1f(‘t:)d'z:
10g2b 1+

®) U@+ @) e+ @)

almost everywhere in (0,1).

Put f(a) =1 if a; =a, =a; =c* and f(a) = 0 otherwise. Evidently

1

f f(z)

J 147
and hence (3) implies that for almost every o there is an index 4, for
which ay_; = a;; = @541 = ¢*(}). It follows from our assumption that
there must be an « with this property for which ¢;,,/g; < ¢ holds when-

ever ¢; is even. Then, since g;/g;_; > ¢? for ¢ = 4,—1, 4y, 4%+1, the three
numbers ¢;_; are odd. But this contradicts the relation

dr >0

Gy = sy 1+ Gig-2
as ¢ is odd. Thus the proof is achieved.
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(*) This result is older than (3), as prof. J. F. Koksma pointed out to the
author.
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