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The propinquity of divisors

by
R. R. Harr (Heslington)

Dedicated to Professor Paul Erdés on the occasion of his 75th birthday

1. Introduction. As far as I am aware, Erdds was the first mathematician
to formulate the question: how close together are the divisors of a large,
random, integer? This is surprizing: the question could have been considered
by Hardy and Ramanujan [8], or indeed much earlier. Erdés’ famous
conjecture that almost all integers have a pair of divisors d, d’ such that d
< d' < 2d has recently been settled affirmatively by Maier and Tenenbaum
[10], in fact they prove the right-hand inequality of
(1) (logn)! ~98*~¢ < inflog d'/d <(logm'~"8*** pp,

i’ md <t
(where p.p. means for almost all n), both inequalities stated without proof by
ErdSs [2]. The left-hand inequality was proved in [3].

Of course there are many different ways of measuring the propinquity of
divisors, and since functions involving divisors are usually highly irregular,
we often have to be content with either their average, or normal orders.
Erdés introduced the function’

*(n) = card {k: n has a divisor de(2x, 2*17}

and plainly the conjecture above is a consequence of the proposition that
™*(n) <7(n) p.p. (where v(n) denotes the number of divisors of n). It was
thought at one time that * (n)/x (n) — 0 on a sequence of asymptotic density
1, but this was disproved by Erd6s and Tenenbaum [4]. They conjectured
that the function _
F(o) = lim x™'card {n < x: t*(n) < ar(n)} |
X too
exists and is continuous and strictly increasing on [0, 1]. See (6], Ch4.
In 1979 Hooley introduced the functlon : :

~A(n) = maxcard {d: d|n; u <logd <u+1} |
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and, more generally,

A, (M= max  A(n;uy, Usy oo, Hpey)
M1 M7l —q
where
A(ns Uy, Uz, ..oy ur-—l)
=card {d,dy ... d,_ (| n: w <logd Sw+1,1<i<r}.

This was in connection with the ‘New Technique’ [9]. At about the same
time I defined

T(n, &) = card {d, d'|n: [log(d/d)| < (log nf*}
and this permits a similar generalization,
L(n, o)
= card {d1 dy ... d,_y\n, dydy .. d.|n, Jlog(d/d) < (logn)*, 1 <

and my aim here is to give some results about this function and establish
connections between it, and A,(n). We assume 0 < ¢ < 1, as T;(n, 1) is simply
7, (n)>.

2. The average order of T.(n, «).

TueoreM 1. For every n,

i<r}

(n)*
@ En0>max («c,(ma(n))r,(n), T T
where m, (n) is the greatest unitary divisor of n not exceeding exp((log n)).
Proof The first part is easy. Write n = m,(n)g, and let

0103 . Boalmy, 6105 ... 8,y Im,, te-1lq.

We put d, =é;1;, dj = 5;t;. Evidently [log(di/d]) < (logn)F,
1,(m,)*t,(g) choices.

For the second part, we need the following lemma, which in itself
presents what I believe to be an interesting open problem.

Lemma 1. Let xV, x@, [, x™ be real numbers and

f(x) =card {i, j: |x®—xW - x £ 1}.
31 (0) for all x. Similarly if 0, x®, ..., x™ are vectors in R* and
f{x) = card {i, j: ||x®@—xP—x| <1}
o X = max(|x], k < s) then f(x) <3°f(0)
The question here is what is the best possible constant in place of 37

The example x = 2i, x = 1 shows that it is at least 2. If it really is 2, can we
even have f(x)} = 2 (0)? {Or more generally, is the best bound attained?).

tltz...

and there are

Then f(x) <

(where [|(x;, x5, ..
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Proof. Let
Wi(x) = 3(1~x—3)" +3(1—x+3)*

where x* = max(0, x), here and throughout the paper. We have W(x) = 0
for all x, and W(x) =1 for —1 € x < 1. Hence

@3) fo<y H W (x@ — xi —x)

i j k=
where x, denotes the kth coordinate of x. Now set

N ; ; ‘
Z el’(tlx(i")+:2xg)+...+rsx_';ﬁ),

P{t) = te RS

j=1
so that the right-hand side of (3) is

oo

1 © —~i{tyxy ..t texy) g
(—2%—);_[ ..._j [P(f)2e 1T T 1:1( (t) dty)

- i 2)\2
W (1) = 3cos3t. (Smt;;/ ))

is the Fourier transform of W. The integral above does not exceed

o L LpEr 1 (3 (Smgf)) i)

=3 % [[0a-f—x)" <37 (0
Li=1k=1

where

as required.
Now we complete the proof of (2). To each d,d; ..
logd,

a vector
logd; ’_”,logdm)&_k,-l
(log ny*” (log n)* (log n)*

so that there are N:=7z,(n) vectors altogether:
x?, ..., x™ In the notation of Lemma 1, we have f(0} = T;(n, ). Next,
for all i,j the vector x®—x lies in the cube with corners
(+(logn)*~*, +(logm)'~*, ..., 2 (logn)' "*) and we cover this large cube with
cubes of side 2, with centres x = (2m,, 2ms, ..., 2m), where each m, runs
from —M to M and 2M+13>{logn)*"* The number of centres x is
(2M+1y~". For every pair i, there is an x such that f(x) counts this pair,
that is

-1|n we associate

we label them x'V,

TP =L <3 eM+1Tf(0)
by the lemma. This gives the result stated.
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CoroLLary. We have

5 a0 |

X

x(log x)ry— 1+wr— l)ay’
x(log x)rzy— L= 1)(1=a)

0<y=< 1,
y=1/r.

Notice that the exponent of log x may be written in the alternative form
ry—1+r{r—Day+r—D{1—a}{ry—1)".

What is perhaps rather surprizing in view of the apparently somewhat
crude estimates involved in Theorem 1 is that except for one case, y = 1/r,
the right-hand side above is the correct order of magnitude of the sum on
the left.

THEOREM 2. Let r =
C(r,y, o} such that

2, y>0, xcf0, 1). Then there exists a constant

Y Tin, )y ~ Clr, v, )
n€x
v x(log X~ L4rer— Day+r— 11 —-a)ry- 13+ (log log x)a(ry)
where d{w) =0 (u 1), 6(1)= 1.

I do not give a proof of this, as the main ideas are contained in [5] but
the details are complicated. Instead I prove the corresponding result with <«

in place of ~, as this can be done quickly and is whai we need in the next
section.

Lemma 2. Let r 22, n= 2 and set h =(logn)*, Then
1k 1fn
@ T K [ ] 6y, 6, ., 6, )2 d0, 0, .. dO,,
~1fk ~1fh
where
| T(J’I; 61: 02: Ty 8r—l) = Z dilﬁi dizgz d:ff“il
didy..dp_ (|n
Proof. Let
B sin(x/2) 2_- % + 0% 1p
W(x)m( 2 ) = #Im(i o)™ &™"«ds
and put w, (x) = 1.05w(x) = 1 for |x| € 1 Then

e 5 o ()
dydn..dy_qln k<r
d1d2 wilp—qin
<(Losy™t f . j [e(n; Bu/h, B5/h, ..., O /B TT (116D dBy

k<r
and we obtain an upper bound with implied constant (1.05y 1,

on substitu-
ting 6, for &,/h. Now put w,(x) = (1—|x))". We have
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log (d,/d;
T ) > I] v, (2E0440)
dydg.dp_qln k<r hoo
did’z A'_lb'
o sin Bk/Z))
; 0u/h, 0 h,...,,, h ( df
ZTC)’Ml _[ _[ [t{n; 01/h, 0,/ /H)? JCI;[P 6.2 !

and we restrict the range of integration to the cube max|f,] < 1, and note
that for |6 <1 we have (sin(6/2))%/(8/2* = 2n/7. We obtain the lower
bound required, with implied constant 1/7"'.

We put h = (logx)* and we have

Y, Tin, o)y

e ifk 1/
i hr_l j‘ I Z |T(n; 813 62; AR gr—l)‘zym(") deldez e dg"_l
—1th —1/hn€x )
xhr=1 1 1k
It(n 91, 823 [RRE] r-— der—l
< log x -1/h w{/ﬁn%x
xhr—l 1/k LR
< o | R(1+6:8y,0,, ..., 0,_y;y)d0,do, ... db, ,
log x ~1fn -1/h

where ¢ = 1/logx and

)\”’wm

F(s)= Z [t{n; 6y, 03, ...,
n=1

|T(p3 611 62: 1y Vp— 1);2

zH(H« ps 0 y+---)

- G(S) C(S }’)’ ]__I C(S+1017 y)C(S'”lGJ, ’!;[16(5+i9k_i9h .V)s

i<r .
where G is analytic and uniformly bounded in any half-plane Res> 148,
and

@ w(n)

E(s, y): ; IPI(H—}%I)

We use the estimate idf(s )| €|s—1|7* in the neighbourhood of s = 1. So the
sum above is

Y BT ) o
<3 Xh - I H|U+i8j|d2y I—I IU+18k—191| 2)ld91 ...dB,wl.
o™ log x . —~1hj<r k<i<r

<kt Ut 1k

] lo+i6—i6) > dbod0; ...df_s

~1/hosj<k<r

S - v
a”'logx -1i/n
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where we have introduced an extra varidble 6, for the sake of extra
symmetry. We can obviously do this with 6, =0 and it is not difficult to
justify the extra integration. Substituting 0; — 6;/k (0 < i <7r) and multiplying
numerator and denominator by k"~ '” we obtain

T{n, a) y°® < x(log x)?~ 1T~ 1= J (gh,
y

HEX
where
1
Jr(g, %)= j o T (e+18 -0 > doydoy ... df, -,
—-10gj<k<r
LeMMA 3. For each r = 2 and real z = 0 we have, uniformly for ¢ < 1, that

@
We apply this with z =y,

2 5(rz)'
Jo(g, 2) 2, 0 M= 0T (log )

This is Lemma 67.2 of [6]. ¢=oh

= (log x)* %, to obtain the result stated.

3. Inequalities between 4, and 7. The inequality (s, 0) <
clear. In the opposite direction, we have

THEOREM 3. Let n=mm', (m,m) =1 and r 2

T, (M) 4,(n) is
2. Then

)] A, <9 T(m, 0) K (m', 0).

This is very simple but I state it as a theorem for reference.
Proof Let

':vr—-l)
<Yy .. Y card{tit; ...

kyky -y

A,;(n) = A(”; vl,‘ Uoy o

toilm: kj2<logt; < (k+1)/2, 1 <i<r}

xcard {t) ty ... th_y|m': o—(k+1)/2 <logti < v+ 1—-k/2, 1 <i<r}.

We apply the Cauchy-Schwarz inequality. We have
22.‘. z Card{tltz... ki+1)/2 1

ky ky kp—y
< card {s; 5, ...

ey k2 < logt < i<r)?

S—qlm, tyty ot g me |log{s/t) < 1} < To(m, 0)

Next, let 8 = (8,, &5, ..., 8,_,) Where each & is cither —1, 0 or 1, Then

ki+1 k; - kit k+d 1
e l—— | = L. VNS PR S EN
(Ul 2 H :+ 2:| l;i)(vl ) s Uy ) +2 *
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so we have
Z Z Z Cal‘d Jtl tz e I,',.u1|m': U,"(kl“l“l)/z < Iogf; -.<\ Uf+1-ﬂ-k,-/2, 1 < r}l
k1 k;_ kp—1

<FIYY LY Yeard{tith ... tog|m”:
ki k3 k1 8
v, = (k;+8:)/2 < logt; < v;— (kg + 8)/2+1%, 1 <i<r)?
Spoq m, s Lty flog (sl < 1,0 <}

< ¥ 1Y card{sis; ...
g

<9I TL(m, 0),
and the desired result follows.
TreoreM 4. For r = 2, and y > 2/r, we have
Z Ar (n)?. yw(n) % x(log x)rzy— 2r+ 1_

nEx

There is a similar result ([6], Ch. VI, Theorem 67) concerning the mean
value of 4,(n) y™™. These theorems show that, albeit the mean-value of 4 ()
itself is not yet accurately determined, when suitably weighted the order of
magnitude may be precisely determined, and without great difficulty.

Proof The lower bound is trivial because we have

t, (1)
- A,(n) > max (1, (logen)'”l)
To obtain the upper bound, put y = 2z so that z > 1/r. Then by Theorem 3, .
>4 ()2 (222 < z @0 % T(d, 0) T(n/d, 0)

nEx ngx

@nfi=1
<Y T(d, 0z ¥ T(m, 0) o™,

d€x mE<x/d
(md)= 1

We apply Theorem 2 with « =0, y =z. For convenience put y =rlz—r.
Then the sum above is o

< Y T, 0)z‘°"”—(10gd)v

dsx

<Y T 0% 3 (logfn)”

TdEx m< xfd

& 2 (logm)" Z '1:(‘1, O)z“’("’

mex d<xim

A .. Amta Avithmerire YTIX 9
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mex

* ¥ xy 2y+1
<y E(logm) log~m~ < x(logx)

because y > —1 (indeed y > 0). This is the result stated.
We may now recover [6], Theorem 67.

CoroLLARY. Let r = 2 and y = 2. Then

©) T 4,(y*" 2 x(log) ™.
nsx
Again, the lower bound is easy. For the upper bound we use the
Cauchy-Schwarz inequality. Here z = y/r > 2/r by hypothesis. Fence

(% Ar(n)yw(n))z <(Y Ar(n)zzm("’)(z (ﬁ)u,tm)

rEx n€x ngx \ Z
<(x(log x)”z?"l’”)(x(log Xz 1)

by Theorem 4. This yields the upper bound required.

There is a heuristic explanation why this method does not work if y is
too small. It is easy to see that if a sum such as (6) be weighted with y»®,
the larger y is, the more emphasis is placed on integers with many prime
factors. Now if w(n) is large, we can argue that the number of divisors in all
the various ranges in the proof of Theorem 3 will behave statistically — in
this event there is little lost in the Cauchy-Schwarz inequality. When w(n) is
small, the Cauchy-Schwarz inequality is applied to a sum of the form 2ab;
say where a; and b; are usually 0 or 1, and there is no reason whatever to
suppose that the 1's ‘line up. We are forced to use the much more
complicated machinery of [6], Chapter VII, and of course the results are no
longer sharp.
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