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1. Introduction. Let A be a set of nonnegative integers. Let h = 2. Denote
by hA the set of all numbers n of the form n = a,+a,+ ... +u, where
iy, dy, ..., 4, are clements of A and are not necessarily distinct. The set 4 is an
asymptotic basis of order h il hA contains all sufficiently large integers.

The counting function of the set 4 is the function A(x) defined as the
number of positive elements of A not exceeding x. An elementary combina-
torial argument shows that if 4 is an asymptotic basis of order h, then
A(x) > ¢, x*" for some constant ¢, > 0 and all x sufficiently large. An
asymptotic basis A of order h is called thin if there is a constant ¢, > 0 such
that A(x) < ¢,x'* for all x sufficiently large.

Let A™ be the set of all nonnegative integers of the form ¥ 27, where F is
feF
a finite set of nonnegative integers such that f = f’ (mod h) for all f, f'eF.

Choosing the empty set for F shows that 0e A% for all h = 2. Raikov [6] and
Stohr [7] proved that A™ is a thin asymptotic basis of order h.

An asymptotic basis A of order h is minimal if no proper subset of 4 is an
asymptotic basis of order h. This means that, for any ae A, the set
E, = hA\h(A\{a}) is infinite. Hértter [4] gave a nonconstructive proof of the
existence of minimal asymptotic bases. Erdés [1] and Erdds and Hértter (2]
obtained other early results on minimal bases. Nathanson [5] proved that
AP0 s a minimal asymptotic basis of order 2. Erdds and Nathanson [3]
have recently published a survey of open problems on minimal bases in
additive number theory,

Let A4 be an asymptotic basis of order A, Let E,(x) be the counting
function of the set E,. If ne E, and n < x, then every representation of n as
a sum of h elements of A is of the form n = a+a,+ ... +a,..,, where ;€ A
and 0 € a, < xfori=1,..., h—1. Since there are at most A(x)-+1 choices for
each g, it follows that E,(x) < (4(x)+1)"~". Let us call an asymptotic basis 4
of order h strongly minimal if E,(x) > c(A(x)""" for some constant ¢
= ¢(a) > 0 and all x sufficiently large. Nathanson’s proof [5] that A”\{0} is
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minimal is, i fact, a proof that A‘z’\{O} is a strongly minimal asymptotic basis
of order 2. Z&llner [8] has obtained some results concerning the minimality of
the sets 4™,

The object of this paper is to show that 4%\ {0} is a strongly minimal
asymptotic basis of order A for every h = 2, and also to discuss an analogous
class of asymptotic bases constructed from the set of powers of 2.

2. Results. Let N denote the set of nonnegative integers, and let W be
a subset of N. Denote by % *{W) the set of all finite, nonempty subsets of W.
Let A(W) be the set of all numbers of the form Y 2/, where F e . #*(W). Note

SfeF
that @ ¢ #*(W), hence 0¢ A(W).

LemMa 1. (a) If W, and W, are disjoint subsels of N, then A(W))
N A(W,) = @.

(b) If W N and W(x) = 0x+0(1) for some 0e(0, 1), then there exist
positive constants ¢, and ¢, such that

ey x? < A(W)x) < ¢,x*
for all x sufficiently large

(c) Let N=W,uW, u...uW,_,, where W, 0 for i=0,1,..., h—1.
Then A = A(Wp) UA(W)) v ... VA(W, ) is an asympiotic basis of order h.
Indeed, hA = {neN! n > h} and h(4w {0}) = N. :

Proof. (a) This follows from the fact that every positive integer is
uniquely the sum of distinct powers of 2.

(b) Let x = 1. Choose k = 0 such that 28 < x < 2" If ne A(W) and
n<x, then n= ) 2/ for some Fe&*(W), and 2/ < n < x implics that

feF
0 <f < kforevery feF. Thus, F is a nonempty subset of {0, 1, ..., k} n W.
Since the cardinality of {0, 1, ..., k} n W is at most W(k)-+1, it follows that
there are at most 2¥®*! — 1 nonempty subsets of {0, 1, ..., k} ~ W. Therefore,

A(W)(x) < oWERHT__ < 2Wlogx/log2)+ | < szﬂ.

Similarly, let F be a nonempty subset of {1, 2, ..., k—1} n W. Then

k=1
220 Y 2 <2k gx
JeF i=1

and so
Wk-1) 1 .. 28 flog2)+ 0f1) 1 v sl
Alx) = 2 1 = 2foex/los -1 >ex
for some ¢; > 0 and all x sufficiently large.

(c) Let n be a positive integer. Then n= Y 2/, where Fe&*(N).
S&F
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i1
Define Fy=Fr(W\|) W) and n,= ¥ 2/ for i =0,1,...,h—1. Then
i=0 JeF;
me AW) L {0}, and, if F; % @, then n, & A(W). Thus, n = ng+-n,+ ... +n,_,
eh{Au{0). Il F; # @ for all §, then nehAd.
Suppose that some of the sets F; are empty. If [F| > &, then it is possible to
partition those sets F; that are nonempty so that F is a union of 4 nonempty
sets G, ..., Gy, where cach G, is a subset of some F,. It follows that nehA.

Ifn=73 2" and 1 < |F| € h—~1, then n is a sum of |F| elements of 4. If
Jult
g = 1 for some geF, then

= ): p - Z 2 42871 e
= fel JaF '
S#p
is a sum of |F|-+1 elements of 4. We can continue in this way to divide powers
of 2 until n is a sum of exactly h powers of 2, with repetitions allowed, or until »
is & sum of at most A—1 ones. Thus, n¢hA if and only if n < h—1, and so
hA = {ne N| n 2z h}. This proves the lemma.

Lemma 2. Let wy, ..., w, be s distinct nonnegative integers. If

i IV o i ol
fe2] J=1

where X,, ..., X, are ponnegative integers that are not necessarily distinct, then
there is a partition of {1, 2, ...,.t} into s nonempty sets J, ..., J; such that
2w,; = Z 2xj
Jjelt

Jor i=1,...,%.

Proof. By induction on t. Since the numbers w, are distinct, it follows
that, if t = 1, then 5= 1 and x, = w,, and so we can let J, = {1}.
Now assume that the lemma is true for all i < . Reorder the w, and x; so

that w, < ... < w,and x; € ... € x,. If x; < x,, then 2% must occur in the
1

3
2-adic representation ¥ 2™, and so wy = x,. Then ), 2% = 3" 2%, and the
i=2 =2
result follows by induction.

Similarly, if x, = x,, then
t
i W 2x14-1+ Z adl
it J=3
Since there are now only ¢—1 summands on the lgaft side of the equation, the
result again follows by induction, This proves the lemma.

LemMA 3. Let h = 2.
(@ If 1424224 . +2" V= cote + oo +oy, whare k<h and ¢
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€{0,1,2,2%, ...,2" Y for i=0,1,..., k=1, then k = h and, after suitable

rearrangement, ¢;=2' for i=0,1,..., h—1.
(b) Let ¥ei{0,1,...,h—1}. If
h—1
PIRARE TR NN S
e

and ¢;€10,1,2,2%,..,2"7% for i =0, 1,..., h—1, then, dfter suitable re-
arrangement, either ¢, = 0 and ¢; = 2/ for i # r, or there is un integer 5 % 0, r
such that ¢;=2" for i#r,s and ¢, = ¢, =271,

Proof. (a) This follows immediately from Lemma 2.

(b) By Lemma 2, there are at least h—1 nonzero terms ¢;2 If ¢, = 0 for
some I, then, after suitable rearrangement, ¢, = 0 and ¢; = 2 for i # r. 0 e, #0
for all i, then Lemma 2 implies that there is an s 5% 0, ¥ such that ¢; = 2/ for
i#r,sand 2°= ¢, +c¢, = 27 +2* for some j and k. This is possible only if
j=k=s—1 and ¢, = ¢, = 2!, This proves the lemma.

THEOREM 1. Let hz2. For i=0.1,...,h—1, let W,={neN|n
= i(mod h)}. Let A= A(W)w ... A(W,_,). Then A is a thin, strongly
minimal asymptotic basis of order h.

[

Proof. Since the sets W, partition N, Lemma 1 implies that 4 is an
asymptotic basis of order h. Since Wi(x) = (/R x+O{Nfori=0,1,... h~1I,
Lemma 1 also implies that there is a constant ¢ > 0 such that A{(W)(x)
< ¢x*P for all i and all x sufficiently large. Thus, A(x) < hex'™ for large x, and
A is a thin asymptotic basis of order h,

For ae A, let E, = hA\h(A\{a}). The set 4 is minimal if E, is infinite for
every ac A, and strongly minimal if there is a real number ¢ = c¢(a) > 0 such
that E,(x) > cA(x)*"! for all x sufficiently large. Since A is thin, it suffices to
prove that there is a number ¢ = ¢{a) > 0 such that E,(x} > ¢x® " for all x
sufficiently large.

Let ae A. Then ae A(W),) for some w«, and so a has a unique representation
in the form

a= 2gh+u+ Z Zj‘h-l-u
felu
where g > 0 and F, is a finite, possibly empty sct of integers such that f > ¢ for
all feF,. Define a,=ua,

Forr=0,1,...,h—1 and r # u, let F, be a finite, possibly empty set of

integers such that f > g for all fe F.. Define a, by

a

(1) a, = Z 2£h+r+ Z 2,fh+r.
=0 - feF,
let n=ag+a;+ ... +a,_ I claim that né¢h(4\{a}).
The proofis by induction on g. If g = 0, then s == [ 24 ..,
for some m = 0. Let n = by+b, +

+ 281 2 m
. +b,_, be any representation of n as
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a sum of i elements of 4. Define ¢;€ {0, 1, 2, 22, .27 Y by ¢; = bimod 2%).
If¢; # O. then ¢; = 20 for some »c( e {0, 1, h— 1}, and so b, €AW, ,). Tt
fol IUWs from Lummm 2 and 3 that for some k< h and < 1(0) < t(1)
< .. < t{k~1)< h—~1 we have

T+242%4 L 27 g

= QXN

+ -1
e 2x(l(k - 1))

Thus, k= h and, after suitable renumbering, t(t)—l»—x(l) and ¢, = 2°
for i=0,1,...,h—1. Then beA(W) for i=0,1,..., h—1. Smce the
representation of an inieger as thc sum of distinct powers of 2 is unique, it
follows that b; = a, for all i, In particular, b, = a, = a, and so nek,.
Now assume that ¢ = 1 and that 1he reqult holds for g—1. For

i 0,0, -], defline of by a, = 2"a) and ¢, = 27+ 2"d for r # u. Then
-1
n= Yy 22y
r=0
rEu

where n’ = ag+ ... +ay-; > 0. Let n = by+ ... --b,_, be any representation
of n as a sum of h elements of 4. Define c, (€{0,1,2,22, ., 2" by
¢; = b(mod 2"). Then b, = ¢,+2"b;, where b EEAU{O} for § = 0 1, s h—1.
Just as it the case g = 0, Lemmas 2 and 3 imply that either

hl
22’

r%u

or

h-—1 -1
L¥=2e¢
=( [=0
rEu i#s
for some s. In the latter case,
2k = o 420D+ L. D).
¢, < 2", it follows that ¢, =0 and so
b he
z ‘2" = Z ci'

¢ =i} {20
Fiu -

In both cases, therefore, we can conclude that

coe ROy =bp+ .

Since 0 <

n o= -ay+ + b1

Since

. 2'"11.4 W S AL Z 2(f—1)h+u,
(1]
JeFy
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the induction hypothesis is satisfied, and, after suitable rearrangement, b} = ‘f}f
for all i. Then b\ & A(W), and so b;e A{W)) for all i. Therefore, g, = b, for all .
In particular, b, = a4, = a. Thus, ne E,. '

To find a lower bound for E, (x), choose an integer v such that v > g and
v> fforall feF,. Let x > 2°% 1 Define w = vby 2#* " < x < AR %
r =‘O, 1, h—1 and r # u, let F, be any subset of .{g+l, g+2, ..., wh
There are 20 =94~ 1 choices of the A—1 subsets F,. Define a, by (1), and let
n=dy+ ... +a,.,. Then

whekh—1 )
Z 2; < 2(w-l‘1)f| < x
=0

h=-1

Ry 3 2=

r=0 =0
and so n is counted in E,(x). Therefore,

E (x) > Se-gth—1) <, cx®— 1/
a

where ¢ = 1/2¢+2¢~Y_ This completes the proof of the theorem. ‘
Note that the thin, strongly minimal asymptotic basis 4 constructed in
Theorem 1 is precisely the set A®\{0}, where A® was defined in the
Introduction.
Because of the uniqueness of the representation of an integer as the sum of

distinct powers of 2, it would be reasonable to conjecture that the asymptotic
h—1 .
basis A= | ) A(W) is minimal for any partition N = Wy u ... W, ... The

i=0
following example shows that this is false even for h = 2.

THEOREM 2. Let N = VU W, where V.n W# &, Suppose that V' contains
no two consecutive integers, that 0e W, and that w, ..., w, are distinct elements

hl

of W such that w,— e Wfori=1,...,s. Define a* e A(W) by a* = ) 2" Let

i1
A = A(Vyu A(W). Then A\{a*} is an asymptotic basis of order 2. In particular,
A is not a minimal asymptotic basis of order 2.

Proof. It suffices to show that ifae 4 and n = a*+-a, then ne 2(A\{a*})‘

for all but at most finitely many integers a.
There are two cases: Bither ae A(V) or ae A(W). If aeA(V), then

t
a= 7 2% wherev < ... <pandv;eVforj=1,. ., t Since V contains no
i=1 _ .
two consecutive integers, it follows that p—~leW for je=1,...,t.

Therefore,

s s f
nea¥dq = Z Wy Z I 2(2 AR Z Zr:;—j,)
J=1

t
i=1 i=1 i=1

e2A(WN\{a*}) = 2(4\{a*}).
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t

Ifae A(W), then a = ¥ 2% where <.

. =1
Let us omit the finite fnumber of integers a such that {z,, ..., z} < {wg,...
-+» W,f. Then there is an exponent zy such that z, # w, foralli =1, .., 51 Let
£ 2. 00 a# a*+2%, that is, if {z,,..., 2p# Wi, L whuiz), let g,
= a*-2% and a4, = a—2%_ if {z,, ..., zp={w, .., wlu {zk} and z, % w,
5

1, let qq = g*=2"170 = pwi-i 22" and let a, = a+2""1. In both

i=2
cases. # = dy +a, € AAMWN{a*}) € 2(A\{a*)). If £ = 1 and 5 > 2, then we let
ap = a*—2" and ay = a+2", Then n = dta,e2{A\{a*}). If s=1t=1,
then a* = 2" and a = 27, where 7, % w,. If z, w1, let g, = 2"~ apnd
ty = 27421 Then n = q, +a,€2(A\{a*}). This proves the theorem.

3. Open problems. The resulis above suggest several new problems.

l. Characterize the partitions N = Wou ...UW,_, such that A4
R

= | J A(W) is 2 minimal asymptotic basis of order k. Is 4 minimal for “almost
=0

<z, and zieWforj=1,..., ¢

all” partitions?

2. Let N=W,uU...uW,_, be a partition such that each set W, is

a union of intervals; that is, if we W), then W, contains either w—1 or w+1 or
h- 1

both. Is 4 = || A(W) minimal?
=0

3. 1Under what conditions is an asymptotic basis 4 of the form
-

A = [} A(W) strongly minimal?

i=0

4. Let 0 satisfy 1/h < 0 < 1/(h—1). Does there exist a strongly minimal
asymptotic basis 4 of order h such that A(x} > cx? for all x sufficiently large?

-
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