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Brruucnenre MaTpumbl A TpeOyeT, -OUEBH/IHO, BPEMEHH, OTPAHMYEHHOTO
MONMHOMOM OT n M In ¢, a Bemmcnenns mo dopmynam (H)-(12) Tpebyror
BPEMCHH, OTPAHMUEHHOTO MOJHHOMOM TOIBKO OT 7 (cm. [4]). Jlemma
JIOK&33Ha.

Moxa3aTenscTBO TeOopeMBl. IIpaMenas Py ¢ < n JISMMY 1, a apu
g > n JAeMMY 2, HOJYy4aeM YTBEPHIESHHE TEODEMBL.
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An awful problem about integers in base four
by

J. H. LoxtoN and A. J. van pEr PoorTeEn (Macquarie)

To Paul Erdds on his:75th birthday

The set Z of all integers coincides with the language of all words on the
symbols 0, 1, T and 2 interpreted as integers presented in base four; here 1 is
a convenient contraction for the digit —1. We consider the subset L of Z
omitting the digit 2; thus the language of all words on just the symbols 0, 1
and 1 interpreted as integers in base four. OQur problem is this: can every odd
integer be written as a quotient of elements of I _

We will answer this question in the affirmative, but first we pause to
remark that the matter is troublesome. For example, given an odd integer &
it is not at all easy to find a nonzero multiplier m in L so that also km is in
L. The only method that seems efficient is exemplified by the following -
computation in which we discover the smallest (positive) multiplier for
k=21211 (=477). We find

21211 +
21211 -
112121
21211 -
1102001
21211 +
11101121
27271 +

111011001

so that multiplying k by 11111 (= 181) yields a product in L. Roughly, the
strategy at each step is to multiply by 4 and to add or subtract k or to do
nothing, all the while ensuring that no digit 2 remains trapped on the left.
Another example, with k=2111 (= {17): :

6 — Acta Arithmetica XLIX.2



194 J. H. Loxton and A. J. van der Poorten
ZTll o+
2111 —
1129f
2111 —_
110021
2711 0, —
11000011

so 2111 has the multiplier 11701 (= 175) in L. Eventually, the digits on the
right seem to take care of themselves. These experiments suggest that each
odd k has a smallest mulitiplier not a great deal longer than k; some early
extreme examples are k == 2011 (= 133) whose smallest multiplier is 11171
(=333) and k = 20111 (= 501) with smallest multiplier 1711111 (== 2739).

‘Our question arose in the course of work of Brown and Moran which
yielded [1]. The problem became known as ‘that awful problem about
integers in base four’ to those unfortunate enough to have become obsessed,
or intrigued, by it. Our solution of course developed by a more circuitous
route than that we describe, but the reader will notice sufficiently many novel
clements even in the ‘tidied’ proof to understand the original intractable
appearance of the problem.

1. A theorem that solves the problem. Our principal results may appear
extrancous to our objective; in fact each solves the problem:

THEOREM. Let § be the set of integers which can be written in base four
using just the digits 0 or 1, and for n=0, 1, 2, ... denote by S, the subset of
numbers in S with at most n digits. Let k be an odd integer, or more generally

suppose that k = +4° (mod 4°) with a < b. Then for all sufficiently large n the
set

SutkS, = {s+kst 5,5 in S,}

has fewer than 4" distinct elements. Moreover, these elements lie in only o
distinct residue classes mod 4", for some r satisfying 3 <r <4. Thus almost no
nonnegative integer lies in the set S+kS.

CorovLrary. With k odd or, more generally, with k as described above, k

can be written as a quotient of elements of the set L of integers representable
" in base four using just the digits 0,1 or 1.

To relieve the suspense we give an immediate proof that the Theorem
does imply the Corollary. Indeed, suppose that some clement of the set
S,+kS, has at least two distinct representations, say:

S1, 81, 83, & in S,

8y +ksy =s,+ks, with
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Noticing that L= 8—8, we see that
k(sy—s3)
gives the required multiplier for k.

The core of the relationship between the Theorem and the Corollary is
thus just the observation

L=8§-8=

={s3—54)

{s—5] s, 5 in S}.

The second result of the Theorem yields an independent proof of the
Corollary. To see this consider the generating function
n (1+x") (1 + 24" = Z

Fo(x) = (k) x™.

Here r,(k) is exactly the number of representations of n of the shape s+ ks’
with s and s in §. Thus if r,(k) is greater than 1, we have two distinct
representations of n, and then, as remarked above, we readily obtain a non-
zero multipier m in L for k so that also km is in L.

But, on average, r,(k) is about l/ﬁ; more precisely:

N/8./k < T r,(k) < 4N/ Jk.

<N

This is not difficult to see on observing that

Yrk= % 1.

n<N shks' <N

Then recall that there are exactly 2" elements of S, and suppose that 4” < N
<41 after which the allegation follows by a simple estimation. Thus our
showing that, with k odd, almost all r,(k) are zero implies that some r,(k)
exceed 1, again solving the problem. So also the second claim of the
Theorem yields the Corollary.

2. Congruence classes and types. Recall that S, contains 2" numbers,
representing the residue classes of § mod 4. We suppose that S,+kS,
contains 4" distinct elements for each n= 0, 1, 2, ... and obtain an eventual
contradiction. A novel feature of our approach is that we study and count
residué classes mod 4" rather than studying and counting the elements per-se.

For n =1, the set S, +k8, consists of the 4 integers; 0, 1, &, and k+1,
which we view as grouped into congruence classes mod 4. For example, if k
=1(mod 4} we get three groups {0}, {l.k} and {k+1} congruent
respectively to 0, 1 and 2 mod 4. To move to the next level, n = 2, we add
the set 4(S,+kS,) to obtain 4* numbers grouped into residue classes
mod 4%, and so on.
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As an aside we remark that:
relationship:

It will be seen that we rely on the

Sir1 kS, =8, +kS,+47(S, +kSy), n=0,1,2,...
Later in our proof we also use:
Spe1+kS, 1 =405, +kS)+S8,+kS;,, n=90,1,2,...

These conditions impose a severe constraint which prevents our argument
being applied in contexts which otherwise may appear to differ only httle
from the present one.

Note that elements belonging to distinct classes mod 47 cannot give rise
to elements that lie in the same class at a higher level: For if a+4"(s, 4 ks})
= b+4"(s, +ksb) (mod 4°*!) then a =b (mod 4". Thus it is enough to
follow the career of a typical class mod 4" as we raise the level

Let {t;, tz, ..., by}, Where t; <, <
typical such class and set

-t =4"r, (1<i<m.
Then following the career of the class {t,, tz, ooy by from level n is
equivalent to following the class {ry, r,, ..., r,} from level 0; this effects a
useful normalisation which we shall express by saying that the class
{ty, 15, <o, tyt s Of type (ry, 72y ..0s P
However, in moving from one level to the next, we add at most k+1

times the appropriate power of 4 to each element, so a t; in a class at level n
satisfies

SR+ +44+42+ . +47Y) < (k+1)473,

and the corresponding normalised r; satisfies
r < (k+1)/3.

Since the r; are distinct, we have obtained our first important intermediate
conclusion:

- LEMMA. For each k only finitely many diﬁ"erént Lypes occur in the
construction described above.

An example may be helpful. Take k = 9. At the trivial level, n =0, we
have _]USt one class, namely

_ {0}
At the next level, n =1, we have three classes

o, 1,9, {10},

.. <t, are congruent mod 4" be a.
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and at » =2 we have ten classes
), (1,49}, {50}, 4,36}, (5,37,
(a0}, {9.41}, {10}, {13,45), {14, 46).

But we do not need this amount of detail. We see’that the singleton at n=10
gives rise at n =1 to two singletons and a doubleton {1, 9} of type (0, 2).
The two singletons at n =1 therefore produce four singletons and two
doubletons of type (0, 2) at n =2, whilst the doubleton {1, 9} of type (0, 2)
gives rise to three doubletons of type (0, 2), namely {5 37} {9, 41} and
{13, 45} and a further doubleton of type (0, 3), namely {1, 49}. Since we
have already seen what happens to the types (0) and (0, 2) on raising the
level we need now only study the type (0, 3). But the doubleton {0, 3} yields

{0,4,12), {1,9,13}, {101, {31,

that is, two singletons and two triples: of types (0, 1, 3} and (0, 2, 3). The full
set of classes at n =3 happens then to comprise 10 smgletons 19 doubletons
of type (0, 2) and 5 of type (0, 3), and triples of types (0, 1, 3) and (0, 2, 3)
respectively. Happily, we do not need most of this information. To proceed
to.n =4 we study the triple {0, 1, 3}, observing that it yields just

{0,4,12}, {1,9,13}, {2,10}, {3,11},

which is fewer than the expected 12 distinct elements! So just by following
the types we have demonstrated that S,+9S, has fewer than 4* distinct
elements. It follows that 9 has a nonzero multiplier m in L so that also 9m is
in L; moreover 9m has at most 4 digits. In fact

21 x11 = 1111.

For later use we rcmark thé.t the triple {0, 2, 3} yields the classes
{0,4,12), {1,9,13}, {2,10}, 3,11}

of types (0, 1, 3), (0, 2, 3) and (0, 2). In all, k = 9 yields just 5 distinct types.

3. Equations. By assumption the sets §,+ kS, contain 4" distinct elements
and, by the Lemma, the congruence classes mod 4" in the sets S,+kS, have
bounded size because only finitely many different types can occur. We shall
prove that these constraints are incompatible.

Take a congruence class of maximal size, say of M elements, normahsed
as in the discussion of typeso that we can consider it to be at levet 0.
Denote by N, = N{® the number of elements of this class -which are
congruent to i mod 4". Now move to level n by adding the 4" elements of the
set §,+kS, to each element of this class. By our assumption, we obtain 4" M
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distinct integers falling into various classes mod 4". Since M is the maximal

size of a class, each of the 4" possible congruence classes mod 4" must’

contain exactly M integers.

But at level n the number of elements congruent to i mod 4" is the sum
of the quantities N,_, (with the subscripts interpreted modulo 47) and ¢
running through the elements of the set S,+kS,. Thus we have the
circulating system of equations

NP =M O<i<4
tin S, +kS, '
as well as the obvious equation

S NP =M

imod 47

For example, take k =1 (mod) 4) and n =1 and temporarily drop the
superscript on the N At level 1, the number of integers congruent to
0{mod 4) is

ND+N._,1+N~_;‘+N_;‘_1 =N0+N2+2N3

and similarly for the other congruence classes. The equations above become
N0+N2+2N3 N1+N3+2N0-—N2+‘N0+2N1 N3+N1+2N2=M

whence
N0=N2, N1=N3.

This is already something, because it tells us that the maximal size M
= 2(Ny+ N;) must be even.

4. A digression on circulants. The matrix of the rather intimidating
system of equations for the N{® is a circulant of the general shape

C= [ci—j(modm)]OSi,jSm—l

with, in the present case, m = 4" It is well known that the corresponding
determinant can be factorised with the aid of an appropriate Vandermonde
determinant. Thus let 8,, 8,, ..., f,,—1 be the m distinct mth roots .of vnity
and set

4= [Bﬂost.jsm—r

The determinant of 4 is the difference product of the mth roots of unity, so 4
is non-singular; in fact if 4* denotes the transpose of the complex conjugate
of 4 then

AT =mr g,
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Furthermore, A diagonalises C in the usual sense that
A7VCA = A,

whe.rc A= d%ag(qoo, P15 e+, Om—yq) 18 the diagonal matrix whose successive
entries are given by the resolvent polynomials

=) =co+e 0+ .. Fep— 7Y (0<<ig<m-—-1).
In particular, the general solution of the system of equations
Cx=0
is given by
x = Ay,
where the components of the vector y = [y, ¥, ..., ¥m-1] satisfy
ey=0 (0<ism-1);

so, unless @, =0, v, =0.

5. Resolution of the problem. We return to the equations for the
guantities NI Let c{” be the number of elements of the set S,+kS, which
are congruent to —i mod 4" so that

T o =4n,
fmod 47

Then we have

NZ = 5 PN = T NP M (0<i<4)

tin Sy +kS)y, Jmod 41 Jjmod 47

and the preceding theory applies with m =4". We need to evaluate the
resolvents

(p(")(9]= Z an)gi’

imod 41

where € is a 4"-th root of unity; less precisely, in view of the discussion
in Section 4, we need to know for which such 6 the resolvent vanishes or
fails to vanish.

The easy way to do this is to recall an earlier remark to the effect that
we can obtain S, +kS,.; by multiplying the elements of $,+kS, by 4 and
adding 0, 1, ¥ and k+1 to each one. In this way, each element of S,+kS,
congruent to —imod 4" yields four elements of S,.,+&S,;; congruent
respectively to —4i, —4i+1, —4i+k and —4i+k+1. If  is a 4"*'-th root
of unity, we see that

CP("+1)(71)=- Z (n) 41(1+n—]+nwk+"—k 1) = (")(’14)(1+77_1)(1+W t)

- imod 47
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So by induction,

n—1 . .
"0 =[] (14+0"%)(1+87%,
=0
At last, it has become relevant to suppose that k is odd. Then () 0
when @ has exact order 4" for some &, and ¢! () = 0 when & has exact order
2-4* for some h < n. By the remarks of Section 4, we can wtite

Ng”) = 4_"M+Zy_,0§
J

where the 8; in the sum run through the 4"-th roots of unity with exact order
2-4* for some h <n. The term 47" M comes from an obvious particular
solution to our inhomogeneous system of equations. The point of all this is
that certainly

NP = N& 0gi<2:4mY

42471

for every n, and this almost magical observation is enough to yield the .

contradiction towards which we have been struggling. Indeed it is easy to see
by induction that at least 2" of the N™ are non-zero: for each i mod 4" for
which N is non-zero, at least two of

N(n+ 1) N!n-f— 1)

ians N

i+2.47

N(n+ 1)

and i+3-41

must be non-zero.
Thus

M= Y NPz2
; fmod 47
for every m, which is absurd.

To summarise: We have shown that if k is odd and # is sufficiently large
then S,+kS, contains fewer than 4” elements. Hence there is a non-zero
multiplier m in L for k so that also km is in L. Exactly the same argument
goes through if k= +4° (mod 4%) with a <b. If k = 2 (mod 4), then o™ (6)
= 0 for all 4™th roots of unity, except for 8 = 1. In this case, and more
generally for k = 2-4° (mod 4%) with a < b < n, primitive 4"-th roots of unity
survive in the above solution for the N and we cannot make any dramatic
assertion about the number of the N which are non-zero.

6. Transition matrices. ‘To gild refined gold, to paint the lilly... is’, as
Salisbury warns King John, ‘wasteful and nidiculous excess’. Nevertheless, we
continue the argument so as to say more about the number of congruence
classes of S+kS mod 4%, thereby completing the proof of the Theorem.

To illustrate the situation, recall the example with k = 9 studied in
Section 2. We obtained, as always, only finitely many different types: in this
case (0}, (0, 2), (0, 3), (0, 1, 3} and (0, 2, 3). Moreover, we have the data to
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draw up a transition table showing the manner in which the types are
obtained as we move from one level to the next.

21000
03100
20011
02011
62011

From the first row we see that the singleton (0) gives two singletons and
a doubleton of type (0, 2), from the second row that the doubleton (0, 2) gives
three doubletons of type (0, 2) and one doubleton of type (0, 3), and so on.
The transition matrix has non-negative integer entries and is irreducible: in
the sense that each type yields every other type if we pursue its byproducts
to a sufficiently high Ievel. By the Perron—Frobenius theory for irreducible
non-negative matrices, the transition matrix has a positive eigenvalue, r say,
such that all other eigenvalues have absolute value at most ». Each eigenva-
Iue of maximal absolute value is a simple root of the characteristic equation.
Finally, r lies between the minimal and maximal row sums of the matrix; in
this example 3 < r < 4 because the row sums are not all equal. (For these
useful facts, and much more, see [3], Volume 2, Chapter 13))

All this is true for any odd integer k. Since only a finite number of types
appear, we can obtain a transition matrix which has non-negative integer
eatries. The first row, corresponding to the singleton type, sums to 3, and the
other row sums are at most 4 because they specify which type appears in
each congruence class mod 4. It is essential that the transition matrix be
irreducible and this is just what the argument of Sections 2-5 shows. In fact,
we have proved that if one follows a type containing K elements to a
sufficiently high level, n say, we either find fewer than 4"K elements or we
find a congruence class mod 4" with more than X elements. In either case at
least one of the 4" congruence classes must contain fewer than K elements.
So each type leads eventually to a smaller one amongst its byproducts and
ultimately yields a singleton; this ‘comnectivity’ of the types is the
irreducibility property. As in the example, in general the transition matrix
has a dominant ecigenvalue, r say, satisfying 3 <r <4. We can find the
number of congruence classes of each type in S-+kS mod 4" by looking at
the entries in the first row of the nth power of the transition matrix. We have
therefore shown that the number of congruence classes mod 4" represented
by S+kS is O(r") as n— co. That is, the number of distinct elements of
S+kS not exceeding N is O(NY#7°5%) as N — co.  From the estimates of
Section 1 there must be integers in S+ kS with an arbitrarily large number of
representations, so the Corollary is obtained with quite a bit to spare. It may
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be worth noting that the argument fails when k = 2-4° (mod 4%), with a < b,
because the transition matrix has an irreducible component in which all row
sums are 4; therefore the dominant eigenvalue is 4.

7. Coda. It is easy to see that basc 4 is the critical base for the problem.
If the base is larger than 4, there are many integers which cannot be written
as a quotient of numbers with digits 0, 1 or I, despite passing the obvious
congruence tesits. For example, in base 5, integers k satisfying 57173 <k
< 3-5™ for some m have no such representation. To see this, replace the
function introduced in Section 1 by

ﬁ (L+ X5 (1 +X*")
n=10

and show that its coefficients are either O or 1.

We can also generalise the probiem by changing the admissible digits. If
we allow the digits 0, 1, 1, 2 and 2, the critical case is base 9. Our methods
will show that every k relatively prime to 9 can be written as a quotient of
integers whose base 9 representations contain only the digits 0, 1, T, 2 and 2.
And mutatis mutandis for any base b2

On the other hand, on first meeting the problem in base 4. John Selfridge
and Carcle LaCampagne asked: can every k = +1 (mod 3) be written as a
quotient of integers which can be represented in base 3 using just the digits 1
or 1, and no 0's? Our experiments suggest this can always be done, but our
methods do not seem to apply. If one allows the digits 0 or 1, but no 2,
there is some difficulty in describing which integers can be represented.

Our analysis of the base 4 problem proves the existence of the required
representation for k, but is apparently not effective. We do not know how to
find a good estimate for the smallest positive muitiplier m such that m and
km are both in L. We have some computational evidence suggesting that the
dominant eigenvalue appearing in Section 6 is bounded away from 4. If this
is so, then there is an absolute constant C so that every odd k has a
multiplier less than {k|°.

It should be plain to the reader that our argument was not born in the
form presented here. We were impressed with the fact that the language Lis
generated by a finite automaton (for an introduction to that cycle of ideas
see [2]), and from the start we had known (because of [4]) that L= §—S§;
but until the construction of the function

B0 = TLO+ X043 = 5 i xe

=0

this had not seemed to help. The second argument seemed the natural attack
The pl‘ll’lCIPal argument appeared en route.
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