

ACTA ARITHMETICA V (1958)

On new "explicit formulas" in prime number theory I

by

S. Knapowski (Poznań)

1. The distribution of prime numbers is closely bound up with the distribution of the complex zeros of the Riemann zeta-function. The following "explicit formula", due to Riemann, was first rigorously proved by von Mangoldt (see e. g. [1], p. 77, Theorem 29) and gives perhaps the most striking evidence of this connection.

If

$$x > 1$$
, $\psi(x) = \sum_{n \le x} \Lambda(n)$,

where

$$A(n) = \begin{cases} \log p & \text{if } n = p^m, \ p \text{ prime, } m = 1, 2, ..., \\ 0 & \text{otherwise,} \end{cases}$$

$$\psi_0(x) = \frac{1}{2} (\psi(x-0) + \psi(x+0)),$$

then

(1.1)
$$\psi_0(x) = x - \sum_{\varrho} \frac{x^{\varrho}}{\varrho} - \frac{\zeta'}{\zeta} (0) - \frac{1}{2} \log \left(1 - \frac{1}{x^2} \right);$$

 $\varrho=\beta+i\gamma$ denoting all complex zeta-zeros and $\sum\limits_{|p|\leqslant T}(x^\varrho/\varrho)$ being the limit of $\sum\limits_{|p|\leqslant T}(x^\varrho/\varrho)$ as $T\to\infty$. Replacing the infinite series $\sum\limits_{\varrho}(x^\varrho/\varrho)$ by its partial sum we can deduce from (1.1) an approximate formula (see e. g. [1], p. 77, Theorem 29).

$$\psi_0(x) = x - \sum_{|y| \le x^2} \frac{x^\varrho}{\varrho} + O(\log^2 x) \quad \text{ for } \quad x \geqslant 2.$$

Formula (1.1) suggest at once the well-known fact that the error $\max_{1 \leqslant x \leqslant T} |\psi_0(x) - x|$ in the prime number formula lies in the interval $\langle T^{\theta-\epsilon}, T^{\theta+\epsilon} \rangle$, for large T, θ being the upper bound of the real parts of all zeta-zeros. This illustrates the significance of Riemann's conjecture $\theta = \frac{1}{2}$.

On new "explicit formulas" I

It was Turán who recognized that it is of interest in the prime number theory not only to investigate the zeta-zeros but also the zeros of

$$U_N(\mathcal{S}) = \sum_{n\leqslant N} rac{1}{n^s}.$$

He has proved the following theorem:

If for integer $N>n_0$ the partial-sums $U_N(s)$ do not vanish in the half-plane

$$\sigma > 1 + rac{\log^{100} N}{\sqrt{N}}, \quad s = \sigma + it,$$

then Riemann's hypothesis is true(1).

In this paper I prove a new "explicit formula", similar to (1.1) but depending on the zeros of $U_N(s)$ instead of the zeta-zeros.

The result is as follows:

For $2 \leqslant x \leqslant N$, $N \geqslant N_0$, we have

(1.2)
$$\psi_0(x) = \frac{\log N!}{N} - \sum_{\alpha} \frac{x^{\varrho}}{\varrho};$$

 $\varrho=\beta+i\gamma$ denoting the zeros $U_N(s)$ and $\sum\limits_{\varrho}(x^\varrho/\varrho)$ being the limit of $\sum\limits_{|\gamma|\leqslant T}(x^\varrho/\varrho)$ as $T\to\infty(^2)$.

Further I prove some estimates for $\sum_{|\gamma|>T} (x^{\varrho}/\varrho)$, which give information about the behaviour of the series $\sum_{\varrho} (x^{\varrho}/\varrho)$ analogous to that in the classical case.

The formula (1.2) implies the following corollary, which gives a new approximation for the "remainder term" $\psi_0(x) - x$:

If $x \geqslant 2$ then

$$\psi_0(x) = x - \sum_{\substack{\beta \geqslant -1 \\ |\alpha| \leqslant x^{16}}} \frac{x^{\ell}}{\ell} + O(\log x),$$

 $\varrho = \beta + i\gamma$ being the zeros of $U_N(S)$ for $N = [e^x]$ (3).

I wish to express my deep gratitude to Professor Paul Turán, who has made a number of important suggestions.

2. LEMMA 1. (a) The number of zeros of $U_N(s)$ in the rectangle $0 \le \sigma \le 2$, $n \le t \le n+1$, $s = \sigma+it$ (n = 0, 1, 2, ...) is $\le c_1 \log N(4)$.

(b) The number of zeros of $U_N(s)$ in the rectangle

$$-m \leqslant \sigma \leqslant -m+1$$
, $n \leqslant t \leqslant n+1$, $s = \sigma + it$

$$(n = 0, 1, 2, ..., m = 1, 2, ...)$$
 is $\leq c_2 m \log N$.

Proof. Apply Jensen's inequality (see e.g. [1], p. 49, Theorem D). The number of zeros of f(s) in the circle $|s-s_0| < R$ is

$$\leqslant \log \max_{|s-s_0|=Re} \left| \frac{f(s)}{f(s_0)} \right|.$$

Put, for (a), $s_0 = 2 + (n + \frac{1}{2})i$, $R = \sqrt{5}$. Then

$$U_N(s) = O(N^{\sqrt{5}-1}), \quad |U_N(s_0)| \geqslant 2 - \frac{1}{6} \pi^2 > 0$$

and

$$\left| \log \max_{|s-s_0|=Re} \left| \frac{U_N(s)}{U_N(s_0)} \right| \leqslant c_1 \log N. \right|$$

For (b) put $s_0 = 2 + (n + \frac{1}{2})i$, $R = \sqrt{(m+2)^2 + 1}$, whence

$$U_N(s) = O(N^{Re-1})$$

and

$$\left| \log \max_{|s-s_0|=Re} \left| \frac{U_N(s)}{U_N(s_0)} \right| \leqslant c_2 \log N. \right|$$

LEMMA 2. (a) In the rectangle

$$-\frac{1}{2} \leqslant \sigma \leqslant 2$$
, $n \leqslant t \leqslant n+1$, $s = \sigma + it$ $(n = 0, 1, 2, ...)$

we have

$$\left| \frac{U'_N}{U_N}(s) - \sum_{\varrho} \frac{1}{s - \varrho} \right| \leqslant c_3 \log N,$$

where ϱ runs through the zeros of $U_N(s)$ lying in the rectangle

$$-1 \leqslant \sigma \leqslant 2$$
, $n-\frac{1}{2} \leqslant t \leqslant n+\frac{3}{2}$, $s=\sigma+it$.

⁽¹⁾ See [4], p. 4. The quoted result is an easy combination of theorems II and III of the paper.

⁽a) Σ (x^{ϱ}/ϱ) could be understood as $\lim_{q\to\infty} \frac{\Sigma}{|x|^{\varrho}/\varrho|}$, but it is not necessary in virtue of a cortain theorem of Pólya (see [2]) which implies that there is only a finite number of $U_N(s)$ -zeros in every strip $-\infty < A \leqslant t \leqslant B < +\infty$.

⁽⁸⁾ [a] denotes as usual the integral part of a.

⁽⁴⁾ Throughout this paper c_1, c_2, \ldots always denote positive numerical constants.

S. Knapowski

(b) In the rectangle

$$-m-\frac{1}{2} \leqslant \sigma \leqslant -m+1, \quad n \leqslant t \leqslant n+1, \quad s = \sigma + it$$

(n = 0, 1, 2, ...; m = 1, 2, ...) we have

$$\left|\frac{U_N'}{U_N}(s) - \sum_{\varrho} \frac{1}{s - \varrho}\right| \leqslant c_4 m \log N,$$

where ϱ runs through the zeros of $U_N(s)$ lying in the rectangle

$$-m-1 \leqslant \sigma \leqslant -m+2$$
, $n-\frac{1}{2} \leqslant t \leqslant n+\frac{3}{2}$, $s=\sigma+it$.

Proof. I will prove only (b).

Put $s_0 = 2 + (n + \frac{1}{2})i$ and consider the function $G(z) = U_N(z + s_0)$ in the circle $|z| \leq 2R$, $R = \sqrt{1 + (m+3)^2}$. Denote by z_k all the zeros of G(z) in the circle $|z| < \frac{3}{2}R$. The function

$$G(z) \left(\prod_{z_k} 2R \frac{z - z_k}{4R^2 - z\bar{z}_k} \right)^{-1} \equiv G_1(z)$$

is regular and $\neq 0$ in the circle $|z| < \frac{3}{2} R$. We showed above that

$$\left| rac{G(z)}{G(0)}
ight| \leqslant \exp\left(c_5 m \log N
ight) \quad ext{ if } \quad |z| \leqslant 2R.$$

Denote by $G_2(z)$ the branch of $\log \left(G_1(z)/G_1(0)\right)$ in the circle $|z| < \frac{3}{2}R$, determined by $G_2(0) = 0$. We have for |z| = 2R

$$\left|\frac{G_1(z)}{G_1(0)}\right| \leqslant \left|\frac{G(z)}{G(0)}\right| \leqslant \exp\left(c_5 m \log N\right) \quad \text{(compare e. g. [1], p. 49)}.$$

Hence

$$\Re G_2(z) \leqslant c_5 m \log N$$
 for $|z| < \frac{3}{2} R$

and

$$\left|\frac{G_1'}{G_1}(z)\right| \leqslant \frac{2 \cdot \frac{3}{2} R}{\left(\frac{1}{2} R\right)^2} c_5 m \log N \leqslant c_6 \log N \quad \text{for} \quad |z| \leqslant R$$

(apply [1], p. 50, Theorem E with $\nu = 1$). That is

$$\left|\frac{G'}{G}(z) - \sum_{z_k} \left(\frac{1}{z - z_k} + \frac{1}{4R^2/\bar{z}_k - z}\right)\right| \leqslant c_6 \log N \quad \text{ for } \quad |z| \leqslant R \,.$$

But

$$\left| \frac{4R^2}{\overline{z}_k} - z \right| \geqslant \frac{4R^2}{\frac{3}{5}R} - R = \frac{5}{3}R,$$

and the number of the zeros z_k is $\leq c_7 m \log N$, whence

$$\left|\sum_{z_k} \frac{1}{4R^2/\bar{z}_k - z}\right| \leqslant \frac{3}{5R} c_7 m \log N \leqslant c_8 \log N.$$

Finally

$$\left| \frac{U_N'}{U_N}(s) - \sum_{s_k} \frac{1}{s - s_k} \right| \leqslant c_9 \log N$$

after the transformation $s = z + s_0$. If s_k lies outside the rectangle

$$-m-1 \leqslant \sigma \leqslant -m+2, \quad n-\frac{1}{2} \leqslant t \leqslant n+\frac{3}{2}, \quad s = \sigma+it,$$

then $|s-s_k| \geqslant \frac{1}{2}$ for

$$-m-\frac{1}{2}\leqslant\sigma\leqslant-m+\frac{3}{2},\quad n\leqslant t\leqslant n+1,\quad s=\sigma+it$$

and the result follows.

LEMMA 3.

(a) There exists a sequence of numbers T_0, T_1, T_2, \ldots such that

1.
$$n \leqslant T_n \leqslant n+1$$

2.
$$\left|\frac{U_N'}{U_N}(s)\right| \leqslant c_{10}\log^2 N \text{ for } -\frac{1}{2} \leqslant \sigma \leqslant 2, \ t = T_n, \ s = \sigma + it.$$

(b) For every $m=1,2,\ldots$ there exists a sequence $T_0^{(m)},T_1^{(m)},T_2^{(m)},\ldots$

1.
$$n \leqslant T_n^{(m)} \leqslant n+1$$

$$2. \quad \left| \frac{U_N'}{U_N} \left(s \right) \right| \leqslant c_{11} m^2 \log^2 N \ \ for \ -m - \frac{1}{2} \leqslant \sigma \leqslant -m + 1 \ , \ t = T_n^{(m)},$$

$$s = \sigma + it .$$

(c) For every m = 1, 2, ... there exists a sequence $S_0^{(m)}, S_1^{(m)}, S_2^{(m)}, ...$ such that

1.
$$-m+\frac{1}{2} \leqslant S_n^{(m)} \leqslant -m+1$$
,

$$2. \quad \left|\frac{U_N'}{U_N}(s)\right| \leqslant c_{12}m^2\log^2 N \text{ for } \sigma = S_n^{(m)}, \, n \leqslant t \leqslant n+1, \quad s = \sigma + it.$$

(d) For every m=1,2,... there exists a sequence $\tilde{S}_0^{(m)}, \tilde{S}_1^{(m)}, \tilde{S}_2^{(m)},...$ such that

1.
$$-m \leqslant \tilde{S}_n^{(m)} \leqslant -m+1$$

$$2. \quad \left|\frac{U_N^{'}}{U_N}(s)\right|\leqslant c_{13}m^2\log^2N \ \ for \ \ \sigma=\tilde{S}_n^{(m)}, \ n\leqslant t\leqslant n+\frac{3}{2} \ , s=\sigma+it.$$

- (e) For every $m=1,2,\ldots$ there exists a sequence $\tilde{T}_0^{(m)},\,\tilde{T}_1^{(m)},\,\tilde{T}_2^{(m)},\ldots$ such that
 - 1. $n \leqslant \tilde{T}_n^{(m)} \leqslant n + \frac{1}{2}$

$$2. \quad \left| \frac{U_N'}{U_N}(s) \right| \leqslant c_{14} m^2 \log^2 N \ \text{for} \ -m \leqslant \sigma \leqslant -m+1, \ t = \tilde{T}_n^{(m)},$$

$$s = \sigma + it.$$

Proof. Since all the proofs are analogous, it is clearly enough to prove, say, (b).

Divide the interval $\langle n, n+1 \rangle$ into Q+1 equal parts, where Q denotes the number of zeros of $U_N(s)$ in the rectangle

$$-m-\frac{1}{2} \leqslant \sigma \leqslant -m+1$$
, $n \leqslant t \leqslant n+1$, $s = \sigma + it$.

At least one of the rectangles so obtained is free of $U_N(s)$ -zeros. Denote the ordinate of the centre of this rectangle by $T_n^{(m)}$. Let ϱ be any $U_N(s)$ -zero lying in the rectangle

$$-m-1 \leqslant \sigma \leqslant -m+2, \quad n-\frac{1}{2} \leqslant t \leqslant n+\frac{3}{2}, \quad s = \sigma + it$$

and let s^* lie on the line $t = T_n^{(m)}$. Then

$$|s^*-\varrho|\geqslant \frac{1}{2}\cdot \frac{1}{Q+1},$$

whence

$$\frac{1}{|s^* - \rho|} \leqslant 2(Q + 1) \leqslant c_{15} m \log N$$

by Lemma 1. Hence and from Lemma 2 we obtain

$$\left| rac{U_N'}{U_N}(s)
ight| \leqslant c_{11} m^2 \mathrm{log}^2 N$$

for

$$-m-\frac{1}{2}\leqslant \sigma\leqslant -m+1, \quad t=T_n^{(m)}, \quad s=\sigma+it.$$

LEMMA 4. The function $U'_N(s)/U_N(s)$ may be developed in a Dirichlet series $\sum_{n=1}^{\infty} (a_n/n^s)$ convergent in the half-plane

$$\sigma > 1 + 2 \frac{\log \log N}{\log N} \quad (N \geqslant N_0).$$

Further

$$(2.1) a_n = -\Lambda(n) for n \leq N$$

and

(2.2) if $x \leqslant N$ and $n \leqslant \frac{3}{2}x$ then $|a_n| \leqslant c_{16}x \log x$.

Remark. It is sufficient to prove (2.2) only for x = N. In fact, if $x \leqslant \frac{2}{3}N$, then $n \leqslant N$ and $|\alpha_n| \leqslant \log n \leqslant \log \frac{3}{2}x$ by (2.1). If $\frac{2}{3}N \leqslant x \leqslant N$, then $|\alpha_n| \leqslant c_{16}N\log N \leqslant c'_{16}x\log x$, since we suppose that (2.2) holds for x = N.

Proof. The existence of a development of $U_N'(s)/U_N(s)$ in a Dirichlet series follows from Turán's remark (10.1.7) in [5], p. 121. The convergence of this series for

$$\sigma > 1 + 2 rac{\log \log N}{\log N}$$

follows from another theorem of Turán ([4], p. 20), stating that

$$(2.3) \qquad \left|\frac{1}{U_N(s)}\right| \leqslant c_{17} \frac{\log^2 N}{(\log\log N)^2} \quad \text{ for } \quad \sigma > 1 + 2 \frac{\log\log N}{\log N}.$$

This inequality, combined with a general theorem on Dirichlet series (see e. g. [3], § 9.44, p. 302), gives the required result. We note incidentally that (2.3) implies the inequality

$$(2.4) \qquad \left|\frac{U_N'}{U_N}(s)\right| \leqslant c_{18} \frac{\log^4 N}{(\log\log N)^3} \quad \text{ for } \quad \sigma > 1 + 2 \frac{\log\log N}{\log N},$$

which we will use afterwards. Turning now to the proof of (2.1) we have

$$U'_N(s) = U_N(s) \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$
.

Hence, for $n \leq N$ we obtain

$$\sum_{k|n} a_k = -\log n,$$

whence by the Möbius inversion formula we obtain

(2.5)
$$a_n = \sum_{d|n} \mu(d) \left(-\log(n/d) \right).$$

Since this defines a_n uniquely for $n \leq N$, from the well-known formula

$$\sum_{s=1}^{\infty} \frac{-\Lambda(n)}{n^s} = \frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{-\log n}{n^s} \cdot \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} \quad \text{for} \quad \sigma > 1$$

we see at once that (2.1) holds.

8

Now we shall prove inequality (2.2) for x = N. It is sufficient to consider only $N < n \le \frac{3}{2}N$. We then have

$$\sum_{k|n} a_k = 0.$$

If k < n, then $k \leq \frac{1}{2}n$ and consequently $k \leq N$. Hence

$$a_n = -\sum_{\substack{k|n \ k \neq n}} a_k, \quad |a_n| \leqslant \sum_{\substack{k|n \ k \neq n}} |a_k| \leqslant \sum_{k|n} \log k \leqslant \log n! \leqslant c_{16} \, N \log N.$$

3. THEOREM. Let $N > N_0$ be an integer. If $2 \le x \le N$, then

$$\psi_0(x) = \frac{\log N!}{N} - \sum_{\alpha} \frac{x^{\alpha}}{\varrho},$$

 $\varrho=eta+i\gamma$ running through the zeros of $U_N(s)=\sum\limits_{n< N}(1/n^s),$ and $\sum\limits_{\varrho}(x^\varrho/\varrho)=S_N(x)$ denoting the limit of $S_N(x,T)=\sum\limits_{|\gamma|\leqslant T}(x^\varrho/\varrho)$ as $T\to\infty$.

Writing further

$$R_N(x, T) = S_N(x) - S_N(x, T)$$

we have

$$|R_N(x,T)| \leqslant c_{19} \left(rac{x^2}{T} \cdot rac{\log^{14} N}{(\log \log N)^6} + \log x
ight) \quad always$$

where $\xi = \xi(x)$ is the distance of x from the nearest prime power p^m .

Proof. Let $T \geqslant 3$ and denote by T' the least T_n of Lemma 3 which is greater than T. Let $q \geqslant 2$ be any integer.

Denote by C_q^T the contour consisting of the segment

$$\left\langle \, 2 \! + \! 6 \frac{\log \log N}{\log N} \! - \! i T', \, 2 \! + \! 6 \frac{\log \log N}{\log N} \! + \! i T' \right\rangle$$

and of three broken lines given by Lemma 3 as follows:

First there is given an infinite broken line consisting of the horizontal segments

$$S_n^{(1)} \leqslant \sigma \leqslant 2 + 6 \frac{\log \log N}{\log N}, \quad t = T_n.$$

$$S_n^{(m+1)}\leqslant\sigma\leqslant S_n^{(m)}, \quad t=T_n^{(m)} \quad (m=1,2,\ldots)$$

joined by vertical ones. Secondly there is an infinite broken line consisting of the vertical segments

$$\sigma = ilde{S}_{\mu}^{(q)}, \quad ilde{T}_{\mu}^{(q)} \leqslant t \leqslant ilde{T}_{\mu+1}^{(q)} \quad (\mu = 0, 1, \ldots)$$

joined by horizontal ones. By symmetrical mapping in the half-plane t<0 we obtain three infinite broken lines. The contour C_q^T is formed by their intersection.

Put

$$a=2+6rac{\log\log N}{\log N}-iT', \quad b=2+6rac{\log\log N}{\log N}+iT'.$$

Consider the integral

(3.1)
$$\frac{1}{2\pi i} \int_{c_q^T} \frac{x^s}{s} \left(-\frac{U_N'}{U_N}(s) \right) ds = \frac{1}{2\pi i} \int_a^b \frac{x^s}{s} \left(-\frac{U_N'}{U_N}(s) \right) ds + \frac{1}{2\pi i} (I_1 + I_2 + I_3)$$

where I_1, I_2, I_3 denote the integrals along respective upper, lower and left broken line. First of all, estimate these integrals:

$$(3.2) \quad |I_3| \leqslant x^{-q+1} c_{20} q^2 \log^2 N \left(\int_0^{T'} \frac{dt}{\sqrt{(q-1)^2 + t^2}} + \sum_{n \leq T} \frac{1}{n} \right) \leqslant c_{21} \frac{q^2 \log^2 N}{x^{q-1}} \log T,$$

$$(3.3) |I_{1}| \leqslant c_{22} \left(\sum_{\nu=1}^{q} \int_{\nu-1}^{\nu} \frac{x^{-\sigma}}{\sqrt{\sigma^{2} + (T-1)^{2}}} \nu^{2} \log^{2} N d\sigma + \frac{x^{2} \log^{8} N}{T} + \sum_{\nu=1}^{q} \frac{\nu^{2} \log^{2} N}{x^{\nu-1} T} \right)$$

$$\leqslant c_{23} \frac{\log^{8} N}{T} \left(x^{2} + \sum_{\nu=1}^{\infty} \frac{\nu^{2}}{2^{\nu-1}} \right) \leqslant c_{24} \frac{x^{2} \log^{8} N}{T}$$

and similarly:

$$|I_2| \leqslant c_{24} \frac{x^2 \log^3 N}{T}.$$

Now apply Cauchy's theorem

(3.5)
$$\frac{1}{2\pi i} \int_{C_q^T} \frac{x^s}{s} \left(-\frac{U_N'}{U_N}(s) \right) ds = \frac{\log N!}{N} - \sum_{\varrho \text{ inside } C_q^T} \frac{x^\varrho}{\varrho}.$$

On new "explicit formulas" I

As $q \to \infty$, we obtain from (3.1), (3.2), (3.3), (3.4), (3.5)

$$(3.6) \quad \frac{1}{2\pi i} \int_a^b \frac{x^5}{5} \left(-\frac{U_N'}{U_N}(s)\right) ds = \frac{\log N!}{N} - \sum_a \frac{x^2}{\varrho} + O\left(\frac{x^2}{T} \log^8 N\right)$$

where \sum_{ϱ}' denotes the summation over all zeros ϱ lying between the upper and the lower broken line. Now

$$\Big|\sum_{\varrho}'\frac{x^{\varrho}}{\varrho} - S_N(x,T)\Big| \leqslant \frac{c_{25}}{T} \Big(x\log^3 N + \sum_{\nu=1}^{\infty} \frac{\nu\log N}{x^{\nu-1}}\Big) \leqslant \frac{c_{26}}{T} x\log^3 N.$$

From this and from (3.6) we obtain

$$(3.7) \quad \frac{1}{2\pi i} \int_{s}^{b} \frac{x^{s}}{s} \left(-\frac{U_{N}'}{U_{N}}(s) \right) ds = \frac{\log N!}{N} - S_{N}(x, T) + O\left(\frac{x^{2}}{T} \log^{8} N\right).$$

Now put

$$I(y) = \frac{1}{2\pi \mathrm{i}} \int_{s-\mathrm{i}\infty}^{s+\mathrm{i}\infty} \frac{y^s}{s} ds, \quad I(y,T) = \int_{s-\mathrm{i}T}^{s+\mathrm{i}T} \frac{y^s}{s} ds, \quad \Delta(y,T) = I(y) - I(y,T).$$

Then it is well known (see e.g. [1], p. 75, Theorem G) that for T > 0

$$|arDelta(y,\,T)| < egin{cases} rac{y^c}{\pi T |{
m log}\,y|} & {
m if} \quad y
eq 1, \ rac{c}{\pi T} & {
m if} \quad y = 1, \end{cases}$$

 $|\Delta(y,T)| < y^c$ always.

Using this notation and putting $c = 2 + 6 \frac{\log \log N}{\log N}$ we have

$$\frac{1}{2\pi i} \int_{c-iT'}^{c+iT'} \frac{x^s}{s} \left(-\frac{U_N'}{U_N}(s) \right) ds = \sum_{n=1}^{\infty} \frac{-a_n}{2\pi i} \int_{c-iT'}^{c+iT'} \frac{(x/n)^s}{s} ds = \sum_{n=1}^{\infty} -a_n I\left(\frac{x}{n}, T'\right)$$

$$= \sum_{n=1}^{\infty} -a_n I\left(\frac{x}{n}\right) + \sum_{n=1}^{\infty} a_n \Delta\left(\frac{x}{n}, T'\right)$$

$$= \psi_0(x) + \sum_{n=1}^{\infty} a_n \Delta\left(\frac{x}{n}, T'\right).$$

Write

$$u_n = a_n \Delta\left(\frac{x}{n}, T'\right), \quad \sum_{n=1}^{\infty} u_n = X.$$

Then

(3.8)
$$\frac{1}{2\pi i} \int_{s}^{s} \frac{x^{s}}{s} \left(-\frac{U_{N}'}{U_{N}}(s)\right) ds = \psi_{0}(x) + X,$$

where

$$a = 2 + 6 \frac{\log \log N}{\log N} - iT', \quad b = 2 + 6 \frac{\log \log N}{\log N} + iT'.$$

We now estimate X. Let

$$2 + 6 \frac{\log \log N}{\log N} = d.$$

If $n \neq x$ then

$$|u_n| \leqslant |a_n| \cdot \frac{(x/n)^d}{\pi T' |\log(x/n)|} \leqslant \frac{x^2 \log^6 N \cdot |a_n|}{\pi T n^d} \cdot \frac{n+x}{|n-x|}.$$

Denote by $\nu = \nu(x)$ the integer defined by $\nu - \frac{1}{2} < x \le \nu + \frac{1}{2}$. Then it is not difficult to see that $|a_{\nu}| \le \log \nu$ and we obtain analogously to [1] (p. 79)

$$|u_{r}| \leqslant \begin{cases} c_{27} \frac{x^{2}}{T\xi} \log^{6} N & \text{if } x \neq p^{m}, \\ c_{28} \frac{\log x}{T} & \text{if } x = p^{m}, \end{cases}$$

$$|u_{r}| \leqslant c_{29} \log x \quad \text{always.}$$

Further (compare [1], p. 79)

$$(3.10) \qquad |X - u_{\nu}| \leqslant \frac{x^2 \log^6 N}{\pi T} \left(5 \sum_{n=1}^{\infty} \frac{|a_n|}{n^d} + 2 \sum_{r=1}^{[x]} \frac{\max_{1 \leqslant n \leqslant 3x/2} |a_n| \cdot \frac{5}{2} x}{(\frac{1}{2} x)^2 \frac{1}{2} r} \right).$$

Clearly

(3.11)
$$\sum_{n=1}^{\infty} \frac{|a_n|}{n^d} \leqslant \sum_{n=1}^{\infty} \frac{|a_n|^2}{n^d} + \sum_{n=1}^{\infty} \frac{1}{n^d}.$$

By the mean-value theorem for Dirichlet series (see e.g. [5], p. 307) and inequality (2.4) we obtain

(3.12)
$$\sum_{n=1}^{\infty} \frac{|a_n|^2}{n^d} \leqslant c_{30} \frac{\log^3 N}{(\log \log N)^6} \quad \text{where} \quad d = 2 + 6 \frac{\log \log N}{\log N}.$$

On new "explicit formulas" I

13

Further, by (2.2),

$$(3.13) \qquad \sum_{r=1}^{[x]} \frac{\max\limits_{1\leqslant n\leqslant 3x/2} |\alpha_n|\cdot \frac{5}{2}x}{(\frac{1}{2}x)^2\frac{1}{2}r} \leqslant c_{31} \frac{x^2\log x}{x^2} \sum_{r=1}^{[x]} \frac{1}{r} \leqslant c_{32}\log^2 x.$$

(3.10), (3.11), (3.12), and (3.13) give

$$|X - u_r| \leqslant c_{33} \frac{x^2 \log^{14} N}{T(\log \log N)^6}.$$

(3.7) and (3.8) give

$$\psi_0(x) = \frac{\log N!}{N} - S_n(x, T) + O\left(\frac{x^2}{T} \log^8 N\right) + O(|X|).$$

By (3.9) and (3.14) we obtain the required estimates for $R_N(w,T)$. The formula

$$\psi_0(x) = \frac{\log N!}{N} - \sum_{\varrho} \frac{x^{\varrho}}{\varrho}$$

follows on letting T tend to infinity.

Corollary. Let $x \ge 2$. Then

(3.15)
$$\psi_0(x) = x - \sum_{\substack{|\gamma| \leqslant x^{16} \\ \beta > -1}} \frac{x^{\beta}}{\varrho} + O(\log x)$$

where $\varrho = \beta + i\gamma$ denote the zeros of $U_n(s) = \sum_{n \leq N} \frac{1}{n^s}$ and $N = [e^x]$.

Obviously

$$\frac{\log N!}{N} = x + O(1).$$

Taking further

$$T = x^2 \log^{16} N$$

we obtain

$$\left| \sum_{\substack{1|\gamma| \leqslant \mathcal{I} \\ -m \leqslant \beta < -m+1}} \frac{x^{\theta}}{\varrho} \right| \leqslant c_{34} x^{-m+1} \sum_{n \leqslant x^2 \log^{14} N} \frac{m \log N}{n}$$

$$\leqslant c_{35} x^{-m+1} m \log(x^2 \log^{14} N) \log N \leqslant c_{36} m \frac{\log x}{x^{m-2}},$$

whence

$$\left| \sum_{\substack{|\gamma| \leqslant T \\ p_1 < 1}} \frac{x^{\theta}}{\varrho} \right| \leqslant c_{37} \log x \sum_{m=2}^{\infty} \frac{m}{x^{m-2}} \leqslant c_{37} \log x \sum_{m=2}^{\infty} \frac{m}{2^{m-2}} = O(\log x)$$

and the result follows.

Remark. It is not difficult to replace x^{16} in formula (3.15) by $x^{4+\epsilon}$. This could have been achieved by taking

$$c = 2 + 6 \frac{\log \log x}{\log x}$$

instead of

$$c = 2 + 6 \frac{\log \log N}{\log N}$$

in the proof of Theorem and by more careful estimation.

4. Considering now the function

$$\frac{x^{s}}{s^{k+1}}\left(-\frac{U_{N}^{\prime}}{U_{N}}(s)\right), \quad k \geqslant 1 \text{ integer,}$$

instead of

$$\frac{x^s}{s} \left(-\frac{U_N'}{U_N}(s) \right)$$

we can obtain formulas involving $\sum_{\varrho} \frac{x^{\varrho}}{\varrho^{k+1}}$ analogous to those already obtained.

Put, say, x = N. Then we prove

$$(4.1) \quad \sum_{n \leq N} A(n) \frac{\log^k(N/n)}{k!} = A_k(N) - \sum_{|y| \leq T} \frac{N^e}{\varrho^{k+1}} + O\left(\frac{N^2}{T^k} \cdot \frac{\log^{14} N}{(\log \log N)^6}\right)$$

where $\varrho = \beta + i\gamma$ denotes the zeros of $U_N(s)$ and

$$A_k(N) = \frac{1}{k!} \cdot \frac{d^k}{ds^k} \left(-N^s \frac{U_N'}{U_N}(s) \right)_{s=0}.$$

It can be noticed that we are in a position to deduce from (4.1) some information on the distribution of zeros of $U_N(s)$. As this subject seems to be of self-contained interest I will return to it somewhere else.

S. Knapowski

References

[1] A. E. Ingham, The distribution of prime numbers, Cambridge 1932.

[2] N. Obreschkoff, Lösung der Aufgabe 24. Nullstellen linearer kombinationen von Exponentialfunktionen, Jahresbericht der Deutschen Mathematiker-Vereinigung 37 (1928), Aufgaben und Lösungen, p. 82-84.

[3] E. C. Titchmarsh, Theory of functions, Oxford 1939.

14

[4] P. Turán, On some approximative Dirichlet-polynomials in the theory of the zeta-function of Riemann, Dansko Vid. Selsk. Mat. Fys. Medd. 24 no 17 (1948), p. 1-36.

[5] — Eine neue Methode in der Analysis und deren Anwendungen, Budapest 1953.

Reçu par la Rédaction le 27. 1. 1958.

On the distribution of the solutions of diophantine equations with many unknowns

b

L. VEIDINGER (Budapest)

To the solutions of a diophantine equation with r unknowns correspond geometrically — as we know — in the r-dimensional space R^r the points with entire coordinates of an (r-1)-dimensional hypersurface. From this geometrical interpretation follows immediately for every diophantine equation with r unknowns the following problem of a very general character, which can be formulated also merely arithmetically: how the lattice points representing the solutions of the diophantine equation in question are distributed in the space R^r . Of course this problem is interesting principally in the case when the diophantine equation has infinitely many solutions.

Let r and P be positive integers, $\Phi(x_1, ..., x_r)$ a polynomial of r variables with entire coefficients, in respect to which we do not make, for the moment, any restrictions.

The distribution of the solutions in positive integers of the equation

$$\Phi(x_1,\ldots,x_r)=0$$

can be described with the aid of the solution function R(P) defined in the following manner: let R(P) denote the number of all the points with entire coordinates of the hypersurface (1) which are placed inside the cube $1 \leq x_1 \leq P, \ldots, 1 \leq x_r \leq P$.

Purely arithmetically formulated, R(P) means the number of all the positive entire solutions of the diophantine equation (1) in respect to which $x_1 \leq P, \ldots, x_r \leq P$.

As each of the variables x_1, \ldots, x_r can assume only the values $1, \ldots, P$, for the R(P) solution function we have in every case the trivial upper estimation

$$R(P) \leqslant P^r$$
.

But in very many cases the upper estimation can be considerably improved. So for instance if $n \ge 2$, and $C = C(\varepsilon, n)$ is a positive constant de-