icm°®
ACTA ARITHMETICA
V (1958)

On new “explicit formulas” in prime number theory I
by

8. ENAPOWSEI (Poznari)

1. The distribution of prime numbers is closely bound up with the
distribution of the complex zeros of the Riemann zeta-function. The
following “explicit formula”, due to Riemann, was first rigorously
proved by von Mangoldt (see e. g. [1], p. 77, Theorem 29) and gives
perhaps the most striking evidence of this connection.

If
w>1,  pla) = > A(n);

where

L) : Jlogp it o= p™, p prime, m = 1,2, ...,

An) =

l o otherwise,
Yo(®) = §(p(w—0)+ f(,u(:l’/—i—l))),
then
vy ¢ 1 1

(L) ma) =o— > = lng(l—-;}—);

e
¢ = B+iy denoting all complex zeta-zeros and Y (#%/o) being the limit
e
of }(2°/o) a8 T — co. Replacing the infinite series 2l (a%/g) by its
W< . e
partial sum we can deduce from (1.1) an approximate formula (see e. g.
[1], p. 77, Theorem 29).

at 2 £ .
() = &~ 2 - O(log*m)  for x = 2.
Ipe?

Formula (1.1) suggest at once the well-known fact that the error
ma.levmpu (w)— | in the prime number formula lies in the interval (T°~*, 7%+,
1R

f§r<1arge T, 0 being the upper bound of the real parts of all zeta-zeros.
This illustrates the significance of Riemann’s conjecture § = .
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Tt was Turén who recognized that it is of interest in the prime num-
ber theory not ouly to investigate the zeta-zeros but also the zeros of

He has proved the following theorem:
If for integer N > my, the partial-sums Ux(s) do mot vawish in the

half-plane

then Riemann’s hypothesis is true(*).

In this paperIprove a new ‘“explicit formula”, gimilar to (L.1) bu
depending on the zeros of Uy(s) instead of the zeta-zeros.

The result is as follows:

For 2 <a <N, N >N, we have

(1.2) Yol@) = ——— 2, o
0 = B+ iy denoting the zeros Uxy(s) and 3 (#%]o) being the limit Ofl IZTW/ o)
@ ¥ <

ag T — oco(?).

Further I prove some estimates for 3 (2¢/o), which give information
w1>T
about the behaviour of the series ) (#?/o) analogous to that in the classi-
Q

cal case.
The formula (1.2) implies the following corollary, which gives a new

approximation for the ‘‘remainder term’ y,(®)—x:
If > 2 then :

m@
w@) =o— D' = +0(loga),
Az—1 e
1=t

o = By being the zeros of Uy(S) for N = [6] (3).

(1) See [4], p. 4. The quoted result is an casy combination of thoorems 1T and 1L
of the paper.
(®) = (we/p) could be understood as lim Py
w<T g T fz—q
sary in virtue of a cortain theorem of Pélya (see [2]) which finplios that thove is only

a finite number of Un(s)-zeros in evory strip —oo < 4 KUK B <7 00,
(®) [a] denotes as usual the integral part of a.

(a/g), but il is not nocos-
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I wish to express my deep gratitude to Professor Paul Turdn, who
has made a number of important suggestions.
2, Lemma 1. (a) The number of zeros of Ux(s) in the rectangle
0<0<2 n<i<ntl, s=o+it (n=0,1,2,..)
is < ¢ log N (%),
(b) The number of zeros of Ux(s) in the rectangle
—_mELo< —m+l, <<t n+1l, §=oc+1it
(m=0,1,2,..., m=1,2,...) s <cymlog¥.

Proof. Apply Jensen’s inequality (see e. g. [1], p. 49, Theorem D).
The number of zeros of f(s) in the circle |s—s,| < R is
<log max 1®) ‘
le—spl=Re | f(So)

Put, for (a), 8, = 2+ (n+3)5, B = V5. Then

Un(s) = O(N"°7),  |Uy(se)] = 2— 27" >0

and
Uy (s)

< ¢ log N,
Unlso) | =8

log max
889 |=Re

For (b) put s, = 2+ (n+4)i, B = V(m+2)'+1, whence

Uw(s) = O(N®Y)

and
Uy(s)
log max | —"" < glogN.
osomre| Un(sg) | - 208
Lemma 2. (a) In the rectangle
—3<o<?2, a<Li<ntl, s=o+it (n= 0,1,2,...)

we hawe
!
| Uy

v 1
UN 8)——29/8—9

where o runs through the zeros of Ux(s) lying in the rectangle

< ¢ggloghy,

—1<o<2, n~%<t<n—|—%, 8 = o1t

4y 1 u 1= 9 g . Q it 1
(#) Throughout this paper e,,e,,... always denote positive numerical constants.
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(b) Inm the rectangle

—m—% <o < —m+1, w<Lt<etl, s= o1t
n=0,1,2,...;m=1,2 ...) we have
| Un 1
—{8)— ) < eymlog ¥V
= 3= < amlog,

3
where g rums through the zeros of Un(s) lying in the rectangle
n—p<t<nty, & =0

—_m—1<o < —m+2,

Proof. I will prove only (b).
Put s, =2+ (n-+4)% and consider the function @(e)=

in the circle 2| < 2R, R = V14 (m+3).
G(z) in the circle 2| < .31%. The function

z)(”ZR

is regular and 3£ 0 in the circle [ < i R. We ghowed above that

Uy (2--8y)
Denote by z; all the zeros of

) =@(2)

—zz I

‘ ng))) < exp (e mlog N) | it e < 2R.
Denote by Gy(¢) the branch of log(Gl(z)/Gl(O)) in the cirele |¢| < ¢ R,
determined by @,(0) = 0. We have for || = 2F
‘G‘z \ ole < exp(esmlogN)  (compare e.g. [1], p. 49).
Hence .
LRG‘E( ) < esmlog for ol <5 R
and '
—(ﬁ(z) <2 cmloN cglogN  for 2] <R
@, »}R 5 M10g 6108 =
(apply [1], p. 50, Theorem B with » == 1). That is

@ 1 1 P
E(z)—§(2~zk e e )‘ elogN  for o] = R

But

| 4R? ]

2 |7 ;R b

—_— —2

icm

On new “explicit formulas™ I

and the number of the zeros z; is

]2 4R2/zk—

< ¢;mlog N, whence

c,mlogN clogN.

Finally
Ux 1
} Tw (s)— .92 —s—sk‘< clog¥

after the transformation s = 2+ s,. If &, lies outside the rectangle

—“m—1< o< —m+2, n—3} <t <fn,+%, 8 = g+t
then |s—sy| > § for
—m—% <o <K —m—{—%, n<t<nt+l, 8=o0c+1t
and the result follows.
LemMa 3.
(a) There exists a sequence of mumbers Ty, Ty, Ty, ... such that
1. n<T, <ntl,
Un 2 :
T (8)| < eyolog® N for —3 <o <2,t="T,, s =o0+it.
N
(b) For every m =1,2,... there ewists a sequence T§",T(™,T(M, ...
such that
1. <™ < nt1,
I UN 27 0d m)
2. lU (8)| € 01ym?LO? N for —m—3} <o < —m+1, t =T,
N
8 = o+ 1t.
(c) For every m =1,2,... there ewists a sequence S{™, 8™, 8%, ...
such that .
1. —m+3 <8P < —m+1,
UE\T 9 9 (m) )
2. T (8)| < e1am’log’ N for o = 8", n <t < n+1l, 8 =o+1.
N

() For every m =1,2,... there ewists a sequemcs Sg°, 8™, 8¢7, ...
such that :

1. —m <8 < —m+1,
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Uy . .
2. FN— (8) | < 01gm*log N for o =85", n <1 < nt¥,8 = o+ it.
. :

(e) For every m=1,2,... there emisls a sequence e pem g

such that
1 o0 < T < ntd,

L

2 5 <c Jm2log? N for —m <o < —m+1, t =TG4,

§ = g--t.

Proof. Since all the proofs are analogous, it is clearly enough to
prove, say, (b). ‘

Divide the interval {(n,n--1> into @41 equal parts, where @ denotes
the number of zeros of Uy(s) in the rectangle

—m—i <o < —m+1, n--1,

At least one of the rectangles so obtained is free of Uxy(8)-zeros. Denote
the ordinate of the centre of this recfanglo by T§9. Let g e any Uy(s)-
zero lying in the rectangle

n <Lt $ = o--it.

el <o —m+2, n—}<Et<nFy, §e=g-hil
and let s* lie on the line ¢ = T¢™, Then
1
=0l = 4 —r
I el = % Q’|‘17
whence
= <2(Q+1) < log N
—— 1) < gmlo;
=l 15708
by Lemma 1. Hence and from Lemma 2 we obtain
UI
\<»w‘-v—<s> < oumtlogh ¥
Un
for
—m—f oK —mA1, t=T0, §= g6

Leaoaa 4. The function Uy (s)[Uy(s

series D) (on[n’)
N==]

) may be developed in a IMirichlel
convergent in the half-plane

loglog N ‘

> 142
7 + log N
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Further
(2.1) oy = —A(n) for n<N
and
(2.2) <N ond n< ,w then |o,] < ¢gawloga.

Remark It is sufficient to prove (2. 2) only for # = N. In fact,
it 2 < N, then » < N and |a,} <logn < Iogywby(Z 1). If~N<:c<N
then |a,] < 63 N1logN < cyezlogw, since we suppose that (2.2) holds
for » = N.

Proof. The existence of a development of Uy(s)/Un(s)in a Dirich-
let series follows from Turdn’s remark (10.1.7) in [5], p. 121. The conver-
gence of this series for

loglog N
142
o> 1+ log N
follows from another theorem of Turdn ([4], p. 20), stating that
log* ¥ loglog¥

(2.3) for o> 142

Le
TUnie) | S ™ (loglogV)? log N

This inequality, combined with a general theorem on Dirichlet series
(see e. g. [3], § 9.44, . 302), gives the required result. We note inciden-
tally that (2.3) implies the inequality

‘ 4

| Un log* ¥ loglog NV
2.4 [ < oy
@D O S gty g’

which we will use afterwards. Turning now to the proof of (2.1) we have

= UN(S)ZW: %-

n=1

for > 142 -

Un(s)

< N we obtain
2 o, = —logn,

kn

Hence, for n <

whence by the Mébius inversion foimula we obtain

=D u(@(—log(n/d).

amn

(2.5)

Since this defines a, uniquely for » < N, from the well-known formula

—4m) _ ) _ yy —logn 7 p(n)
2 L) “2 n’ o

N=] N1 Nl

) holds.

o>1

we see at once that (2.1
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Now we shall plove inequality (2.2) for # = N. It is sufficient to
consider only N < n < 21\7 ‘We then have

ap = 0.
kln

If % < m, then % < i» and consequently % < ¥. Hence
ay = ”"E oy el < D A Z logk < logn! < ¢, Nlog.
k|n lc]n L leln
ket k<n
3. TEEOREM. Let N > N, be an integer. If 2 <C o < N, then
logN ! \1 %”
@ o
Wo(w) = v 9

IZ
o = f+1iy running through the zeros of Uy(s) == Z (1/n°), and 2, (/o)
Nt
= Sn(z) denoting the limit of Sy(x,T) = Z .Z‘Q/Q a8 T — co.
=T

Writing further

Ry(e, T) = Sy (@)— Sy(e, T)
we have
@ logtnN logs ¥ ; ”
Rl ey e B LR
T \(loglogN) &
[By(w, T)| <
n log* N ) -
7" (loglog V)° iwe=r
2*  log"WN )
Ba(@, T)| < oy B2 :
[By (2, T)] < 19( T {loglog ¥ —I~10gw) always

where & = £(x) is the distance of @ from the nearest prume power p™.

Proof. Let T > 3 and denote by 1" the least T, of Lemma 3 which
is greater than 7. Let q =2 be any integer,
Denote by 0"" the contour consisting of the segment
<"‘~i bloglogN glogN

'N t)
log v i o

HT")

and of three broken lines given by Lemma 3 ag follows:
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First there is given an infinite broken line consisting of the
horizontal segments

loglog N

logN '’

t=T0 (m

8P <o <246 t="T,.

Sgn.u) <o Qk%m); =1,2,...)

joined by vertical ones. Secondly there is an infinite broken line congist-
ing of the vertical segments

¢ =89, (u=0,1,...)

joined by horizontal ones. By symmetrical mapping in the half-plane
t < 0 we obtain three infinite broken lines. The contour C’T is formed
by their intersection.

Put

17(11) <t < f(!_)l_ .

loglogN . loglog N
T b= 246 ——
log¥ 5 + log N

Congider the integral

o =246 +2I".

b
1 ° Uy L 1 o’ UN
P l?( UN’(S))dS = 2mi af's“( Ty ))d + g Lt Tt ls)
q

(B.1) 5—

where I,,I,,I, denote the integrals along respective upper, lower and
left broken line. First of all, estimate these integrals:

it o
(3.2) |I] < & % ¢y’ log’ _N(f — 2 )\ on 'l qgj log T,
Vig—1p+¢ & "
[
#log’ ¥ »log® N
(33) L] < cq( f L log Nio+ + S )
1 22,_11/“@ i Tt T
log® ¥ 2R Plog® N
< o 7 (mz + Z 5,",;1) S *—f‘ -
and similarly:
z*log® N
(3.4) [Ta] <5 0y —i———w

Now apply Cauchy’s theorem

1 Uy log N! o
zwiog?(—'"ﬁ;‘”)d“ 2

2 ' etoside O

(3.8)
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As g — oo, we obtain from (3.1), (3.2), (3.3), (3.4), (3.5)

b
1 z° Ux log V! Y 2? o,
(3-6) E?f?( UN”)“’S* ¥ ‘% *g'w(‘fl"“)

where " denotes the summation over all zeros g lying between. the apper

e
and the lower broken line. Now

Cos 3
< - |2log’ N A
<7 (aﬂ 0g’ -
From this and from (3.6) we obtain

b
1 8
(3.7) —fff-(—ljiu ))d - E’%ﬁv— — Sy (@, T)—|—O(—log N)

2ma 8
Now put )
1 ¢+io0 a c41T
—2— f s, Iy, T) = f ~ds Aly, T)=I(y)—I(y,T).
—400 et

Then it is well known (see e. g. [1], p. 75, Theorem G) that for 7 > 0

C

I y #1,
, =T [logy|
Ay, T} < .
[A(y, T)| < 9° always.
Using this notation and putting ¢ = 2 l~6~1~9£~121%—lz we have
log
o4 © OB
1 e ( Uy —an (@[n) %
—_— ——=(s ))ds <<<<<<<<< - ~ 8 == — [ ( ’l”)
©0 00
z Y
— —_ I ol BN N
e Saafer)
Ty ] Naa]
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Write
m !
un=aﬂA(E,T), gun=x
Then >
1 @ U.
(3.8) o [~ 2 1)ts = ot X,
27(:%“ 8 Ux
‘where
loglogh . 10glogN
= = —i1" b=2+6 ——— il
a=24+6 Tog ¥ I, 4 log ¥
We now estimate X. Let
loglo N
24622
ogN

If n # 2 then

nt+x

[n—awl|”

Denote by » = »(z) the integer defined by »—} < # < »+4 Then it is
not difficult to see that |o,| << logv and we obtain a.na,logously to [1]
(p. 79)

(/m)* o' 1og* N - |an|
< a !
=T" log (z/n)] '

| << fanl

7 )
a,,-,»T—é_logﬁN if  a%p™,
lu,| < logz
(3.9) G i z=7p"

lu,| < egploge  always.

Further (compare [1], p. 79)
[z] Max |da|- Tm)

(3.10) | X | < a'}zlog ‘N( 2 ia‘"" _{‘22 1<n<aw/z

Clearly

(3.11)

Ia'n] ZI%;I +2*

By the mean-value theorem for Dirichlet series (see e.g. [5],

p. 307) and inequulity (2.4) we obtain

(3.12) Zlanl

N=1

log® ¥

loglog N
% (loglog N)° ‘

where Tog ¥

d=246
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Further, by (2.2),

) Max |op|* 2 [}
N  afloga (11
(8.13) 2 It — Oy oy 2 2 eglogha.
r=1 (g‘-’l‘) 27 @ Lo ) r

(3.10), (3.11), (3.12), and (3.13) give

2*logh N

3.14 X—u,| < gy i,
( ) | %, 33 T(IoglogN)‘

(3.7) and (3.8) give

log N’
N

Yo(@) = —Sn(m 40 (-,-— Iog"N) + 0(1X]).

By (3.9) and (3.14) we obtain the requu-ed estimates for Ry (w,T). The
formula

follows on letting T tend to infinity.
CorROLLARY. Lef @ > 2. Then

(3.15) e L\j “ | 0(oga) |

ly|sx16
1

where ¢ = B-1-iy denote the zeros of U,(s) = Z% and N = [¢].
- .

N
Obviously
) log N'!
—'jf"" =w-+0 (1) .
Taking further
T = o*log® N

we obtain

| Ll <o 3 mloed

—miS Tmn n<atlog!*N

< o™ ™ mlog (a*logh N)log I < oyym 287

ey 1
®
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whence
o a? | Q1 m
7‘ 05710ga‘ v 03710g"”2 —m=r = O(logw)
IrlsT e =] Mo 2
p<—1

and the result follows.
Remark. It is not difficult to replace ' m formula (3.15) by a*
This could have been achieved by taking

loglogx
¢ =246 08 087
loga
ingtead of
loglog N
p = 246 ——m—
¢ + log NV

in the proof of Theorem and by more careful estimation.

4. Considering now the function

é’ii (_%(s)), k =1 integer,
instead of
w" UN )
Z(- L

a?
we can obtain formulas involving ZW analogous to those already
rall .

obtained.
Put, say, # = N. Then we prove

’ C Ne N loghw
(4.1) A(n)w = Ax(N)— w0\ _log*¥
7! T (loglogN )

n<N <

where ¢ = fi+-iy denotes the zeros of Uy(s) and

1 d* .Uy
ALY = 2T ( N'ﬁ‘;‘”)s_o'

It can be noticed that we are in a position to deduce from (4.1)
gome information on the distribution of zeros of Uy(s). As this subject
seems to be of self-contained interest I will return to it somewhere else,
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On the distribution of the solutions of diophantine
equations with many unknowns

-~ by

L. Veipineer (Budapest)

To the solutions of a diophantine equation with » unknowns corres-
pond geometrically — as we know — in the r-dimensional space R" the
points with entire coordinates of an (r—1)-dimensional hypersurface.
From this geometrical interpretation follows immediately for every diop-
hantine equation with » unknowns the following problem of a very gener-
al character, which can be formulated also merely arithmetically: how
the lattice points representing the solutions of the diophantine equation
in question axe distributed in the space E. Of course this problem is in-
teresting principally in the case when the diophantine equation has in-
finitely many solutions. )

Let r and P be positive integers, ®(x,, ..., #,) a polynomial of r
variables with entire coefficients, in respect to which we do not make,
for the moment, any restrictions.

The distribution of the solutions in positive integers of the equation
1) . D(®yyeery ) =0
can be described with the aid of the solution function R(P) defined in
the following manner: let R(P) denote the number of all the points with
entire coordinates of the hypersurface (1) which are placed inside the cube
1<e, <Py, 1 <0 <P

Purely arithmetically formulated, R(P) means the number of all
the positive entire solutions of the diophantine equation (1) in respect
to which #, <P, ..., % < P.

As cach of the variables @, ..., @, can agsume only the values 1,...,P,
for the R(P) solution function we have in every cage the trivial upper
estimation

R(P) P

But in very many cages the upper estimation can be considerably impro-
ved. So for ingtance if n > 2, and ¢ = O(e, n) I8 a positive constant de-
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