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On the distribution of the solutions of diophantine
equations with many unknowns

-~ by

L. Veipineer (Budapest)

To the solutions of a diophantine equation with » unknowns corres-
pond geometrically — as we know — in the r-dimensional space R" the
points with entire coordinates of an (r—1)-dimensional hypersurface.
From this geometrical interpretation follows immediately for every diop-
hantine equation with » unknowns the following problem of a very gener-
al character, which can be formulated also merely arithmetically: how
the lattice points representing the solutions of the diophantine equation
in question axe distributed in the space E. Of course this problem is in-
teresting principally in the case when the diophantine equation has in-
finitely many solutions. )

Let r and P be positive integers, ®(x,, ..., #,) a polynomial of r
variables with entire coefficients, in respect to which we do not make,
for the moment, any restrictions.

The distribution of the solutions in positive integers of the equation
1) . D(®yyeery ) =0
can be described with the aid of the solution function R(P) defined in
the following manner: let R(P) denote the number of all the points with
entire coordinates of the hypersurface (1) which are placed inside the cube
1<e, <Py, 1 <0 <P

Purely arithmetically formulated, R(P) means the number of all
the positive entire solutions of the diophantine equation (1) in respect
to which #, <P, ..., % < P.

As cach of the variables @, ..., @, can agsume only the values 1,...,P,
for the R(P) solution function we have in every cage the trivial upper
estimation

R(P) P

But in very many cages the upper estimation can be considerably impro-
ved. So for ingtance if n > 2, and ¢ = O(e, n) I8 a positive constant de-
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pending exclusively on ¢ and n, then for the diophantine equation with
four unknowns
w"+y“ — u%+_?JTL
we have -
R(P) < CP***
(see [2] on page 139). Another example is the famous equation of Fermat
a4y =4

(p is an odd prime-number). For this equation the following non-trivial
upper estimation has been given by Dénes and Turin in respect o tho
R, (P) function of the positive co-prime solutions (D == D(p) is a posi-
tive constent depending only on p):

prn
Bp(P) < Dy amiinp
(see [1] on page 28).

In this paper I will give an upper estimation of the solution function
R(P) in respect to diophantine equations hawving in comparison with their
degree — in a certain sense — ‘“many’’ unknowns. For these equations
the estimation can he carried out with the aid of the tools of analysis
relatively eagily and quickly.

In the following we shall use the following notations: e, ..., o5 wre
pogitive constants whose numerical value may depond only on some of
the parameters ¢, 7,n, and m; v = 1/n; o = 27",

We shall prove the following

TEEOREM. Let be n 3= 8; r = ry(n) = n2" 141,

(2) D@y, ooy ly) = @@ Ao W@+ (B, oy By)

where the coefficients ay, ..., a, are integers different from 0, and (@, ..., @)
s an arbitrary polynomial with integer coefficients of at most (n--8)-th
degree. Further let &> 0, m =max (|ay], ..., |6p]), @ == min(|ay, ..., |ad),
202+ 20w —-2

[4(5;v?~1)

b~

?

P> o(e,7,m,m), (a,9) =1,¢ >0,

q q
B! L
Boq = Z . 2 exp (mel-l- ‘fl)(u,,, ey m))

a/nd 1=1 Ujral
(=]
= Ny AN
©= YAy A, =g N,
=1 [
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where a runs over o reduced residue-system modg. We assert that in this
case

(%) R(P) < (e+e)IS|P™".

The infinite series occuring in (x) resembles very much the so-called
singular series, introduced by Hardy-Littlewood in the theory of the
Waring problem (see e. g. [4], p. 268). It is worth remarking that the sum
of the “singular’ series occuring here does not depend on P (the conver-
gence of the “singular’ series will be proved afterwards).

Before beginning with the demonstration of the theorem we will
show by a rather characteristic example that the obtained upper esti-
mation in the case of equations with many unknowns is — in general —
not liable to further essential improvements.

Namely let # > 12, » > [10n2logn]+1 and let us consider the diop-
hantine equation

(3) Bt a =y,

If we denote the number of solutions in positive integers of the equation
oy +...+ap_; = N by I(N), for the equation (3) the identity

R
4) R(P) = D I(K")

=1
evidently holds. We know the real order of the function I(N): the
most important conclusion of the Hardy-Littlewood-Vinogradov theory

of the Waring conjecture (in respect to this theory see [47]) is that
for every sufficiently great positive N

N1 < I(N) < ¢ NP1 0y =cy(m, 1), g = cy(m, 7).

But then it follows from (4) for sufficiently great P that
(17" PV < R(P) < e (1T PR,
Gy = (R, 1), 05 = C5(n, 7),

whence we get easily

6P < R(P) < e P™", eg = (0, 7),  eq = q(m, ).

After this digression we begin with the demonstration of our main
theorem. The demonstration followsin general Vinogradov’s extraordinarily
simplified method of the demonstration of the asymptotical formula
of Hardy-Littlewood in connection with the Waring problem (see [4],

Acta Arithmetica V. 2
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chapters IIT and VII) with some more or less essential variations. For
the demonstration we shall need the following four auxiliary lemmas.

Lemua 1 (Lemma of van der Corput). If M and M, are integers,
M < M, and the twice differentiable real function f(z) defined im the inter-
val M <o < M, satisfies the conditions

0<fia)<d '@ =0,

then, taking on both sides simuliancously the signs + or —, we have
My

My
D) exp(£2nif(n) = [ exp(L2mif(2)ds+20 (0] < 1).
T M M

For the demonstration of the lemma see e. g. [4], p. 261.
Lewwa 2. If P is a positive integer and w a real number,

P
I= f exp (2riua®™)dz,

0
then

Pif <P,

I < U U=] -
< Velul™ if fu > P

Tor the demonstration of this lemma see e. g. [4], p. 262.
Immma 3 (Vinogradov). If m > 8, r is an arbitrary positive integer,
D(@yy ...y @) @ polynomial of the form (2), P integer > 1, y real, &> 0,

a

7 R———

1 1t
<"é2‘7 (“7Q)=17 1<9<P7

P P
8= 2 Zexp(zwiydi(wl, s &),
then

11 "
18] < 081‘"‘“ (max (E,};,Zg;,)) v O = Cyle, 7y M, m).

For the demonstration of the lemma see [3], p.145. We remark
that Vinogradov in his above mentioned work puts as a condition that
the coefficients a,, ..., a, of the polynomial are positive, but in the demon-
stration of the present Jemma he uses only the condition that these coeffi-
cients are different from 0. ’

Ievwa 4. If 028, r>n(n) = n2"'41, Oey, ..., o) 48 @ poly-
nomial of the form (2), P a positive integer, y real,

icm°®
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n—1
po=min(lag, ..., &), m=max(la], ..., lal), v=2mnP",

1
a oo
y=, 1t (ma=1 1<¢<P el < 2o

8 = oxp (2miy D (@4, ..., )},

i
-

D
D

i
-

ay T

a

aQ
a
Sog = ...Zexp(2nig¢(u1,_...,u,.)),

)

pac
'ul::l 1L,.=1
P i <pT P
B L EV7C T
P

o = j exp(2riogea™dr (s =1,...,7),
0 .

then
8 = q " Bagly ... L+ OGP o]+ ¢72277).

Demounstration of Lemma 4. With the substitution
By == qls+u, (8 =1,...,7)

where u, can assurae the values 1,...,¢ and for every fixed value of u,,
i, runs over all the integers of the interval

(8) 0ty Sy, Wy = [(P—tg)g™"]
we get
(6) =

q 4 51 [

= \1 2 ,\j. . .Zexp( ZTZ“ D(Uyyenny )+ 22 D(qls 4 g,y .nny qt,.—{«u,))

: s
U=l Upm) =0 G0

q

a .
: 2mia
= g Y exp (—T;—’—%D(u“ ceny u,.)) Qu,,...ou

U=l Up=1

where
[} ap
Qupoy = D) D exp(2miaD(ghy+ s, ...y Gt wr)).
f=0  f=0
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From the assumptions referring to the form of the polynomial
& (@y, ..., @) it follows immediately that

@y wp
() Ly, = Z Zexp(Zwiz[al(qtl—l—ul)"%—...—i— a (Qly - u,.)“])-]-
£=0 tp=0 :
+ 0P g e]),
namely, on the one hand if i, falls into the interval (5) for s =1, ...,

it follows from the inequality
|L—exp(2nia)| < 2x|af
holding for every real a that
|exp (2rie P (gl + iy «o s Pt Up)) —
— exp (2mie[ay (gh + u1)" +. .+ (gl + ue)"])| < 0o (m, 1) PP 2

on the other hand the number of the members of the sum 2, .,
is not greater than ¢~"PT. b
In the interval (5) the inequality

d
@, [ag] o] (@ltat-%s)" < 3 (8=1,...,7)

evidently holds, therefore from the lemma 1 we have

ag g .
2 exp (2mias2 (gls + us)") = f XD (2miag 2 (qls + Ug)") Aty + 260 = ¢ I+ O(1).
ig=0 0

But from this, applying lemma 2 and the easily verifiable inequality
Zg™' > 1, we immediately obtain

wy @y
8) D). D exp(2ie[a (gt + )" ..+ te(gtetur)"])

=0 tp=0
— T, LA 0(g Y.
From (7) and (8) v b 0l )

Lyt = 4Ly Lt OP™ 2 G " fo] - g7 0127

Substitung that into (6) we get

(9) 8 = q" 8oLy .. LA O P g 2] |8y ol + 42 8,4l)-
From lemma 3

(10) a0l < €08 ™" < 010q™?, 01 = 0n(r,m,m).

Substituting this into (9) we get the assertion of lemma 4.

icm°
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Demonstration of the theorem. We can represent the solution
function in the following integral form:
—1'_1+1

RP)= [ BSay.
.‘-—1
(The meaning of § and v is the same as in lemma 4.) ,
In order to give an upper estimate of the integral standing on the
right side, we ghall divide the interval —v~' <y < —7'+1 into “main”’
and “complementary” intervals. In the ‘main intervals are placed those
numbers y for which (with ¢, (n) < o(n40)™")

(‘/=%+z! (a,9) =1, 0<Q<P1ﬁcu7 0<a<y

—— L —.
qv qv
It can easily be proved that two different main-intervals cannot
bave any points in common. Namely, we should have

’ ’ 1 ‘ 1

a o
Cha=tqy, Z=—, H<, RIS
q q q q Qv qv
from this would result
ag’'—a'q < 2 1 < 2 1 < 1
qq/ = T H qq/ = T H PZ 3P2 M

Complementary intervals are those which remain of the interval
— 77! <y < — v +1 after removing the main-intervals. From Dirichlet’s
theorem results immediately that, if y, falls into a complementary inter-
val,
- a.
g =—+2, (G,q)=1, Py <y, 0<a,<a,
(11) ' '
el < —
VT
Let B,(P) denote that part of the integral representing R(P) which
corresponds to the main intervals, and R,(P) the part corresponding
to the complementary intervals. Then we have

R(P) = E,(P)+ Ry(P).

First step. We estimate the absolute value of R, (P). Let (a,9)=1,
0 < q <P, 0 << ¢ and let us regard the main interval ag~'— (gz)™
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<y < ag'+(gr)”'. Denoting by H,, the integral of the sum § on
this interval, we have
!
Hy,= [ Sde.

(@)t

On the basis of lemma 4 in the interval ag™—(gv)™' <y <ag '+ (g7)"",
8 = q I ... I 0(g PR g -2 2" )

and so
(ax)™
Hua - '] u W f 1] l(ﬂ -] Vi
~(a)~!
where
. @t P -
—8 prn—3 , 29 )]
F = 0( f g P zdg- f P e} [ PTG
0 0 “--l‘p—n,
= O(Q—sz—-n—l) .

ot _But from this, making use of lemma 2 and of (10), we immediatély
obtain

Hog =g " 8ag (P)+ 0P, J(P) = [ I,..1,d.

=00

Sumping t.his equation at first with fixed ¢ for every a less than ¢ and
relative prime to ¢, and then for ¢ = 1,..., [P*~1] we getb ‘

[Pl-c1yy

(12) RI (P) == ) Z Aq+0(P'“'”'°11).
=1

Making use of lemma 2 we obtain

(13)  J(P) =
L, , o wmie
= efo + _L LT vy [ oeraste P
‘/ —u p P wor et 0
23" f;
= - _Pr—"‘,}, _f)__ Pr»-n = Pr_n‘
l”""”*“l) P @ ’
From (10)
Z [dg| < €4y _)j ql—"<01‘aP°'“l,
(14)  e>Pl-tn g>Pl-cyy

Oip = 01a(My 7, M), Gy = Cya(m, 7, m).
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From this follows directly the absolute convergence of the ¢singular”
series. Further, from (12), (13) and (14)

By (P)] < I8P+ 0P,

Second step. We estimate E,(P). The total length of complemen-
tary intervals is evidently <1 and in every complementary interval,
by reason of (11) it follows from lemma 3 that

18] < egq PO g PPN 0y = 040(8, 7y W, m),

15 = C15(n).

. Therefore

Ry(P) = O(P™™"05),

Confronting the results of the first and the second step, we immediately
get the statement of the theorem.

To conclude we make two more remarks: At first, we remark that
if, instead of the partition used in the above demonstration, we make
use of a considerably more complicated partition described in [3] and we
estimate the integral on the “complementary’ intervals as it is presen-
ted there, we shall extend the validity of the theorem also to the case
when the polynomial ¢(®y, ..., ®,) is of (n—2) or (n—1)th degree. It is
very probable that the (x) upper estimation is true also for a polynomial
& (w,, ..., %) with many variables of a quite general form.

Secondly, it is worth remarking that most probably 7,(n) may be
reduced also in.order of magnitude. From the above demonstration it
appears clearly that the question of order of magnitude of 74(n) is in close

. connection with the upper estimation of the absolute value of the trigo-

nometrical sum S.

The upper estimation of the absolute value of the sum 8, as it is
stated in lemma 3, has been obtained by the so-called Wey! estimation
method. As we know, some years afterwards, Vinogradov succeeded in

. elaborating a considerably more effective method than that of Weyl

Unfortunately Vinogradov’s estimation method for the upper estimation
of the absolute value of the sum S seems to present extraordinary diffi-
culties in the general case, because of the complication of this method.
In the case, however, when @(®,...,%) = Py(@;)+...+Pr(zy), where
Py(#1), ..., Pp(2,) are polynomials with one variable, we can immedia-
tely apply Vinogradov’s estimation of trigonometrical sums of the form

P
T = Y exp(2rig(e)), g(0) = " +...Fas

Bam1
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(see [4], p. 291) and we immediately infer that if with suitably chosen
e = G5(7)

: | 1 o
)y’—‘a‘ <Ly (a,9) =1, Pt <Lg <7,
q qv

then
ISI < 017Pr+cm——r/3(n—-l)210g13n(n~1)7

014
3(n—1)log18n(n-—1)"

Oy = Cy(Py My m), G =

When instead of the upper estimation stated in lemma 3 wo make
use of the upper estimation as presented above, we are able to reduece
7o(n) immediately without any further consideration to

3n(n~1)*log18n (n—1)-1.

It seems very probable that — at least in this special case — the
order of magnitude of 7 (n) can be reduced to #.
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Remarks on number theory I
On primitive g-abundant numbers

by

P. Erp0s (Toronto)

Denote by o(n) the sum of divisors of n. It is well known that a(n)/n
has a continuous distribution function, i.e. for every ¢ the density of
integers satisfying o(n)/n < ¢ exists and is a continuous funchion of ¢
whose value — 1 as ¢ — co. This result was first proved by Davenport
[1], Behrend and Chowla. Thus in particular the dengity of abundant
numbers exists (a number is abundant if ¢(n) [n = 2). I [2] have proved
the existence of this density by proving that the sum of the reciprocals
of the primitive abundant numbers converges (a number m is called Pri-
mitive abundant it ¢(m)/m > 2 but for every proper divisor @ of m, o(d)/d
< 2). More generally we shall say that m is primitive a-abundant it o(m)[m
> o but, for every proper divisor  of m, o(d) /& << a. I observed some time
ago that it is not true that the sum of the reciprocals of the primitive
e-abundant numbers converges for every a. It will be clear from our proof
that if « can be approximated very well by numbers of the form o(n)/n
then the sum of the reciprocals of the primitive a-abundants will diverge.

2
Let p;, ps, ... be an infinite sequence of primes satisfying py,,, > %,
Put

= 1) -
"= ”(HH) = lim ZPPee--P8)
Bt kv P1P2---Di
A simple computation shows that for every k the integers
PiPze--PxPy  Pp <P < Dpya
are primitive a-abundant. From

2 % = (1+o(1))loglog

<
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