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Introduction. Fifty years ago the result of this paper may have met with
more interest than today. But at that time began the mathematical career of
Paul Erdds. Therefore I dedicate my paper to the mathematician who knew
how to proceed from easy standpoints to deep discoveries.

Let ¢ be one of the primes 2, 3, 5, 7, 13 and K (g) the quaternion algebra
over @ which is only ramified at the places » and g. In these algebras all
maximal orders are isomorphic. We fix one of them: J{g). The number of
left 3(g)-ideals is 1.

We consider the imaginary quadratic felds Q(\fr:l) which can be
imbedded in K{g). The element w = \fﬁ can be imbedded in 3J(g) if

—d
d#7mod8 for ¢ =2 and if the Legendre symbol (TL) # 1 for g >2 The

number of imbeddings of w in J(yg) is, up to an elementary factor, equal to
the ideal class number h of Qlm).

In this paper we will study the number of pairs {(wy, wi)e Iy with
wi = w} = —d. Their number is roughly equal to the square of the ideal
class number,

On the other hand, the number of these pairs can be explicitly deter-
mined in the following way (for the sake of simplicity we assume J # 3 mod 4,
then the order o =[1, w] is maximal). To a pair {t0;, w;) we attach the order

L) = (1, 01, 0z, 35+ 0 0y —w; m,))

with s = s(w, w,), the trace. It is abstractly determined by d and s. Let
E{q, d. s) be the number of different maximal orders with discriminant g2
which contain O(s). Then

T E(q, d.s)
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equals the number of pairs {wy, wy)e J(g) up to an elementary factor. See
Theorem 1. This number will be explicitly determined in Theorem 2 and its
corollary.

Two leatures of our formulas are remarkable. Firstly they give formally
different expressions for i in case @(w) can be imbedded in more than one
K (¢). Secondly they resemble Dirichiet’s class number [ormula. This formula
has even been proved by B. A. Wenkov: Ueber die Klassenzahl positiver
biniirer quadratischer Formen (Math. Zeitschr, 33 (1931). pp. 350-374), using
ideas which are not far from ours. Wenkov starts from a formula given by
Gauss in his Disquisitiones Arithmeticae, for the number of expressions of a
given quadratic form as the sum of three squares of linear forms:

3
ax 4 2bxp+eyt = ¥ (u,x+u,9)% = nln x+, )

v=1
or. in our language, as the reduced norm from K (2) where 1,, 57, have traces
0. This number is equal to the number of maximal orders in K(2) which
contain the abstract order

L= (1, His 24 %(S(’?l N2) 41 N2 — 12 ’?1))-

The knowledge of this number leads by elementary but rather lengthy
considerations to Dirichlet’s class number formula in the case d # 7mod8.

Assumptions and notation.
d >3 is a squarefree natural integer;
w= \f—:—! for d=1,2mod4,
Ot={%(1+cu) for d=3mod4;
w,, w, and «,, @, are imbeddings of w and » in 3(g). They exist if

d#7mod8 for g=2,
(_—_‘f) #1 for g=2;
4

4 = ~4d resp. —d is the discriminant of Q(w);
his the ideal class number of Q(w);
. &) 12 if ¢ is ramified in Q{w),
g, == .
q 1 otherwise;

Ng)=24,12,6,4,2 for g=2,3,5,7,13 is the number of isomor-
phisms

Jg) = Sy

D= {4(4412—52)2 for d=1 or 2mod4,

Fd*—sH?  for d=3mod4
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is the discriminant of D(s), see Proposition 1, where

s=5(w w,), s, =1s.
1. The order D(s).
ProrosiTion 1A, Let 4 #3mod4. Then an order

D(S) == (11 0)1: wZa %(S+Q))
i a quaternion algebra is defined by the relations

2 )
(1) Wi =w3 =~—d, s =W, W+,
(2) Q=0 0,~m,0,, W; Q4+ Qay; = 0,
{3) . Q2=Sz—-4d2

its discriminant s
D =4(4d* -2,
Remark. If g =2, s is even,
Proof. From (1), (2) it follows that
st =(wy 0,3 (W, 0,)%+ 2d,
@ = (w0, w)* +(w, w,)*— 2
and hence {(3). Furthermore
Wy 0, = $(s+0Q),
Wy 2 = —2dw, —sw,,
o 3+ Q) = —dw,,  w,d(s+0) = do, + 5005,
The other products of the basis elements follow from these.
ProposiTion 1B. Let d =3mod4. In this case we define

3:(‘3) == (1! Ofl, :XZE :xl :(2)
with the same relgtions (1}-03) where o, = L(1 +y). The diseriminant is
D=4

Proof. Now we have

S.

e

P

wpoy =3l +w, +m,+s, +32) = oty o)+ (s~ +402
and
0

L i

oy Q+4(dw, +sm,) _
Q43 +a)+3(d—1)a, +3(5y— Doy +3(d+s,)

=y oy +"§“(d—1)'ﬂ1 +%(Sl ~1jay +%(d+l)—%(d+sl).

ol ol

All other products of the basis elements can be got from these.

37
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Our chief task is the determination of the number E(q, d, s) of maximal
orders containing O{s) which are isomeorphic to J(q). Evidently this number
is the product of its local contributions

(4) Elg, ) =[1E(. . sy

We begin with considering the latter.
ProrosiTion 2. The number of maximal orders containing the p-udic
extension O(s), which are isomorphic to J(q), is

E(q,d,9),=1 if pkD.
Now, assume p does not divide the discriminant A of @(w). Then
0 if d=7med§,
E(Z! d! S)Z == 1

olherwise

and for ¢ > 2
0 if g does not divide D,
E(qg, d, s) %

Z(f—l) with the Legendre symbol,

q

with the sum extended over all g-adic divisors t, of ¢~ ' D. Finally, for a prime
p # g which does not divide both D and 4,

E{g,d,5),= Z ([4) with the Legendre symbol,
P

with the sum extended over all p-adie divisors t, of D.

Proof. First let us consider the case p = g. The statement for ¢ =2 is
known. For g >2 it means that E(g, d;s), is O or 1 according as D is
divisible by g an even or odd number of times. This is also evident.

Now let p#g, p#2 and pt4. A basis of D(s), 15

, , 8
(5) 1, my, wh, @ with  w)= —icjml#rwz

where
0y w0, =0, wZ=ad""(s*—4d?), w,w)=iQ.
[t can be represented by the matrices
[1 O] r 0] [0 m] [r 0'”:0 n'f’
017 [0 —r) ol 0 —rflp 0

where r* = —d, m % Omod p and p* is the greatest power of p dividing D. This
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order is contained in the maximal orders

0 mp'=
[pz\- po ]* 0 =V s

and in no others. And « can be written as the sum over the divisors =i,

For p =2 which still dess not divide 4. a bams of ©(s), can be taken
from Proposition 1B (with 5, = i)

s 3
o i +w)), -}(:}]-m] + s ) Y +wm)} (%_(u] +m,).
, 4 -

It can be represented by the matrices

POl i+ 0 0 m] {l+r 03[0 m
0Ll Lo o a=r] (20 Lo 1-rll2o0

wher.e 2" is the greatest power of 2 dividing L(s{—d?). The number of
maximal orders containing T(s), is the same as in the case p>2

Proposition 3. For an odd p dividing D and 4

SR NI =R TR 0 moav
E(4,d, s), = 1+(d {si pd )p )+((51 dp )
}?

where p* and p*' are the greatest even powers of p dividing d~' (s*~d?) and
(sT—d?) respectively. One of these symbols is 0, the other +1.
Proof. By assumption, s = Omod p. We use the basis (5) of L(s),. Let

n=p Ha, o, +a;m5+ay Q)
lie in a proper extension of ©f(s),. Then
n* = p7H(—dai+(s*—4d}) (4d) " a4 (5P —Ad) 4 ad)e Z,,.

If the coefficients of a3 and a} are both divisible by p® a, must be

= 0mod p, and then we may assume «; = 0. Then every extension of L(s),
contains

= (Lo p "0y, p' Q).
The same procedure may be repeated until we arrive at
O =1, 0y, p @, p7 Q)

where now (s —4d?){4dp®*)~! is no longer divisible by p2. If it is divisible by
P, every larger order containing L lies m

9;:"=(1,C01, 031. U‘V_IQ)
and (s*—4d?)(ddp™* )~ & Omod p.
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We must distinguish 2 cases:

1. (3*—4d®)@dp*)" ' # 0mod p, but (s2—4d*)(4p*) ! = Omodp. The
quaternion algebra generated by O is ramified at p if —(s?—4d%)(4dp®) ' is
a quadratic non-residue modp, and then E{(g, d. 5}, = 0. Otherwise it is
unramified, and then the argument in the proof of Proposition 2 shows that
L} is contained in 2 maximal orders. This is one case ol contention.

2. (s*—4d?)(4dp™)~* =0mod p. Then (s*—4d*)(4p™* %" " % Omod p,
and we can reason as in case 1.

The determination of E(g, d, s), for g > 2 is more complicated. For the
sake of brevity we only remark

CoroLLary. If E(g, d, s), # 0 for all odd p, then E(q, d, s), # Q.

Indeed, the assumption means that the algebra generated by D(s) is
ramified at oo and g and at no other odd p. Therefore it cannot be ramified
at 2.

2. The pumber of pairs (w,, w,). It is evident that there are as many
pairs (e, w,) as pairs (¢, a,). Therefore we will only speak of the former,
We refer to the notation explained in the introduction. The following is
known:

ProrosiTioN 4. Under the assumption that Q(w) can be imbedded in
K (g), the number of w or a in J(g) is

N@h  with W =r{g,d) ' h

Among all “equivalent” elements #~ ' wn with n7* J(g)n = I(g) we fAx
one and call it normed. A pair (@, w,) will be called normed if w, is normed.

The number of all pairs (@, w;) is N(g)*h'>. Among these there are
2N (g)W “improper” pairs (w, w} resp. (w, —«) to which there does not
correspond an order D(s) of rank 4. Consequently we have

N(g) =20

normed proper pairs,

We can count these pairs in yet another way. An order O(s) is
“ determined uniquely (up to isomorphism) by ¢, 4, s and the relations in
Proposition 1. D(s) is contained in E{g,d,s) maximal orders J (i
=1,..., E). Then for certain elements ¢;: J{y) = ¢ ' Jo;, and the pairs
(i1, @ia) = &7 (w4, w7) g; lie in J(g). For each of them there exists exactly
one n with n~! 3(gq)n = J(qg) such that ™" (w;,, w;,) # is normed, Therefore
there exist E(g, d, s) normed pairs in J(g) with given s, and we have proved
Treorem 1. With the notation explained above and W =r(q, d)"* h the

class number h satisfies the equation

N(Q)h’z_zh’ = ZE(qa d: S)
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with the sum extended over —2d+1<s<2d—1 in the case of d=1 or
2mod4 and —~d+1<s<d~1 for d =3mod4.
It is easy to check the theorem numerically in the case g = 2 and small

d, since E(q, d, s); = 1. Other easy cases are g > 2 and small d = 3mod4.
Then we have again E(q, d, s), = 2.

Now we transform the right-hand side, using (4) and the p-adic

contributions E(q, d, ), given in Section 1. We decompose the sum in
Theorem 1:

(6) : E{g.d, dy=Y Er, Er=YE(gd,s)
T 5

summed over all maximal common divisors T =({(4, D).
E; is easy, namely from Proposition 2 it follows that

(7) E :Z(A__ %A(n,rz,m for g=2,
1 fety J{A(qty, t, m) for g > 2,

where A({r), 15, 5} means the number of positive integral solutions of
(8) rlxl'f'fzxzzn

and

(9)

0= 4d for d=1 or 2mod4,
T l2d  for  d=3mod4.

The sum in (7) is extended over all positive relatively prime r,, t, which are
both odd in the case g = 2, and satisfy 7, Omodg for g > 2.

Proof of (7).

4
E(g, d, 9 =[] E(g, d.5), =3 (?)

P t

with ¢ running over all divisors of 4d>—s® resp. d®—s2. These ¢ are
decomposed into ¢ = ¢, t, with #; dividing 2d—=s resp. d—s and t, dividing
2d+s resp. d+s. t; and ¢, cannot have a common divisor > 1 since it would
divide 4 and D. In the case g >2 we have written g1, instead of ;.

We claim that

(10) Aty ) = Bﬂ

Proof. We begin with a solution of (8) with x; > 0, x, < 0 and form a
new solution xj = x; —1,, Xj = x,+1,. We repeat this until x§ > 0, x? <0
is the last of this kind. Now we form the next solution

xt=xP—ty, xp=x§+r1y.
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We have either x! <0, x>0 or x} >0, x}>0 (x! >0, x! <0 holds .

no longer because of the assumption). In the first case (8) has no solution
with x; > 0, x, > 0. Furthermore then

n=x5t+x3t, <rt;  or nlgr) ' <l

In the second case x}, x} is a solution, and we can construct further ones
with ¢ =1, 2, ...

¥ =xl—aty;, 4=+,
I this is done the last solution we have x{ < (u+ 1)1, and
n=xVralt, <(@a+Ditgt,  or  n(t) ' <a+i

and a=[nfit; t;)].
The other summands in (6) can at least be estimated:

4 nT™!
11 0<E; € (—)I: ]2‘,
() ! 1%2 tty /@ty b

7 = number of different primes dividing T, with » as in (8) and (g) =1 or
{q) = q according as g =2 or g > 2.
We collect the results of (6) to (10):

THEOREM 2. The cluss number of the field Q(\f:?f) imbedded in K{g)
satisfies the following equation:

ot i [ n }

{12 Nk =2n Z(fltz) (@t t; +LEr

where n is given by (9) and () = 1 Jor ¢ = 2 and (g} = q for ¢ > 2. The sum is
extended over all natural and relatively prime t,, t, where (g, t;) =1 in the
case 4> 2 and ty, t, are both odd in the case g = 2.

In the second sum T runs over all maximal common divisors of A and D
which are > 1. The summands Ep can be estimated as in (11).

CoroLLary. If d is a prime and = 3mod4, (12) consists only of the first
expression on the right. If d is a prime and = 1mod4, only T = d is possible
on the right, and E, = E(y, d, d), is given in Proposition 3.

3. Further applications of the principle. Finally, we allow ¢ to be an

arbitrary odd prime. We consider pairs (w, w,) in K(g) with o = —d,,
w3 = —d,, d, and d, being square-free natural integers. We attach to them
the order

D =(1, vy, w;, 3{s+9)}

with s = w; wy+0,0; and Q = o, @, —w, ;. A necessary condition that-

(@i, @,) lies in a maximal order of K (g) is: (:_‘_i},);& 1, (~:~d~2—)# 1 and
q g .
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4d, d,—s* is divisible by g an odd number of times. This condition is not
satisfied if 4d, d, < g.

Tueorem 3. I 4d, d; < g, no order of K (q) contains two elements W, W,
with wi = —d,, wl= —d,.

The number of maximal orders of K (g) which contain the above order
£ can be determined as in Section 2. This leads for g=2,3,5.7,13 to
formulas for the products of class numbers h(/—d) h(\/—d,).

If we take w, = fw, with a natural number J and assume @, to be

optimally imbedded. we shall obtain infinitely many more formulas for h(w)
since h(fw)/hiw) is known,

Finally, it can be mentioned that analogues of our theorems also hold
for totally imaginary extensions of totally real fields.
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