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1. Statement of results. Our object is to estimate the probability that a
sum of independent random variables is large. In this direction we derive a
rather precise upper bound, and a corresponding lower bound.

THeorEM 1. Let X, X,. ... be independent random variahles such that
PX,=1)=1/2, P(X,= —1)=1/2. Let |r,] be a non-increasing sequence
of nan-negative real numbers for which

(1) at= 3 ry <o,
* n=1

and put X =3 r,X,. If N and V are chosen so that Y r,< V/2, then

n=1 nsN
) P(X 2 V)<exp(—3V2( T )71

>N
If ¥ r,22V then
nEN
(3) P(X 2 V)2 2 exp(—-120¥2( T r3)7Y).
n=N
Also, if 'Y r, 2V then
nE&N
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The upper bound (2) was proved earlier by Saltzberg [8]. We include
the easy proof, since it is short and the inequalities used in this proof are
used in the proof of (3) as well.

By Kolmogorov’s three series theorem we see that condition (1) ensures
that the series defining X converges a.e. It is well known (see Petrov [6], p.
58) that if ¥ = 0 then

(5 P(X = V) < exp(—V*(26%)).
This is sharp for V= ¢ if ¢ is large compared to maxr,, buil otherwise

P(X = V) is significantly smaller. Since Y. r; —0as N — oo, we see from (2)
n>N
that P(X = V) tends to 0 more quickly as ¥ — oo than it would if X were

normally distributed. As the X, are symmetrically and identically distributed,
the requirement that the », be positive and nonincreasing does not occasion
any loss of generality. From Theorem 1 we see that

exp(—¢, V¥ < ZX,,/nW’ V) <exp(—cy V%)

for V = 1. In this situation the lower bounds (3) and (4) are comparable, but
if ¥ rZ converges slowly, e.g. r, =n""?(logn)™%, then (3) is superior to (4).
On the other hand, if Er,, diverges slowly, then {3) is inferior to (4) and (2)
can be refined by taking more care in the choice of parameters. For example,
the method we use to derive (2) can be used to show that

P(Y X, /nz V)< exp(ce)
for V = 0, while (4) gives
P(Y. Xu/nzV)zexpl(c,e)

for ¥= 0. S.0.Rice [7] has determined these probabilities for small V. In
general, when the r, decrease in a regular way, an asymptotic expansion of
P(X = V) as ¥V — oo can be determined by the saddle point method.

R.Monach [5] has calculated similar probabilities in connection with
the distribution of the error term in the prime number theorem and with the
distribution of arg L(1, y) for Dirichlet characters y (mod g). Chowla and
Erdds [1] proved that if s> 3/4 is fixed then the numbers

= fd
Ly(s) = Z (H) e

‘have a limiting distribution in the sense that there is a function F(s, V) such
that

.2
lim ?card{d: 0<d<X,d=0 or 1(mod4),d+#s* L,(s) <V}
CX—vy

= F(s, V).
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Elliott [2] extended the range of validity to s > 1/2, and established corre-
sponding results for complex s for which Res > 1/2. From his analysis and

Theorem 1 it can be shown that there are constants ¢, = ¢(s) such that if
1/2 <s <1 then

(6) exp ( — (10g V)l;’{l —5) (108 log V}s/(l 75))
<1-F(s, V) < e):;p(—a2 ((log V)= (log lég i —s)))
for V = 4. Moreover, these inequalities remain valid with 1—F (s, V) replaced

by F(s, 1/V).
Concerning other independent random variables, we note that (5) de-

pends only on the fact that E(em")éexp(klﬂ). The sharper bound (2)
requires additionally that |X [ < 1. Cur method yields the following more
general result, which we state without proof.

THEOREM 2, For n=1, 2,... let Y, be independent real valued random
variables such that E{Y,) = 0 and |Y,| < 1. Suppose there is a constant ¢ > 0
such that E(Y})zc for all n. Put Y=3rY, where Yri<ow. If

3 rl < V/2, then :

lryl 2

Pyz=wm<exp(—fV (Y 27

[rnl <

Iy Ird =2V then

Jrnlza

PYzWzaexp(—aV* (T ) )
lrpl <z
Here ay > 0 and a, >0 depend only on ¢,

D. Joyner [3] has vsed Theorem 2 to estimate the asymptotic distribu-
tion of |[{(c+it) for given o, 1/2 <o < 1. His result is similar to the
estimate (6).

We derive our main results from simple inequalities for the characteristic
functions of the random variables involved. In § 4 we indicate how these
results can instead be derived from inegualities for moments. This latter
approach is convenient when investigating complex valued random variables,
or random variables which are only approximately independent.

2. Basic lemmas. We employ the following elementary inequalities (see
Kahane [4], p. 6).

Levmma 1. If Zel'(Q) and Z 2 0, then
P(Z 2 aE(Z)} < Va
for all a>0. If ZeI*(Q) and 0 < a <1, then
P(Z z aE(Z)) > (1-a)* E(Z2)*/E(Z*
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Clearly E(eax") = cosh A. Bounds for this quantity are provided by
Lemma 2. For any uz 0,

(7 coshu < ¢
and

(8) coshu < /2.
Moreover, .

9 coshu > ¢/
Jor 0 <u<3, and

(10) coshu > 2¢42
Jor uz3

Proof. Clearly coshu =4e*+3e™“ < e* for u> 0, and

oo u2n o] 2/2)11 2
coshu = 2
i n= D(zn)| ; —¢ ’
since n12" < (2n)). If 0 <o <9 then 1+v/2 > "% and hence
@ 2n
- 2 u2/6
coshu ,,;0(211)! >1+u?2>e
for 0 <u < 3. Finally, coshu =3e*+1e™" > §¢* so that

coshu > e > 2e?

for u = 3.

3. Proof of Theerem 1. By the first part of Lemma 1 with Z = ¥
a = ¢*/E(e*X) we see that

(11)  P(X =)< e VE(EM),

Since the X, are independent,

=] o
(12) E(e®) =[] E(¢""™ = [T cosh(ir,).
n=1 #=1
Let N be arbitrary. We use (7) for 1 < n < N, and (8) for n > N, to see that
{13) ' E(e*y<exp(d ¥ r,+342 ¥ #2).
nEN n>N
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Hence if ) r, < V/2 then
n&N
PX2V)<exp(—3AV+442 Y r3),

n>N

and (2) follows on taking 1 =4V (¥ r2)7",
n>N

Alternatively, we can derive (2) from (5) by writing

X=3 rX,+ Y nX,=X+X",
neN >N
say. Then |X'| < V/2, and we obtain (2) by using (5) to estimate P(X" = V/2).
To derive (3) we use the second part of Lemma 1 with Z = ¢** and
a=1/2; we choose /4 50 that

(14) $E(e*®) = e,

Such a A must exist, since both sides above are continuous functions of 4, the
left-hand side is smaller than the right when 4 =0, and the reverse is true
when L = 3/ry, since by (12) and (10),

1E(e*) =3 [] cosh(ir,) >4 ] cosh(dr,}

LEN] REN

>exp(3d ),

ns N

T} = exp(AV).

By Lemma 1 and (14) we see that
P(X 2V)=P( 2 &) > 1E(e¥)/E(e*),
and by (14} again this is
= > [E(e?Y).
By applying (13) to estimate E(e?*X), we obtain

(15) P(X?:V)e_”y;?,exp(_z,{ Z ra—2i* ¥ 1Y)

ns M n>M

for any M. We take M so that Ar, = 3 for n

< M, and Ar, << 3 for n > M. By
(9), (10), (12), and (14) we sece that ' .

16) 267 =E@¥) > [] @Y [] "7 > explid T ry+322 3 12).
. nEM

nsEM n>M n>M

We raise both sides of this inequality to the 12-th power, and multiply the
two sides of (15). by these quantities to see that

P(X = V)212e10/1V > 1.
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If AV < log2 then we have P(X > V)2 272 and we are done. Thus we
may suppose that

(17 log2 < AV
To complete our proof of (3) it suffices to show that
(18) ag2v(y )l

a>N

To this end we first show that M < N. If it were the case that M > N then
by (16) we would have

207 > T] 2" 2 2exp(34 ¥ 1),

n<M HEN

which contradicts our hypothesis that ) r,> 2V Hence M < N, so that
n<N
by (16),
2.2
28 > [T 7™ zexpEa? ¥ 1),

n>M >N
which gives _

A2 Y P AV+1log2.

n>N

By (17) this is < 21¥, so we have (18), and the proof of (3) is complete.
To derive (4) we write

X=Y rX,+X.

nsN

The variable X’ is independent of the X, for n < N. Also, X = Vif X, =1
for n< N and X' > 0. Hence -

P(X>V)2 P(X'>0) [] P(X,=1) =27%"1,

&N

4. Moment inequalities. To illustrate the use of moments in the present
context we now establish the following further result. It is convenient here to
~suppose that our basic independent random variables are uniformly distribu-
. ted on the unit circle |z| = 1.

‘ LemMa 3. Let Z,,...,Z, be independent random variables, each one
uniformly dist?'ibuted on the unit circle |z| =1 in the complex plane, suppose

N
that ry 2ry>... 271y 20, and put Z= Y r,2,. Then
=1

n

(19) E(Z|%) < kl o
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N
for every non-negative integer k, where ¢* = E({Z|")= Y. r}. Moreover, if

n=1
(20) Y rigiot
n<k
then
(21) E(Z2|*) = 2%kl a2,

Proof. Since E(Z]) =0 for all integers m # 0 we see that

k 2 Zay 2a 2a
E(IZI”‘)=Z(a o ) P e
1 z.n- N

where the sum is over all N-tuples of non-negative integers a, for which g,
+ay+ ... +ay = k. Since the multinomial coefficient never exceeds k!, the
above is

gk!Z( «

Zay 2a 2a
Fitrs ey Y =klo**,
a1 dy... Ay

To obtain the lower bound (21) we restrict our attention to those N-tuples
for which a, =0 or 1 for all n. In this case the multinomial coefficient is
exactly kl, so that

(22) E(1Z)*) = k!? S r2 ¥k o rk

nyonz k
ny g <L S

2 L2 2
=kl Y reTaTw

nydistinct
N N N
e 11 2 2 2
=kl Y Yy Tay e Y.
rp=1 ng=1 =1
ny #nq ny # 0 {(j <k)

Since the r, are nonincreasing we see that

N

N
e

" ::Ij(j]':l') "
By hypothesis (20) this last sum is > }o% and consequently the expression
(22) is = k!(Fo?)

An upper bound for P(|Z| = V) can be derived from (19) by using the
inequality P(Z| = V) V¥* < E(|Z|*) which is a special case of the first
inequality in Lemma 1. A lower bound can be derived by appealing to the
fact that if ¢ > 1 then

P(Z| = V)(c~ 1P V¥4 < E((ZP* - V) eV~ 1Z1*).
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