Minimal bases and powers of 2

by

MELVYN B. NATHANSON (BRONX, N.Y.)

Dedicated to Paul Erdős on his 75th birthday

1. Introduction. Let \(A \) be a set of nonnegative integers. Let \(h \geq 2 \). Denote by \(hA \) the set of all numbers \(n \) of the form \(n = a_1 + a_2 + \ldots + a_h \), where \(a_1, a_2, \ldots, a_h \) are elements of \(A \) and are not necessarily distinct. The set \(A \) is an asymptotic basis of order \(h \) if \(hA \) contains all sufficiently large integers.

The counting function of the set \(A \) is the function \(A(x) \) defined as the number of positive elements of \(A \) not exceeding \(x \). An elementary combinatorial argument shows that if \(A \) is an asymptotic basis of order \(h \), then \(A(x) > c_1 x^{1/h} \) for some constant \(c_1 > 0 \) and all \(x \) sufficiently large. An asymptotic basis \(A \) of order \(h \) is called thin if there is a constant \(c_2 > 0 \) such that \(A(x) < c_2 x^{1/h} \) for all \(x \) sufficiently large.

Let \(A^{(1)} \) be the set of all nonnegative integers of the form \(\sum_{f \in F} 2^f \), where \(F \) is a finite set of nonnegative integers such that \(f = f' \pmod{h} \) for all \(f, f' \in F \). Choosing the empty set for \(F \) shows that \(0 \in A^{(1)} \) for all \(h \geq 2 \). Raikov [6] and Stöhr [7] proved that \(A^{(1)} \) is a thin asymptotic basis of order \(h \).

An asymptotic basis \(A \) of order \(h \) is minimal if no proper subset of \(A \) is an asymptotic basis of order \(h \). This means that, for any \(a \in A \), the set \(E_a = hA \setminus (A \setminus \{a\}) \) is infinite. Härter [4] gave a nonconstructive proof of the existence of minimal asymptotic bases. Erdős [1] and Erdős and Härter [2] obtained other early results on minimal bases. Nathanson [5] proved that \(A^{(2)} \setminus \{0\} \) is a minimal asymptotic basis of order 2. Erdős and Nathanson [3] have recently published a survey of open problems on minimal bases in additive number theory.

Let \(A \) be an asymptotic basis of order \(h \). Let \(E_a(x) \) be the counting function of the set \(E_a \). If \(n \in E_a \) and \(n \leq x \), then every representation of \(n \) as a sum of \(h \) elements of \(A \) is of the form \(n = a_1 + a_2 + \ldots + a_h \), where \(a_i \in A \) and \(0 \leq a_i \leq x \) for \(i = 1, \ldots, h-1 \). Since there are at most \(A(x)+1 \) choices for each \(a_i \), it follows that \(E_a(x) \leq (A(x)+1)^{h-1} \). Let us call an asymptotic basis \(A \) of order \(h \) strongly minimal if \(E_a(x) > c(A(x))^{h-1} \) for some constant \(c = c(a) > 0 \) and all \(x \) sufficiently large. Nathanson's proof [5] that \(A^{(2)} \setminus \{0\} \) is
minimal is, in fact, a proof that $A^{(2)} \setminus \{0\}$ is a strongly minimal asymptotic basis of order 2. Zollner [8] has obtained some results concerning the minimality of the sets $A^{(n)}$.

The object of this paper is to show that $A^{(h)} \setminus \{0\}$ is a strongly minimal asymptotic basis of order h for every $h \geq 2$, and also to discuss an analogous class of asymptotic bases constructed from the set of powers of 2.

2. Results. Let N denote the set of nonnegative integers, and let W be a subset of N. Denote by $\mathcal{F}^*(W)$ the set of all finite, nonempty subsets of W. Let $A(W)$ be the set of all numbers of the form $\sum_{f \in F} 2^f$, where $F \in \mathcal{F}^*(W)$. Note that $\emptyset \notin \mathcal{F}^*(W)$, hence $0 \notin A(W)$.

Lemma 1. (a) If W_1 and W_2 are disjoint subsets of N, then $A(W_1) \cap A(W_2) = \emptyset$.

(b) If $W \subseteq N$ and $W(\alpha) = \theta \alpha + O(1)$ for some $\theta \in (0, 1]$, then there exist positive constants c_1 and c_2 such that

$$c_1 x^\theta < A(W)(x) < c_2 x^\theta$$

for all x sufficiently large.

(c) Let $N = W_0 \cup W_1 \cup \ldots \cup W_{h-1}$, where $W_i \neq \emptyset$ for $i = 0, 1, \ldots, h-1$. Then $A = A(W_0) \cup A(W_1) \cup \ldots \cup A(W_{h-1})$ is an asymptotic basis of order h. Indeed, $hA = \{n \in N \mid n \geq h\}$ and $hA(\cup \{0\}) = N$.

Proof. (a) This follows from the fact that every positive integer is uniquely the sum of distinct powers of 2.

(b) Let $x > 1$. Choose $k > 0$ such that $2^k < x < 2^{k+1}$. If $n \notin A(W)$ and $n \leq x$, then $n = \sum_{f \in F} 2^f$ for some $F \in \mathcal{F}^*(W)$, and $2^f \leq n \leq x$ implies that

$$0 \leq f \leq k$$

for every $f \in F$. Thus, F is a nonempty subset of $\{0, 1, \ldots, k\} \cap W$. Since the cardinality of $\{0, 1, \ldots, k\} \cap W$ is at most $W(k)+1$, it follows that there are at most $2^{W(k)+1} - 1$ nonempty subsets of $\{0, 1, \ldots, k\} \cap W$. Therefore,

$$A(W)(x) \leq 2^{W(k)+1} - 1 < 2^{W(\log_2 x)+1} - 1 < c_2 x^\theta.$$

Similarly, let F be a nonempty subset of $\{1, 2, \ldots, k-1\} \cap W$. Then

$$\sum_{f \in F} 2^f \leq \sum_{i=1}^{k-1} 2^i \leq 2^k \leq x$$

and so

$$A(x) \geq 2^{W(k-1)} - 1 = 2^{W(\log_2 x)+1} - 1 > c_1 x^\theta$$

for some $c_1 > 0$ and all x sufficiently large.

(c) Let n be a positive integer. Then $n = \sum_{f \in F} 2^f$, where $F \in \mathcal{F}^*(N)$.

Define $F_t = F \cap \bigcup_{i=0}^{t-1} W_i$ and $n_t = \sum_{i=0}^{t-1} 2^i$ for $i = 0, 1, \ldots, h-1$. Then $n_t \in A(W_t) \cup \{0\}$, and, if $F_t \neq \emptyset$, then $n_t \notin A(W_t)$. Thus, $n = n_0 + n_1 + \ldots + n_{h-1} \in h(A \cup \{0\})$. If $F \neq \emptyset$ for all i, then $n \in hA$.

Suppose that some of the sets F_i are empty. If $|F| \geq h$, then it is possible to partition those sets F_i that are nonempty so that F is a union of h nonempty sets G_1, \ldots, G_h, where each G_j is a subset of some F_i. It follows that $n \in hA$.

If $|n| \leq 2^f$ and $1 \leq |F| \leq h-1$, then n is a sum of $|F|$ elements of A. If $g \geq 1$ for some $g \in F$, then

$$n = \sum_{f \in F} 2^f = \sum_{f \in F} 2^f + 2^{g-1} = 2^{g-1}$$

is a sum of $|F|+1$ elements of A. We can continue in this way to divide powers of 2 until n is a sum of exactly h powers of 2, with repetitions allowed, or until n is a sum of at most $h-1$ ones. Thus, $n \notin hA$ if and only if $n \leq h-1$, and so $hA = \{n \in N \mid n \geq h\}$. This proves the lemma.

Lemma 2. Let w_1, \ldots, w_s be s distinct nonnegative integers. If

$$\sum_{i=1}^s 2^{w_i} = \sum_{j=1}^t 2^{w_j}$$

where w_1, \ldots, w_s are nonnegative integers that are not necessarily distinct, then there is a partition of $\{1, 2, \ldots, t\} \cup \{s+1, \ldots, t\}$ into s nonempty sets J_1, \ldots, J_s such that

$$\sum_{i \in J_i} 2^{w_i} = \sum_{j=1}^s 2^{w_j}$$

for $i = 1, \ldots, s$.

Proof. By induction on t. Since the numbers w_i are distinct, it follows that, if $r = 1$, then $s = 1$ and $w_1 = w_1$, and so we can let $J_1 = \{1\}$.

Now assume that the lemma is true for all $t < t$. Reorder the w_i and x_i so that $w_1 < \ldots < w_s$, and $x_1 < \ldots < x_s$. If $x_1 < x_2$, then 2^s must occur in the 2-adic representation $\sum 2^{w_i}$, and so $w_1 = x_1$. Then $\sum_{i=1}^s 2^{w_i} = \sum_{j=1}^s 2^{w_j}$, and the result follows by induction.

Similarly, if $x_1 = x_2$, then

$$\sum_{i=1}^s 2^{w_i} = 2^{w_1+1} + \sum_{j=3}^s 2^{w_j}.$$

Since there are now only $t-1$ summations on the left side of the equation, the result again follows by induction. This proves the lemma.

Lemma 3. Let $h \geq 2$.

(a) If $1 + 2^2 + \ldots + 2^{k-1} = c_0 + c_1 + \ldots + c_{k-1}$, where $k \leq h$ and c_i
In \(\{0, 1, 2, 2^2, \ldots, 2^{h-1}\} \) for \(i = 0, 1, \ldots, k-1 \), then \(k = h \) and, after suitable rearrangement, \(c_i = 2^i \) for \(i = 0, 1, \ldots, h-1 \).

(b) Let \(r \in \{0, 1, \ldots, h-1\} \). If
\[
\sum_{i=0}^{h-1} 2^i = c_0 + c_1 + \ldots + c_{h-1}
\]
and \(c_i \in \{0, 1, 2, 2^2, \ldots, 2^{h-1}\} \) for \(i = 0, 1, \ldots, h-1 \), then, after suitable rearrangement, either \(c_i = 0 \) and \(c_i = 2^i \) for \(i \neq r \), or there is an integer \(s \neq 0, r \) such that \(c_i = 2^i \) for \(i \neq r, s \) and \(c_s = 2^s \).

Proof. (a) This follows immediately from Lemma 2.

(b) By Lemma 2, there are at least \(h-1 \) nonzero terms \(c_i \). If \(c_i = 0 \) for some \(i \), then, after suitable rearrangement, \(c_i = 0 \) and \(c_i = 2^i \) for \(i \neq r \). If \(c_i \neq 0 \) for all \(i \), then Lemma 2 implies that there is an \(s \neq 0, r \) such that \(c_i = 2^i \) for \(i \neq r, s \) and \(c_s = 2^s \) for some \(j \) and \(k \). This is possible only if \(j = k = s-1 \) and \(c_s = 2^s \). This proves the lemma.

Theorem 1. Let \(h \geq 2 \). For \(i = 0, 1, \ldots, h-1 \), let \(W_i = \{n \in N \mid n \equiv i \pmod{h}\} \). Let \(A = A(W_0) \cup \ldots \cup A(W_{h-1}) \). Then \(A \) is a thin, strongly minimal asymptotic basis of order \(h \).

Proof. Since the sets \(W_i \) partition \(N \), Lemma 1 implies that \(A \) is an asymptotic basis of order \(h \). Since \(W_i(x) = (1/\theta)x + O(1) \) for \(i = 0, 1, \ldots, h-1 \), Lemma 1 also implies that there is a constant \(c > 0 \) such that \(A(W_i)(x) < cx^i \) for all \(i \) and \(x \) sufficiently large. Thus, \(A(x) < hnx^{1/n} \) for large \(x \), and \(A \) is a thin asymptotic basis of order \(h \).

For \(a \in A \), let \(E_a = hA \setminus hA(\{a\}) \). The set \(A \) is minimal if \(E_a \) is infinite for every \(a \in A \), and strongly minimal if there is a real number \(c = c(a) > 0 \) such that \(E_a(x) > cA(x)^{1/a} \) for all \(x \) sufficiently large. Since \(A \) is thin, it suffices to prove that there is a number \(c = c(a) > 0 \) such that \(E_a(x) > cA(x)^{1/h} \) for all \(x \) sufficiently large.

Let \(a \in A \). Then \(a \in A(W_i) \) for some \(i \), and so \(a \) has a unique representation in the form
\[
a = 2^{h+u} + \sum_{f \in F_u} 2^{f+h+u}
\]
where \(g \geq 0 \) and \(F_u \) is a finite, possibly empty set of integers such that \(f > g \) for all \(f \in F_u \). Define \(a_u = a \).

For \(r = 0, 1, \ldots, h-1 \) and \(r \neq u \), let \(F_r \) be a finite, possibly empty set of integers such that \(f > g \) for all \(f \in F_r \). Define \(a_r \) by
\[
a_r = \sum_{i=0}^{h-1} 2^{h+r} + \sum_{f \in F_r} 2^{f+h+r}
\]
Let \(n = a_0 + a_1 + \ldots + a_{h-1} \). I claim that \(n \notin h(A(\{a\})) \).

The proof is by induction on \(g \). If \(g = 0 \), then \(n = 1+2+\ldots+2^{h-1}+2^m \) for some \(m \geq 0 \). Let \(n = b_0 + b_1 + \ldots + b_{h-1} \) be any representation of \(n \) as a sum of \(h \) elements of \(A \). Define \(c_i \in \{0, 1, 2, 2^2, \ldots, 2^{h-1}\} \) by \(c_i \equiv b_i \pmod{2^h} \). If \(c_i \neq 0 \), then \(c_i = 2^{k(i)} \) for some \(k(i) \in \{0, 1, \ldots, h-1\} \), and so \(b_i \in A(W_{k(i)}) \). It follows from Lemmas 2 and 3 that for some \(k \leq h \) and \(0 \leq k(i) \leq k(i+1) \) and \(i < \ldots < i(k-1) < i(k) \leq h-1 \) we have
\[
1+2+2^2+\ldots+2^{h-1} = c_{i(0)} + \ldots + c_{i(k-1)} = 2^{k(i)} + \ldots + 2^{k(i+h-1)}
\]
Thus, \(k = h \) and, after suitable renumbering, \(t(k) = i(0) \) and \(c_i = 2^i \) for \(i = 0, 1, \ldots, h-1 \). Then \(b_i \in A(W_i) \) for \(i = 0, 1, \ldots, h-1 \). Since the representation of an integer as the sum of distinct powers of 2 is unique, it follows that \(b_i = a_i \) for all \(i \). In particular, \(b_r = a_r = a \), and so \(n \notin E_a \).

Now assume that \(g \geq 1 \) and that the result holds for \(g-1 \). For \(i = 0, 1, \ldots, h-1 \), define \(a'_i \) by \(a'_i = 2^i a'_i \) and \(a_r = 2^r + 2^r a_r \), for \(r \neq u \). Then
\[
n = \sum_{r=0}^{h-1} 2^{h+r} + \sum_{r=0}^{h-1} 2^{r+h'+r}
\]
where \(n' = a'_0 + \ldots + a'_{h-1} > 0 \). Let \(n = b_0 + \ldots + b_{h-1} \) be any representation of \(n \) as a sum of \(h \) elements of \(A \). Define \(c_i \in \{0, 1, 2, 2^2, \ldots, 2^{h-1}\} \) by \(c_i \equiv b_i \pmod{2^h} \). Then \(b_i \in A \cup \{0\} \) for \(i = 0, 1, \ldots, h-1 \). Just as in the case \(g = 0 \), Lemmas 2 and 3 imply that either
\[
\sum_{r=0}^{h-1} 2^{r+h'} = \sum_{r=0}^{h-1} 2^{r+h'}
\]
or
\[
\sum_{r=0}^{h-1} 2^{r+h'} = \sum_{r=0}^{h-1} 2^{r+h'}
\]
for some \(s \). In the latter case,
\[
2^{h'} = c_{s} + 2^{s} (b_0 + \ldots + b_{h-1})
\]
Since \(0 < c_s < 2^h \), it follows that \(c_s = 0 \) and so
\[
\sum_{r=0}^{h-1} 2^{r+h'} = \sum_{r=0}^{h-1} 2^{r+h'}
\]
In both cases, therefore, we can conclude that
\[
n' = a'_0 + \ldots + a'_{h-1} = b_0 + \ldots + b_{h-1}
\]
Since
\[
a'_r = 2^{-h} a = 2^{h-1} a + \sum_{f \in F_r} 2^{f-1} a
\]
If $a \in A(W)$, then $a = \sum_{i=1}^{t} 2^{w_i} z_i$ where $z_1 < \ldots < z_t$ and $z_i \in W$ for $j = 1, \ldots, t$. Let us omit the finite number of integers a such that $\{z_1, \ldots, z_t\} \subseteq \{w_i, \ldots, w_s\}$. Then there is an exponent s such that $z_i \neq w_i$ for all $i = 1, \ldots, s$. Let $t \geq 2$. If $a = a^* + 2^{w_i}$, that is, if $\{z_1, \ldots, z_t\} \subseteq \{w_i, \ldots, w_s\} \cup \{z_1, \ldots, z_t\}$, let $a_1 = a^* + 2^{w_i}$ and $a_2 = a^* - 2^{w_i}$. If $\{z_1, \ldots, z_t\} = \{w_i, \ldots, w_s\} \cup \{z_1, \ldots, z_t\}$ and $z_i \neq w_i - 1$, let $a_1 = a^* - 2^{w_i-1} = 2^{w_i-1} + \sum_{i=1}^{t} 2^{w_i}$ and $a_2 = a + 2^{w_i-1}$. In both cases, $n = a_1 + a_2 = 2(A(W) \setminus \{a^*\}) \subseteq 2(A \setminus \{a^*\})$. If $t = 1$ and $s \geq 2$, then we let $a_1 = a - 2^{w_i}$ and $a_2 = a + 2^{w_i}$. Then $n = a_1 + a_2 = 2(A \setminus \{a^*\})$. If $s = t = 1$, then $a = 2^{w_i}$ and $a^* = 2^{w_i}$, where $z_i \neq w_i$. If $z_i \neq w_i - 1$, let $a_1 = 2^{w_i-1}$ and $a_2 = 2^{w_i-1}$. Then $n = a_1 + a_2 = 2(A \setminus \{a^*\})$. This proves the theorem.

3. Open problems. The results above suggest several new problems.

1. Characterize the partitions $N = W_0 \cup \ldots \cup W_{h-1}$ such that $A = \bigcup_{i=0}^{h-1} A(W_i)$ is a minimal asymptotic basis of order h. Is A minimal for “almost all” partitions?

2. Let $N = W_0 \cup \ldots \cup W_{h-1}$ be a partition such that each set W_i is a union of intervals; that is, if $w \in W_i$, then W_i contains either $w - 1$ or $w + 1$ or both. Is $A = \bigcup_{i=0}^{h-1} A(W_i)$ minimal?

3. Under what conditions is an asymptotic basis A of the form $A = \bigcup_{i=0}^{h-1} A(W_i)$ strongly minimal?

4. Let 0 satisfy $1/h < 0 < 1/(h-1)$. Does there exist a strongly minimal asymptotic basis A of order h such that $A(x) > cx^\delta$ for all x sufficiently large?

References:

Les volumes IV et suivants sont à obtenir chez

...