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Quantitative mean value theorems for
nonnegative multiplicative functions IT

by

ApoiLF HiLbEBRAND (Urbana, 11)

L Introduction. It is a classical problem to determine the asymptotic
behaviour of sums of muitiplcative functions

¥ fm

nEx

and, in particular, to give necessary and sufficient conditions for the existence
of the “mean value” :

lim (/%) 3 £ ().

X nEx

This problem is now solved for a large class of multiplicative functions f, and
the resulting theorems, so-called mean value theorems, have found many
applications in probabilistic number theory (see, e.g, Elliott's monograph
[5D). _

The problem becomes much more difficult if we ask for quantitative
mean value theorems, i.e. estimates of (1/x) Y f(n) (x > 1) holding uniformly

n&x
for some class of multiplicative functions /. Such estimates have been
obtained by Haldsz [7] by means of deep analytic methods. However, the
results here are not as satisfactory and complete as in the asymptotic
problem, although they proved to be quite sufficient for applications to the
distribution of additive functions.

Haldsz's results are mainly intended to be applied to complex-valued
multiplicative functions. In the case of nonnegative multiplicative functions,
which we shall consider here, sharper estimates may be obtained by
elementary methods.

Generalizing a result of R. R. Hall [10], Halberstam and Richert [9]
showed that for x 2 2 and every multiplicative function f satisfying, with
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some positive constants K, K; and K,, K, <2,

gosf(p)sx (» < x),

1.1
(D 0<f(p<K, KT (psx.m22)

the estimate

o Lgsmerel 3o 32 vo(ak)

nsx : pEx P mz1 P log x

holds, where y denotes Euler’s constant and the constant implied in “0”
depends at most on K, K, and K,. Their proof is based on a relatively
simple elementary argument.

The product
1 m
RU, %:=]] (1_;)(“ » LQ;.))

pEx mz1 14

can be interpreted as the “heuristical value” for the mean (1/x) 3 f(n), and

the upper bound given by (1.2) coincides, up to a constant, with this
heuristically expected bound. The estimate (1.2) is sharp in the sense that the
constant ' cannot be replaced by a smaller constant. However, it can be
replaced (at the cost of a slightly weaker error term) by a quantity depending
on f, which is always < e’ and for “well-behaved” functions f close to 1. This
was shown in part I of this paper by the following theorem (see, under more
general assumptions, [11, Corollary 27).

Tueorem 1. Ler x 2z 22 and [ be a wultiplicative function satisfying
(1.1) with constamts K, K; >0, 0 < K, < 2. Then we have

1 1— * 1 1
X gy cEpEy P : logx

where a* 1= max(a, 0) (ac R) and the function o, is defined via Dickman's
Junction g by

o (W)= fo(tydt  (u2>0).
0
The O-constant depends at most on K, K, and K,.
We recall that Dickman's function is defined by
e@=1 (0<r<1),
o(t=1)
t

)= — (t>1), -

¢(7) continuous at r=1,
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and satisfies, in particular,

0<exl,
o
[o(tydt =¢,
0

(1.3) logo(t) ~ —tlogt  (t-» )
(for the proof of the last two properties see [2] and [1, p. 69]), so that
1o, () <e (120,
o4 (e =1+0().
The main object of this paper is to give an analogous lower estimate

with ¢, replaced by a suitable function o.. This turns out to be more
difficult, mainly because the real order of magnitude of (1/x) 3 f(n) can be

n$x
much smaller than the expected order R(f, x). If we deﬁng, for u, x = 1, _{m
as the characteristic function of the integers having no prime factor > x m
then we have, on the one hand,
fimR(fe %) =tm [[ (A-Up=Yu @>1;

x=e R g pex

on the other hand, it is known (see e.g. [3]) that

lim 1 Y fuxM =oW) = exp(—(1~+~o(1))u logu) {u — c0).

x—o0oX ngx .
This example shows that the function g- in the following theorem is best-
possible. _ o ) o
" Turorem 2. Let x 2z > 2 and f be a multiplicative function satisfying
(1.1} with constants K = 1, Ky > 0 and 0 < K, <2 Then we have
-HK=1)

1
;"Exf(")?WR(f, x) |

)
coen{ )}

l‘o'_ (wW:=up(m) (uz=0).

Here o and B are absolute positive constants and the constants implied in the
O-terms depend at most on K, K, and K;.

«

with
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Remarks. (i) The presence of the second error term essentially amounts
to restricting the range of applicability of the theorem. It is easy lo sce, viu
the asymptotic relation

logo_(wy=logolw+logu ~ —ulogu  (u— ),
that this term can be omitted, if we impose the additional condition
+
l
zXps€x p IOgZ

on f, with a fixed f, 0 < p' <B.

(i) The introduction of the parameter z gives the result a greater
flexibility. Note that the factor

o (oo 3, L))

increases with z, since, for u > 1,

ol () = (o(thu) = ug’ )+ o) = o(W)—gu~1) < 0.

On the other hand, by choosing z larger, the error terms become worse,

(ili) As is to be expected, the values of f on “small” primes p do not
affect substantially the quality of the estimate. The influence of the values
F(p) for p <z is present in the factor attached to R(f, x) only via the error
terms. It is however somewhat surprising, that this factor does not depend at
all on the values f(p) with f{p) = 1.

(iv) The constants « and f§ could be given explicit values, but we did not
attempt to do so, since our proof certainly would not yield optimal values
for « and f. Moreover. o and ff cannot be optimized independently: one
could increase « at the cost of a smaller 8 and vice versa.

By taking in Theorem 2 functions /' defined by
0 if pewr,

o ,
(") {1 otherwise,

where .# is a set of primes, we can get lower bounds for the “sieve functions”

S(x, #:= Y 1
nEx
(n, P];{’,PJ=1

even is cases when the classical sieve methods fail. The classical sieves of
Selberg and Brun yield a lower bound for S{x, #} only if & does not contain
“large” primes or if 2 is a sufficiently “thin” set of primes. An unconditional
lower bound for §(x, #) in terms of } (1/p) has been first given by Erdgs

pe.

icm
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and Ruzsa [6]. They proved
S{x, i

:ZusK}ze_ecK (x =
* pe:?p

with some (large) constant ¢. Moreover they conjectured {cf. [6, Problem 27),
that the minimum defining G(x, K) is asymptotically attained, when #

G (x, K):=min{ 1, K >0
2

consists of the primes between 7% and x. In this case S(x, #) equals
> 1, K (n), where f K. is the function introduced above. Thus, the Erdos—

n&x

Ruzsa conjecture amounts to the assertion
lim G(x, K) = o(¢)

X —+e0

(K = 0).

Theorem 2 now easily leads to the following quantitative form of this
conjecture;

CororLary 1. Uniformly for x =

G(x, K) = g{e") (1 +0 (——1-—;—)),
(log x)2
where ¢, and ¢, are (absolute) positive constants.
We shall apply Corollary 1 to prove the following result on Dirichlet
L-functions. _
CoroLLARY 2. Let x be a real, non-principal character modulo D, and let
L{s) = L{s, ¥) be the associated L-function. Let

T= 3% (1/p.
pED*
xp=-1

2 and 0 < K < ¢, loglogx we have

Then we have
(1.4) - L(1) » g(eT)/log D,

provided T < min(c,, 1/2)loglog D*, where ¢, is the constant from Corollary
1. Moreover, we have

T log(l/L(l )

(1.5) loglog (1/L(1))’

whenever L(1) < 1/log* D.

Previously, Pintz [12, Thecrem 4] established an estimate, which
amounts to {1.5) with loglog D instead of log log(l/L(l)) in the denominator.
Since L(1) » D~ Y2 this is superseded by (1.5).

2. Deduction of Theorem 2 from Theorem 2*. We shall reduce here
Theorem 2 to the following theorem, which is essentially a special case of
Theorem 2.
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THreoREM 2*. There exist positive constants o* and p* such that
uniformly for x > e, exp./logx <z < x, and every multiplicative function f

satisfying
fp=0 (p <z,
(2.1) 0<fimnsl (z<psx),
f(p™ =0 (mz=12)
and
' 1—f(p) log x
22 < B*
(22) zg‘,:g « P A logz
we have

czro> (= )e(onl 2 SO0 ((35))

Theorem 2* will be proved in the following sections. The deduction of
Theorem 2 from this result is somewhat lengthy, but not difficult and based
on simple convolution arguments.

We begin with two remarks. First it suffices to prove Theorem 2 in the

case
z 22y =eXpa./logx.
For if 2< z < 2, then
’ 1— + _ -
G. (exp( 2 ‘—ﬁ( f(p)) ))S o (exp( Z (1 f(P)) ))
zEpsx P IpEpEx P
and
logz _ log2 (logzo 2
=z——=(log2
logx log x = (log2) logx /’

and the estimate of Theorem 2 for z, implies the estimate for z with « and 8
replaced by o2 and f/3, respectively.
Secondly, we may assume for the proof of Theorem 2

c log x
z<psx P S logz

L)

23 y ,(ml_:ﬂf_.(P_))_i<

where ¢, is any fixed positive constant (we shall presently take c,
Indeed, using the rough estimate

o) =up(u) < cpe™ @ 0),

which. follows from (1.3), we find that if (2.3) is not satisfied, then the main
term in Theorem 2 is of smaller order than the second error term, provided

= B*/2).
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B < c5, as we may assume. In this case the assertion of the theorem holds
trivially.

Now, let x > 2, exp~/logx <z < x, and f be a multiplicative function
satisfying the hypothesis of Theorem 2, namely (1.1) with constants K = 1,
K,>0 and 0 <K, <2, and, in addition, (23) with ¢; = $*/2. Since the
values f(p™) for p > x do not aflect the estimate of the theorem, we may
assume that they are zero. Define a multiplicative function f* by

{ (p <2),
min(L, f(p)) (p = 2),

£ =0 (m>2)

f*p) =

and let
f=f*=»g,

where * denotes the Dirichlet convolution. The function g is multiplicative
and defined by the equations

fEm= 3 @) =g@"+g(" ") * @)

o<l<m
whence
j("(p”‘) ) EP<ZL B
m={ -1 p2Im=1,
24 =
(24) g™ OZ fp —f*(P)) p=zz,mz2).
<igm

In particular, g is nonnegative on the set
E:=inz1: p*In=>p <z},

Therefore, if 1 < x, < x, we have
1
X

m xl"-r[m m

mEE"

say.

The .sum ), can be estimated by
lg (") 5 lg (1)

22.{_ Z m n

zﬁg&x P nEx
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From (24) and the assumptions on f we deduce

YOO <1+K+K, Y Kb

0<ism 2€l€m

lg (p™)| <

with
sz =max(15, K-l), K1:$1+K+4K1,
so that
lg ("™ _ & K3
2.5 - s K TS < exp(—./logx).
( ) zsgszx pm lp?‘:p—{I“K:’./p) P g

(Here as in the rest of this section the constants implied in the symbols * <”
and “O” are allowed to depend (at most) on K, K, and K;). Moreover,

£ 900 < 1y (1 3 U7

nex 1 PEXx m=1

<11 (14 3 7)1 (147D 3, B0)
p<z mz1 zEpEx p zi;@ix

< {logx)R(f, x).

Hence
Y., € R(f, x){log x) exp(—/log x) < R(f, x) exp (—(log x)!7?),

which is admissible as error term provided f < 1/3, as we may assume.
By construction, f* satisfies hypothesis (2.1) of Theorem 2. Moreover,
(2.3) with c; = B*/2 implies for z < x' € x

1—fF*
5 @) _

zEpsx P

(L=f)” B~ loex

s<pex r T2 Plogz’
and the last expression is
log b’
ALY logz
provided

{log x)? 2 (log x)(log z).

Under this last conditibn, hypothesis (2.2) (with x in place of x) is also

icm
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satisfled for f* Hence, if we define x; by

x 2
(Iog;) = (log x)(log z),
1

Theorem 2 can be applied to each of the inner sums in ) , and we get

£ 11 (1-2) 2 2e(o 5, ) (1o (g T)
> 152,20 Jeloel 3,52 (o (G2 )

mek
mek

Assume for the moment that we have

g("’l) e"‘,‘(ﬁj ( g_(pm) ( ((logz 172
29 mzﬁ,’x.j"!_—2 r(K) pEx 1.i“m?l 7" ) i+0o log x )

meE
Then, on collecting our estimates and noting that

R{f, x) ~'=R(.f'*-, %) |1 (1+ ) g.([,jn ))
pPEX mz 1 P
1 -1 ) g(p"‘))
- —_ 1 1
pl:[:(l p) '(ns ( + P pl )Ex( +mZ?:1 pm
g{p™)
—;E-[z(l—_)ex (\ )J};[x(l_’_mgl? (1+0(1/Z))
where
1/z < exp(—+/log x),
and

(o 5 el 3 el 2.7

we obtain the estimate of Theorem 2 (with sufficiently small « and f).
For the proof of (2.6) we first note that every me E can be decomposed
uniquely in the form
m=m, M,,
plmy=p <z,
plma=p=z, m, squarefree,

and that for such m we have

glmy =f(my)g(my).



218 A. Hildebrand
We thus get for every x;, 1 € x; <Xy,

5 o _ my)g(my)

mEx m mymgSxy "y my

meE

> g(mz))( f(ml))
(MZZSJZ Ht; my -Sglfxz m

_ (mz) { f(P ) M}
(z mNn (2 57)- 25

The last sum can be estlrnated by Rankin’s methods: For x'
g >0 we have

. My x'

= 1 and every

The sum in the exponential is

1
<3 Pk s (L) L 2

p<z P p<z p p<z P
mz2
Choosing £:= 1/logz, the second sum becomes
lo
z _g__lz <1,
logx pex

whereas, by (1.1), the last sum is convergent and bounded in terms of K, and
K,, provided

(l/logz =) &£ S &

with a suitable g, = ¢(K,) > 0. We may clearly assume this last condition,
since otherwise '

(log ,,)2 < 1/FOﬂ

and, by choosing a sufficiently large O-constant, (2.6) becomes trivially valid.
We thus obtain

5 f{my )<exp( log x’

my e M logz

log x <

+ZM)

p<z P

el

<11+ 3 12

p<z " mzl

log x'
logz )

icm
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log {xy/x;)
logz ’

and arrive at the estimate

5 1o 22 o0 5 ) ool

mexg mySxg m; p<=z
meE

We define x, by

2

log x; = log x; —{log x)*/* {log 2)
= log x—2(log x)*"* (log Z)i?
so that the O-term is admissible as error term in (2.6). This definition is
compatible with our assumption ! < Xx; € Xy, provided (logz) < $(logx), a
we may assume, since otherwise (2.6) would hold trivially.

It remains to estimate the sum over m,. We shall show

glmy) _ e~k 40) 1
@7 > TR zﬁgxz(u : )(1+o(1ogx2))

msySxg

Using (2.5} and the definition of x; in the form
logx; _ l_z(lmgz)”2

logx log x

we see that

f(‘f:)) I (1 +—@)(1+0(1/z))

zEpEX

21 11 (122 (1vo((5E)))

and thus deduce (2.6) from (2.7) and the preceding estimate.
‘The proof of (2.7} is again based on a convolution argument. We define
a multiplicative function h by

K-1 (p<a),
h(p'“)={K-1—g(p) pzz,m=1),
0 (pzz,mz2)

and put
= 2 g(ma) h(n/my)

mg|n

(n=1).

The function h as well as the function g restricted to integers m, are
nonnegative, since, by the hypotheses of Theoréem 2, K = 1, and, for p =z,
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0<gip =(/(p)—1)" < K~—1, whereas for p<z and mz 1, g(p™ = f (p™

= 0. We therefore get the inequality

g (my) hn)
My ) (né:x W?)

(2SIl g A

m2~$x2 2

¥ 9_*_@\{( ¥

n€xy i mytxa

It remains to estimate the left-hand side from below.
Since the set of integers m, is a multiplicative set, the function g* is
multiplicative and satisfies

(™) ={h(p’") =K-1 (p < 2),
Mp+gp)=K-1 (pzz,m=1).
Hence we have
g*{n) =(K~1)"" (ncE),
where E is the set defined above, namely
E={nzl: pPlm=p<zl,

and w(n) denotes the number of different prime divisors of n (We shall
assume here and in the rest of this section K > 1, since K = 1 implies ¢(p)
= (f(p)—1)" =0 for p >z and thus g(m,) = 0 if m, > 1, in which case 27
holds trivially). We thus obtain

z g*(n) - E (K—~1)“""’ B (K_l)m(n) (K—l)‘"("’
= T 2 ——— —
S xg h nExy 1 n¥xy n nE€xy i
neE . nék

The last sum can be estimated in the same way as the sum ZZ above by
< exp(—(log x,)'7),

For the remaining sum on the right-hand side we use the wellknown
estimate (see e.g. [13])

(1/x) 3 »*" = C(3)(log xP~* + 0, ((log (x+ 1))~ ),

ngx

‘where x=1, y>0 and

CO=150 (.1*';)%1*?{7)'

icm
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If vz 1, then partial summation immediately yields

_C_(y)

y ==~ (log x + O, ((log (x+ 1))~ 1).

5]

nEx

h

The following argument, suggested to the author by H. Delange, shows th"'clt
the same formula holds in fact for every v > 0. For, if 0 < y < 1, we obtain
by partial summation

o (y)

i1

“(log x)* +C, (¥ + 0, ((log (x+ 1)) 1),

nEx

where

o

1
Cylye= f{;;

1

the integral being absolutely convergeni. An abelian argument now shows
that the constant C,(y) equals zero; We have

10— C (y){log ™! } £

1(y}= lim F{y,s)

y—+0+
with
Fiy, 5= J{%nzs:u at . C{y){loguy ™ l}udus
I
- Ls 2 crs
l4+4s ,5,nm"*
and since

v L = r()C)L(1+sP(1+0(s)

=T (NCy)s7+e(l)

it follows that F(y,s) = o(1), as §- 0. B
Applying this estimate with y=K~1 and x=1x, togethm with

Mertens’ theorem, we obtain
{
K-1 -
Yiogxy) (1+0(10gx2))

(K — 1w C(K
2
K= ) _ Y
=6 T (1+K——l)(1+0(——~-)).
F(K) PExy P : IOg X2

(s—0+),

) n K
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Summing up, we have got

my<xy g

g*(n) K—1y"1 ( -K"l“g(IJ))"Jl

> (néz n )}:[z( M P ) z&pExy * 14 :

g Tk-D K-1 K—l—g(p))_l( ( 1 ))
> ) | Do B 4
> T®) ,J,LZ(“" 7 )( 5 10\ g,
e MY g(p)) 1 ))
= e 1

I K) zsﬂn(” 2 *'O(Icagxz ’

ie. the desired inequality (2.7).
This completes the deduction of Theorem 2 from Theorem 2*.

3. The Main Lemma. Let z > 2 and define, for s> 1 and u =1,

M, (s, u): ~—mm{R(z —Z-Z fn): exp( Y m)SM},

ngzs € psg’ r
where
R(z):= ] 1—1/p)

p<z

and the minimum is taken over all multip]jcati\v;e functions f satisfying
hypothesis (2.1) of Theorem 2* with x = z° as well as the inequality

. -
exp( <Z{ sm—lf(p))é

It is easy to see that the minimum exists and is attained by some function f.
Theorem 2* can now be reformulated in terms of M_ (s, u): its assertion
is obviously equivalent to the estimate

Gl M g(u)(l——ii) 21,226 1<u<s,

5“

where ¢; as well as o* and B* are absolute positive constants. The main step
in the proof of this estimate is contained in the following lemma:

Main LemMa. (i} Uniformly for s= 1, z2 ¢ and 1 <u<2 we have
M, (s, u) 2 1—logu+ 0(1/s).
(ii) Uniformly for u>2, s>ub z> ¢ and ¢ >0 we have

M, (s, uy— M, s, u(1+8)) elnfM (s", u)+0(£2)+0( _’),

Quantitative mean value theorems 223

where the infimum is taken over all pairs (s, u') satisfving

1<s s,
) lsw<ul+e'P 457131,
* NG
‘ (u_) m(1+s”3+s“”3)
u A

with some absolute constant a = 6.

The proof of the Main Lemma will be given in Sections 5 and 6. In
Section 4 we shall deduce (3.1) (and so Theorem 2*) from it. Here we confine
us to a few remarks and comments.

Since

gwy=1—logu (1<ug?),

assertion (i) of the Main Lemma yields (3.1) in the case 1 € u < 2. This part
of the lemma is very easy to prove.

Part (i) gives a sort of approximate differential-difference inequality for
M, (s, u), with derivatives replaced by finite differences. The essential point
here is that we have a control on the size of s and ' by the inequalities
s = s(fuf and v €u—1 (+ error terms). This will enable us, via a rela-
tively Compthted mductive argument, to deduce (3.1) in the general case
1 < u< s from the case 1 < u < 2, which is settled by part (i) of the Main
Lemma.

The basic idea and motivation behind the Main Lemma can be outlined
as follows: We want to estimate M, (s, u) from below by g(1). Now, in the
range u = 1, g{u) is defined as a continuous function uniquely be the two
conditions

oy =1—-logu (I1<uxg?),
ug' () = —g(u—1) (u>72).

If we ignore error terms and the dependence on the parameter s, then the
Main Lemma yields conditions of the same type for the functions M, (s, ),
but with inequalities instead of equations. These inequalities turn out to be
already sufficient to deduce a one-sided estimate for M, (s, u). In fact, it
would not be too difficult to obtain the asymptotic estimate liminf M, (s, )
8,2 = 00

= o(u). The main difficulty in proving the quantitative estimate (3.1) lies in
the fact that we have to take account of the parameter s and to make the
inductive argument work when s is as small as a fixed power of u.

We remark that in deducing (3.1) from the inequalities of the Main
Lemma, we shall not make use of the arithmetic origin of M_(s, u). In fact,
any nonnegative function f(s, u), for which analogous inequalities hold, will
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satisfy

2

S5z Q(u)(lw—%) for 1<u<s”,

with suitable positive constants o, £ and c5, depending only on the
constants implied in the inequalities of the hypothesis, but not on f.

4. Deduction of Theorem 2* from the Main Lemma. We get rid of the
parameter z by introducing the function

M{s, u):= inf M, (s, u)

z&e’

(s, u = 1).

Since the estimates of the Main Lemma are uniform in the range z = ¢, they
remain valid with M(s, #) in place of M, (s, u), and proving (3.1) with the
required uniformity (and so Thecrem 2¥) amounts to proving the same
estimate for M (s, u). '

In view of the statement of the Main Lemma, it is convenient to
introduce the parameter ‘

A= sfu”.
We then put, for u= ! and % =s5/u” = L/u,
c(4, u):= M (s, u)e ),
£{A, w):=min{l, ¢(, u),
AL uw:=inl{el, )y Az A 1 <u <ul,

and set c(d, wW=cA w=c*A w=0 for u>1, 0 <) <1/u’ Thus, by
definition, ¢* (4, ©#} is non-decreasing in A and non-increasing in u and
satisfies

0 < e*(A, ) <min(l, ¢(4, w).

We have to show that, in some precise sense, c* (4, u) is close to 1. Since
the proof for this is rather lengthy, we shall give the main steps of our
argument in the form of two lemmas.

The first lemma gives a functional inequality for ¢*{l, u) which will be
the starting point for the subsequent inductive argument.

Lemma 1. Uniformly for 4 >0 and uz 2 we have

. [\-e .
c* (4, u) = c* (A(l-lva) , u——i)(l —q(u)

. N [\
+c*(i(1+;) ,1u+w2~)q(u)~+-0(Em)T
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where
o)
(Wi=—— (u=z1.

ERPTOE T

The function q(u} is decreasing for u = 1.5 and satisfies
0<q25) <4, limgu=20
u=+on

Proof. We begin by showing that the function g(u) has the required
properties. To this end we shall show that the function

2 _e-1
elt) to(t)

(i.e. the logarithmic derivative of 1/g (1) satisfies

fle):= t>h

f(2)>2log2,
f () is increasing for = L,
lim f(t) = wc.

t a0

{4.1)

Since, for u > 1.5,
glwy =exp(— [ f(0di),
u—1f2

(4.1) implies the assertions of the lemma concerning g (u).
A direct calculation yields the first inequality in (4.1): We have

o(1) 1

whereas
2log2 =1.386...

To derive the remaining assertions of (4.1), we make use of the identity

owu= [ edr (@=1),

u—1

which is trivially valid for u = 1, and holds for u > 1, since both sides have
the same derivative for u > 1. In terms of f(t), this identity takes the form

U= 'j'exp(}f(s)ds)dr (u > 2).
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We then get
1 ugly) u _
= g—p ~eel= S04
W t
= fexp(~ [ fls)ds)dt
u—1 u—1
1 u— 1+t
= fexp(— | [f{sds)dr (u>2).
¢ w1
Taking the derivative of both sides, we find ,
1‘ u- I+ .
L0 o (- o |
Tl P Sis)ds Jflu—1)—f u—=1+0)dt  (u>2).
0 n~1

Now, note that for 1 <u < 2
1

fw) = w0 —Togw)’

which is a strictly increasing function of u > 1. Hence, if u (> 2) is sufficiently
close to 2, the right-hand side in the above relation is negative and therefore
S'(w) > 0. Thus f(u) remains an increasing function is some neighborhood of
u= 2. A straightforward induction argument then shows that f(u) is
increasing in the whole range uw > 1.

The monotonicity of f implies

} exp (}f (s)ds)dt < e/,

u—1
so that
. fgzlogu  (u>2),
and so, in particular,
lim f(uw) =
u-tag

This completes the proof of (4.1).
- We remark at this place that the inequality

u u u—1/2 u
U= _[1 exp({f(s)ds)dt = | exp( | f(s) ds)dt = el 1I2
u— ¢ el . w=1/2
implies, for u sufficiently large,
C flu=~1) < 2log (2u) < 3logu—1)
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whence

= 3ulogu
k]

o(u) » exp(—3 ]'(logt)dt) >e

o(u)

of{u—1)

(4.2)

» exp (- 2log(2u)) > 1/u’.

“These rather crude estimates could of course be derived from the asymptotic
formula for ¢(w) given in [2], but the above elementary proof is much
simpler. We shall use (4.2) presently.

For the proof of the main assertion of Lemma 1 we may suppose Az
with a sufficiently large constant J,, since otherwise the estimate of the
lemma holds trivially.

We rewrite the second inequality of the Main Lemma (with M, (s, u)
replaced by M (s, w) in terms of c(4, u). Putting

A= 4s713
and noting that the conditions
I<v<u(l+A—1,
;f— > Z(+a)
imply, with A =s/u®, ' = s/u"®,
M, uw) =c(d, u) )
> c*(A(1+4)" % u(l+ D) —1)elu(l+4)—1)
= c*(A(1+4) " (1+8) 7% u(l+e (1 T+ A =1 o(u(l+e)(l+4)=1),
we get, uniformly for uz2 eg>0and 121
e(h, upo (W) —c(A(1+8) "% u(+e))o(u(1+2)
23c*(2(1+d)“(1+£}““,u(1+a)(1+A)—I)Q(u(1+e)(1+d)—1)
_ +0(e?)+ 0 (exp(~u").
Now. let u and A be fixed, N be a positive integer and define ¢ by

(so that s = iu® = lu® = u®),

u(l+e¥ (1 + ) =ul+e¥ 1+ +s7 ") =u+4,
If 1>2% as we may assume, then we have
us~ 1/3 SHS—”" < A 1ja <%’
so that & satisfies '
0<e< N,
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Replacing in the above estimate A and u by A(1+&™™ and wu(l+e),
respectively, for i=0,..., N—1, and adding up all these inequalities, we
obtain

c{X, u)g(u)-—c(i(l+a)"‘”, (u+H1+D) " Nelw+iH(1+4)"%)
Fz (U7 (1) w40 (14 A= 1) (L8 (1+4) — 1)

+O(Ne2)+0(Nexp(—A(1+&) "M u))

N
—3) 3, o(u(l+ef(144)—1)

i=1
+0(NeH)+0(Nexp(—
for 4 = Ay, provided Ay is sufficiently large so that

(o142 2) Zo(1+37* > 1.

Dzt (Al+ )T (140

A(l+e)~ M u)

Putting
=u(l+e)f(l+4) (1<i<N)
and noting that
ety = (IKigN-1),

we get, by the monotonicity of the function p,

N N—1 1 Uit 1
EZQ(ui—l)BsZul [ elt—1)dt
i=1 =1 +1 7Y u;
Z1 l}'l r_l)
N
= — [ ¢ (0)dt = g(us)~o(uy)
Wi

=gl +e)(I+4)—o(ut+3)
=eW)~oM+H+0(e Wlu(e+4))
=ow—ou+)+0eu—1)("+s"13).

Hence, after d1v1dmg by ¢(u) and using the 1nequaht1es e, u) = c* (M, uw)

and

Al )N = (1+A) 1(1+e)"’”—-l(1+ 1)“a(l+.4)" Y (14-21 )_a

as well as the monotenicity properties of the functions ¢* and g, we arrive at
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the estimate

® 1\ 1 Q(li'i-%)
4.3) cld, ) =c (/1 (1 +§;> , u+§)_m
1

* i o _"l_ (u+7)
+c (l +2u) 7 2)(1 o ) 0(R),
N EA™ V) ew=1) o
Q( )(s +exp( A(l—l**z;;) u ))_;_ e ( U3 4 () 13,

We now define N as the greatest integer
of the inequalities

where

< exp (4 {w/2)) so that, in view

S
e<1/N and (1+_) =27t
2u

(o~ (1+2) ")) oo
U

From this estimate and (4.2), we see that the error term in (4.3) satisfies
(zuﬂrm),

In order to prove the lemma, we shall deduce from (4.3) a similar
inequality for ¢*{4, u).
Applying (43) with 4, u replaced by 1, v, respectxvely, where

A'/ L)

we have

H
R <exp(3ulogu—2"""1 i)+ u? (exp ( ——gl(u/ZJ")+

and thus is of order Q(4A~ %), since a = 6.

max (2, u— < v € u,

and noting that in this range we have
1y 1 o 1y
g (”zw) ( *55=F) ( +u) ‘

o+ _
o (W)

say, and

g +4) < g{u),
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we obtain
(A, W) = c* (A, u'—%)
ri L
“Q’(yii:)_z“)(c* (A, = =c* (A, W +3) +0(A7F)
olu

=¥, uw—%)

— g (c*(Ay, W —D—c*(Ay, '+ )+ O (A7)
= c* (A, o+ B g+ (g, W=D (1—q)}+ 0 (A7)
= c* (A, u+D g +e* (A, u—3 (L ~g)+0 (1713,

But if
Vi, 2w <u—i,
then
c(A )= c* (A, u) =¥ d, u—3%
2% (A u—N—q){e* (0, u—P~c* (2 u+ D),

and the above inequality remains valid. Finally, if
Azl 1<u <2,
then, by part (i) of the Main Lemma and the bound 0 < ¢* < 1, we get again
c(,u) = 14+0(1/4)
2 (A, u+ D g+ c* (4, u=H{l—gw)+0(A"17).
Hence,
c* (A, w) =min(L, inf {c(, w): 2 A 1 <o <ul)
> (g, ut+4) g0 +c* (g, a—H(1— g ) +0 (L),
which is the inequélity asserted in Lemma 1.

Lemma 2. There exist absolute positive constants c¢g and ¢, such that
uniformly for u, zu, 22 and A, >0 we have

* (Az, ug) = ¢*(Ay, u) {1+ 0 (2740 (1/A13),
where

11 = 12 exp (_C-] ':::—2)

1

Proof. We may assume u, to be of the form u, = u, +k, where k is a
positive integer. For if u, > u, (= 2) is arbitrary, then by defining

s = inf {u, ki keN, uj+k>u,),

icm
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we have

¥ (dg, uz) = c* {4y, u3)

c* (/12 exp (—— q u—z), ul) = c* (/12 exp (—2(‘-, Ei) U, ),
Uy s _ Uy

and the estimate of the lemma for the pair (u}, u,) implies the same estimate
for (u,, uy) with ¢, replaced by 2c,.

Now, let A, >0 and u, 2 u, = 2 be fixed with u; =u, +k for some
positive integer k, and put

r::(1+i)—n, t:=g(25) ((E)
tHy 2 .

By Lemma 1 and the monotonicity of the functions ¢* and g we have for
every 1 >0 and uzu, +3% (= 2.9

(4, uw) 2 c* (rd, u—H{L ~g )+ c*{rd, u+Hg)+0(277)
= (1=t e*{rd, u—+1c* (rd, u+3)+ 0 (A7),

and

We now define an algorithm for estimating ¢*(1,, u,) in the following
way: We start by applving the above inequality with (4, w) = (4,, 4.}
= (4, u; -+ k), getting as a lower estimate for ¢*(1,, u,) a linear combination
of two terms of the form ¢* (4, u), where A =ri, and u = u;, + k44, with sum
of coefficients 1, plus an error term of order O (45 }/3). Next, we estimate each
of these two terms either by the same inequality (in case of a term c*(4, u)
with u 2 u; +3) or by the trivial inequality

(A, w2 (1—=0c*(rd, w+ec* (v, u)

(in the case u =u,), thus getting a linedr combination of four such terms,
again. with sum of coefficients 1, and an error term of order O(13!3)
+0{(rA,)~ ). Note that, by our hypothesis u,—u; =kel, the terms
¢* (A, u) obtained in this way are all of the form ¢* (4, u; +n/2) with some
integer n = 0.

Continuing this process N times, we get as a lower estimate for
c*(d3, uy), apart from an error term of order

N-1
o3 (r )3 = 0 ((rN 4,) 7 13),
n= ) .
a convex combination of 2¥ terms of the form c*(r" A,, u, +n/2), where n is
an integer satisfying

max (0, k— N/2) < n/2 € k+ N/2.
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If N is large, there will be many such terms with » =0, namely those
terms which arise from applying (one or more times) the above trivial
inequality, We shall call these terms “good”, since we can use them to deduce
a lower estimate for ¢*(A,, u,) in terms of ¢*(4,, u;) with a suitable Z,. For
the remaining “bad” terms (ie. the terms ¢*(r¥4,, u; +n/2) with n = 1) we
bave nothing better than the trivial estimate

RN A, w2 20,
if we do not want tc continue the iteration, We thus arrive at the estimate
e*(Ag, Ug) = ¥ (N Ay, wy)
% sum of coefl. of good terms)+O((r" ;)™ 17)
= c*(rN Ly, uy) .
% {1 —sum of coeff. of bad terms}+0O((r¥1;}~"/3).

Now, each bad term can be written in the form

N
c* (M Ay, uy+1 Y €
C i

where
*) ;

and the correspondence
bad terms <« sequences (£;), «;<y Satisfying ()
is a bijection. The coefficient of such a term is
(L) mpn,
where # is the number of indices i, 1 < i< N, with ¢ = 1. Since () implies

b = H(2n~N),
1

[N

ul '—ul +% 's. ‘%

i

the set of bad terms is contained in the set of terms whose coefficients are
(L~¥"t" with

£>_1_u_u+N+1 .
N”N(‘ 2T )T

say, and the sum of coefficients of these terms is given by

N
(M) =¥ =2 Ry, 1),
oxnsN 1 .
nzalN

icm
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say. Hence we get
C*(Ag.t2) 2 *(r¥ Ay, u {1~ Ryla, D)+ O((r" 45)" V3.
Defining N by
N:i=Nglu,—uy) = Ngk,

where N, is a fixed positive integer to be chosen presently, we have

)‘N}.z = /’{,2 (1+—)
Uy

—aNgluz—uq)
Uy
= Apexp ( —aNg—
Uy
and therefore
KON 3 - s '
eV A, u) 2 e[ Ayexpl —aNg~= |, 1y ).

u

We thus get an inequality of the required form with ¢; =aNy, and to
complete the proof of Lemma 2, it only remains te show
{7 — 1)

Ryla, 1) €e @

with a suitable constant ¢, > 0.
Since, by Lemma I,

0<r=g{25)<1/2,
we have

Ry(x, )£ 2% Y (1=off "
aNSnEN

t aN
<<2”(1—r)”(~1-:;) =201 =gt =)
— (2(1 _r)l‘*atm)NO("Z"""l)'
Now, note that
Ll 11
2/a~2 zNo(uz_ul) N0/2 NO

and
2L -1t <
Hence, if Ny is fixed at a sufficiently large value, we have
2(1—01 = g 2(1 _r)uztlfz— 1o _
and thus
Ry(a, 1) < exp(—cquz ~uy))

with some constant ¢, > 0, as wanted.
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Proof of Theorem 2* The assertion of Theorem 2* is equivalent to
(3.1}, which in turn is easily seen to be equivalent to the statement

cl4, ) 2 1+0(1/4%) uniformly for [ <u < A%,

where o' and ' are suitable positive constants. In view of the definition of
c* (1, u), this statement is implied by (and in fact equivalent to) the estimate

(44) K, )z 1+ 0 (1)

with two further positive constants o and f”. Because of the monotonicity of
the function c*, it suffices to prove (44) for u = 2% k > 2.
Applying Lemma 2, we get, uniformly for A >0 and & > 2,

e*(h, 29 2 c* (Acg, 27 ) (14 0(exp(— ¢ 27H))+ 0271,

(uz= 1,

where
D TR
CB =8 3

and so, by iteration,

(2, 2 = c*(Ack, 2

k~ky

)1+ 0 (exp(—co Zk_k‘)))-f-O((c;lA)””’)
for every k,. 0 < k, < k. Defining k, by
k<2

k—k
b 2,

the last expression becomes
2 c*(Ack, 2k (1+0 (e %)+ 0 (ck A~ 3).
Moreover, a further application of Lemma 2 yields
c* (Ack, 20) = ¢* (g, D(1+0(e " TN+0 (A7)
with
Api=Acke T = 47 7K
and by part (i} of the Main Lemma, we have
(A4, 2) = 1+ 0O(1/44).
Aljtogether we have obtained the estimate
A, 292 1+0E ) +0(m 3T

uniformly for 1 > 0 and &k = 2. Hence, if §” > 0 is a sufficiently large absolute
constant, we get :

]

F(2H, M) 2 140 (e )+,

ie. the estimate (4.4) with a” = min(8"/4, cg/log?2) in the case u = 2% k= 2,
which, as we remarked above, implies. the general case u> 1.
The proof of Theorem 2* (assuming the Main Lemma) is now complete.
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5. Proof of the Main Lemma, part (i). The proof rests on the following
lemma, which gives a sort of “sieve formula” for multiplicative functions. For
later use we have stated this lemma in more general form than is needed
here.

LemMAa 3. Let s> 1, z 2= ¢ and [ be a multiplicative function satisfying
{2.1) with x = z°. Then we have for every positive integer kg

1w, Q1 g(py) - g(p)
:’;nis:xf(n) B R(Z){I+k§1mpl.§ksx Py vo- i +Rk0}’
where
0 (p < 2),
g(p)::{ﬂp)—l (=2

and Ry, is an error term, depending on f, z, x and ko and satisfying the one-

sided estimate
(—1° Ry, < O(fs)

1—
Hu= CXP( —ip)—)=exp(—
z<nEx r

and an absolute O-constant.

Proof. Let g be the completely multiplicative function defined on
primes as in the lemma and put

fili= S 9(2) (1),

dln
gldyZz

where ¢(d) denotes the smallest prime divisor of d (gll):==). f| is a
multiplicative function defined on prime powers by

with

5 20}

pPEx P

[ -
filp™)= {“gﬁmg(m - (f-1)—-1 (p=2),
0=f{" <2
Hence we have
0<fi =1
and
AP =f@" I p<zorpzzand m=1,
so that

neE:=inz1: pPla=>p<z}.

fil =7 i
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Since
1 1 R{z) _
s Y e <—— R(z)e ",
we get
1 -
—Z Z fi(m)+O(R(z)pe" "),
X ngx xnﬁx

By the definition of f; we have

(5.1) ‘“Z A=Y g—@Mo(m)

X ngx msx
where
1
My(x)i=—= ¥ 1 (x'=1).
X nSx
q(m) Zz

Given koe N, we split the sum on the right-hand side of {5.1) into two parts,
according as Q{m) € ky or 2(m) > k, and denote these parts by Z, and X,,
respectively. (Here Q(m) denotes the total number of prime factors of m.)
Since g is completely multiplicative with g(p) < 0 and since for every y =z
the function

0 it gq(n) <z,
A= X e=) T[] A I gz
Hd) = P‘.jfli?ﬂfd) 2z t;f’;Hyn

is nonnegative, we have

ISR MMO(E')
m

mEx
Am) Skg+ 1

ey e o g, (x
-y 3 5 Mo(m,

5 m 1€ {
Ay =g+ 1 o5 )
o kgt 1 g(m
_( 1) Z Z fp(m)(”
m<x m xn\x,'m
m) = kp+1

Furthermore, we have by a standard result in sieve theory (see eg. [8],
Theorem 2.5)

1

< (I<x <z)

R{z) (1 +0 (cxp (—-l;;ggf))) (x> z),

M,y (x) =
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so that
g(m)
Xy o= —M
=z ()
Xm)<kq
_ g(m)
=k@ 2
Am) Sk
1 lg(m) ( log (x/m)
. 0 LAl - ]
+O( mzith(m)l)+ (R(z)mg,:r/z m “Xp EOgZ
Now, it is easy to see that
kp
g(m) 1 g(ps) --- g(p)
y M0 (145 p foledlp
msx M k=18 p s Pre De
Xmy<kg
lg (m) ( lg (p)? ( lg (m)]
< LA e a1
h mES.x m h fgx pz m<x M
p2m) =0

Since g{p) =0 for p <z and z = &', the last expressioil is of order

{3 -o2)- o))

To estimate the error terms in the formula for X,, we apply (1.2) to the
function |gl. We get

lZIQ(!1)E<¢X};)(Z Ig(p)l_1)< Y <R@.

X ngx pex. P log x - 8
Moreover, partial summation and the estimate
(1<t <2),
' E,Eg( {< ¢ tuflogt  (z << X),

yields
lg (m), (_log(x/m)
mé,,: P log:z
xfz
1
w1z m +(1_, )e—sft—z+(1/r(,gz) m)| di
2 T ol (- 3 lgtm

1

xfz

u e~ dr Lo
élog(x/z) He 1 lez jopir 4 1)

ulogz
< Tog(x/2)

‘“"‘S
k]
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which is of order @({u/s), provided z < \/; But if . /x <z £ x, then g(m) =0
for 1 <m <€ x/z, and so trivially

lg (m) log(x/m) \ _ ogx\  _, fu
g U () eelips) - 0()

m<xlz
The formula of Lemma 3 now follows on collecting our estimates.
An immediate consequence of the case kg =1 of Lemma 3 is the lower
estimate

M_(x,u) = 1 —logu+0(us)

uniformly for s=1, z=>¢* and w3z 1. This proves part (i) of the Main
Lemma.

We conclude this section by giving an upper estimate for M, (s, u),
which we shall need later.

LevMa 4, Uniformly for sz 1, z ¢ and uz1 we have

M (s, W) < Q(u)+0(u/8)-
Proof Let s, z and u be given and define a multiplicative function f by

£m ={(1)

where py is the smallest prime < x such that

exp( 2 (/p)<u

PQEPEX

if KpEpand m=1,
OthBrWISB,_

i s is sufficiently large and u < 5/2, as we may suppose, then
1 llogx s
- =
SXP (Z<Zp:§xp) 2logz 27 ©

so that py >z
By the definition of M_(s, u), we have

M, (s, u) < 1(1/x) z 7n,
and letting ky — oo in Lemma 3, we get
.1 (1) 1 u
RS T I=1+T 5 % ro(t)
nsx k1 K pospyiapesxPo o P 5
PlrnePy S X

Cn the other hand, it can be shown in the same way as in the proof of
Lemma 3, that the right-hand side of this relation is also a valid formula for
the quantity

(1/x) Z Jo(n)

<X
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where f, is the multiplicative function defined by

1 (p<po),

™ = {0 oo

Thus we get

M. ) SREOT~S f=— ¥ fot+o 2 )

€y nsx

Since

_Zfo(” I E 1,

Nopsx nEX

Q(m<pg
where Q (n} denotes the largest prime divisor of n, we have by a well-known

result (see [3]),
log x ( 1 )
— +0 .
X nztfc (log pD) IOgPo

The definition of p, implies

1 1y ]
u=exp( b —+O(- ))= g x (1+0( ! ))
,,0<,,s\p Po log po log po

_Jogx
 log po log X

so that, by our assumption py >z = €,

logx u log x u
u) = +0( :Q( )+O(-).
o) Q(logpo) IOgPo) log po s

Hence we obtain
T/ (~) — o(w+0 (3)

i.e. the estimate of the lemma.

M. (

>-<I'“—‘

6. Proof of the Main Lemma, part (if). The proof is based on the
following lemma: ‘

Lemma 5. Let s 24, z2= ¢ and f be a multiplicative function satisfving
(2.1) with x = 2% Suppose that # is a set of primes which is contained either in
the interval [z, 2% '] or in the interval [z%% 2], and let f, be the
multiplicative. function defined by

e i ot
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! I'(p (L
per P ;ﬂ-gtfp (n)+0(10gz (E" g ))+O ‘“2)

Then we have

1 1
SDIACEEIU -~

n<x N nEx

Proof. Let g be the (multiplicative) function defined by

Ji= fxg,
so that for every prime power p"
= 0 if  pé#,
YW= —r iy 1 pe
We then have
m
- Z filn Z —— ) fln
X n<x msx m nﬂx/m
{ .
—zf Z”) Y fin
X ngx pex X nExip
nt) m m) m
y 4y gy yp 200 xS
msx moJ nE x/m mex X pex
oim =2 Hmz 3
The last term hereof is
g g (mj ml g1
= -3
I;x ! mg‘;q'l m X n‘jé}mlf( l;x l anzxﬁ PU}
on=3 q0m) = plly 2An=3
where
Sy(ny:= dZ gy fonfdy =TT f TT fiom (=0,
e A

In view of the definition of ¢(p) it therefore suffices to show

Sp) f(papy b2 . (__l_,( f(p})) 0(1)
pipz X ns,;;zplpz‘f(n) log z ,,%, p))"

This holds trivially in the case # < [z%2%, 7] = [\/;c, x], since then the left-
hand side is at most 1/x. But if 2 <[z, z9*7!], then py, pye.# implies

P1.P2 -
PPy Ex
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= z% and therefore

Py pa . Z f(n)<

x n<x/pypy

X/P1Pa

PPz Z
X n~<.xlp1p2
gm=z
and the above estimate is again obvious.

Thus Lemma 5 is proved, and we can embark on the proof of the
estimate (ii) of the Main Lemma. Since M, (s, u) is bounded uniformly for u,
s, z 2 1, this estimate holds trivially if s < s, and & = &, where 5, = 1 and
go >0 are arbitrary, but fixed constants. We shall therefore suppose
throughout the proof s to be sufficiently large and & to be sufficiently small
We may even suppose & < 1/u%, since by Lemma 4 and the hypothesis s = ué
of the Main Lemma

< L
logz

M.(s,u) €o()+us<u™® forszl zze and uzl
Now fix s>4, z2¢, 2<u<s' and 0 <e<1/2 and let f be a
multiplicative function satisfying (2.1) with x =z° and such that

exp ( 2 E:ir—@) <

L pEX

and

M{(s, W) =R ¥ 1 n]

nEx

Suppose # is a set of primes satisfying
Pz, 8 or #2520 1]
(and hence the hypothesis of Lemma 5) and put
K:= ZM
pe? P

Defining 7, as in Lemma 5 and applying this lemma, we get

Zf1

n€x

M, (s, ue®) -

<P {1 y r-5 2L v ri

X pgx pe# P xnﬁxlp

< M. (5, )~ KM, (s, u)+O0(KH)+0(e™)
with suitable numbers s’ and ' satisfying, for some poe#,

P =pi= ) W= cxp( Z lmf(P))

0 € psxipg P

3 =~ Actu Arithmetics XLVIIL3
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In particular, if + is a number satisfying

s s 1
> >

s—1l=t= - or
(6.1) 2(1-/e) 2
exp{ 3 f(p)/p)= 1+e,

£l —\J:lgpgzr

then we can choose @ < [z#!"¥%) '] such that

log(l+¢) = ZL@— =log{l+¢)+0(1/z) = s+ 0E)+0(e™¥
pe®
and get
M. (s, u(t+e)) € M.(s, W) —eM, (s, W)+ O () + 0 (e,

where ¢ and u' satisfy

I<s—1<y <s—t1(1— /),

léu'éexp( Mlm'f(p))
s pees—til-ve) P
gﬂxp( 1—f(P)+logs-«r+r\/E+O( 1 ))
:g_pg:s—t P §—1 1ng
- Sz 1 1—1(p)
“‘“(H‘s—-x\/‘c’ +O(S))exp(:g1§:r!—~*—p =

We shall call any ¢ satisfying (6.1) admissible.
The assertion (i) of the Main Lemma now follows (for s 8o and ¢ < &)
if we can show that there exists an admissible ¢ such that the abpve

conditions on s’ and ' imply the condition (#) of the Main Lemma. This will
be the case if :

(6.2) (1+%1—[§:)exp( Y %1~f(p))

t P

< min (u (—S{i)” u— 1)(1+0 (—%)4— O(\/E))

At

and s 2= sq, & < &y, where sg, gg+-and a are suitable constants.

In order to prove this, we need to have a sufficiently large set of
admissible numbers t at our disposal. Roughly speaking, the definition of
admissible ¢ says, that a number te[1, s~1] is admissible if £{p) is not too
small in mean for primes p close to 2. We can put this statement in a more

precise form by the following remark, which we shall use frequently in the
sequel:
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Suppose 1 <t; <t, <s—1I are such that the interval t;, t,[ contains
no admissible t. Then we have, assuming ¢ to be sufficiently small,

2 10 1og(1+4) < o< /e (logr—log t(1—/2))
P

M1— v?)gpszf

§ 1
for every tef1y, tz]\([%—l,m]u[l, 1—_~—-\/J), so that
¥ “f%—)-s\/;(logtz—logz1+0(\/g))

£ <p<s'? 1 1
4 -+

2o le 21D F  gpetit-vRIP

5 o(MVeorss
= Jelog2+0 (S)+0(\/E)

and therefore

ol 20
R _
chp( 3 %)(?)ﬂ (1+0(1/3)+0(\/5_))
Mlepest? 1

t 1-2ve 1 l 0 /__)
=(i_) (1+0(@)+0(S)+ (/&)
(T N. o ,-T)_
= (;;) (1 +0 (S)‘l' (¢}

Now, let ¢, 1/2 <¢y <1, be a constant to be specified later and put
t,:=sup{l <t <cgs: t admissible;.

t, is well-defined, since if there were no admissible t in the interval
I1, s/2] = [1, ¢s 5], then the above remark would imply

: wm)?(%)1‘”'_’—(1+o(%)+o(\/5)),

€ pgad? P

. exp(
which is a contradiction to

exp (

if s is sufficiently large, ¢ sufficiently small and s = u®, as we have assumed. It
is easy to see that ¢, itself is admissible.

Z. ﬂﬂ)éu,

zﬁpﬁzsﬁ'z p
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We now have to distinguish several cases.

Suppose first 1, = 5/2. We shall show that in this case (6.2) holds with ¢
== 1, provided a is sufficiently large and ¢, sufficiently close to 1. To this
end, we shall use the following lemma, which will be proved in the next
section.

LemMma 6. Let s 22, z 2 & uz 2 and suppose that

z “‘1 - Y f(n),

- n%-"

M_ (s, u) =

where [ is a multiplicative function satisfying (2.1) with x = z* and

exp( 5 lwf(pl) <u

O

zEpSc

3, then we have

i 1— 1
exp( ¥ o I{(p))é u—1+0($)

yIf2<u<

with an absolute O-constant.
{i) If u>3 and 5= max(u*, s,), we have

11—
exp( 5 JS(p)

..\p<..S'"1 p

)Smin(u—-l, CigH)

Jor every t> s/2 such thar

¥ 1p) <en
€ pgat p
Here sy 2 1, €19 <1 and ¢y; >0 are suitable constants.
In the case 2 <u £ 3, part (i) of Lemma 6 immediately yields (6.2) for
t =1, (= s/2), since then (1—cg)s <s5—1t; <5/2 and

—t l/a
u(s - 1) = u(l—co)* = (u— 131 = o) 2 u—1,

provided a is sufficiently large in terms of ¢,

Suppose now u > 3. By the above remark and the definition of t; (2 s/2)
we have
‘ ] .
< ¢ B oy o

: .
rlgpss

- o(\/;)grou/s) +0(1—cy).

cgs
79 <p%zs

Choosing the constant cg sufficiently close to 1 and restricting & and s by
£<¢g and §2 8o with suitable & >0 and s, 2 s,, the last expression
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becomes < c,;. Hence we can apply part (i) of Lemma 6 with ¢ = t, and get
(6.2) by choosing a sufficiently large such that

— la
(52 oo

. We thus have settled the case t; =
< 5/2 for the rest of this section.
We assume first that there exists no admissible t in the interval

[egs, s--\/s—], so that, by the defmition of r;, the whole interval
Jt4, s—ﬁ] contains no admissible r. Using the above remark, we get

1 —f(p))
p

s/2 and may therefore suppose t;

of 3. A)er 3

P <pggST S

— 1—<e
<u ( > I/l_) (1+0(1/5)+ 0 (/=)

5 \/8

§—
z€pSz

- u-s_;‘ (1+0(1//5)+0(/e)).

Noting further that

u>exp( Y l_f(p))z(s_tl‘/s_)_‘8(1+0(1/s)+0(\/£})

P

e pe 8™ VS
z " Sp%z
%

1-ve
- (ti) 1400/ +0(J/%),

1
and hence
55—t
§

< 1—u D O (1/5)+0(Je)

< (1-&)(1+o(1/\:’§)+0(\/5)),

we obtain the estimate (6.2) for t =, and every a2 1.
Suppose now that there exists an admissible t in the interval
[ess, s—\fs_] and put
to:= inf [t admissible: t = ¢g5).
Again it is easy to see that r, itself is admissible.
If (cos <) t; < s—1ty/3 (and t; < 5/2), then, using the above remark and
the inequality

3(5—ta),

tyr=max(s—ia, t;) =
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we get
. 1—f 1—
(1<) exp( ¥ j(p))é uexp (— Y __f_@)
zgpss’ 2 P 13 cpg,"9 P

_ 1-e
<u (M) (1+0(1/s)+ 0 (/&)

Co$

This implies s—¢, 3 su™ M1~ v2), so that, by the assumption &< 1/4” made
at the beginning of this sechon

the implied constants being absolute. It follows that the left-hand side of (6.2)

can be estimated by
s—1; \M?
<u («—2)
S

) S—Tz i/a
< min|u ,u—11,
5

provided a is sufficiently large and the constant ¢, (< t5/5) is sufficiently close
to 1, Thus (6,2} holds in this case with t =1, and every sufficiently large a.

It remains to treat the case £y < /2, s—1,/3 <t; < S—"\/E. In this case
we have, again by our remark,

o 3 Hcuep(- y )

and hence also by

zS.pS_zs_rl 25—11<p$z.§—11/3 p
<u( =0 Y o+ o)
SEGSA) ST OLe)
For sufficiently large a, the last expression is
. S‘"‘Il 1/a i .
su( ) (140 (1/5)+0 (/).

3
If we now assume ¢, > 2—5, then we have
U

) _S—'fl 1-v5 ( 2!”1 1- e ( 1 1-+5
A—— < — < ——
u(s—(q/?:)) SUUTE <ull—g _

<u—1)(1+0(/e)),
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and we obtain (6.2) for t =1, and a sufficiently large. (6.2) also follows in the

case . e =1 J(10u), since then trivially

u(ri:iL_ T <u<-1(1+0(J/2)
s—(t1/3) ST A

We are thus left with the case

s 3s t 1
tl<mm(2 2) s——;—<12\<,sﬂ—\/§, es;,(—l—aa)—z,

and instead of showing (6.2) we shall in this case prove the desired
inequality (ii) of the Main Lemma directly.
Recall that we had established the estimate

M, (s, u)— M, (s, u(1+e) = sme (s', W) +0(£%)+ 0 (e,

where the infimum is taken over all pairs (s, «'} satisfying, for some (fixed}
admissible number 1

() s—t<s <s—1(l=€),
%léu’gexp( > 1—:[@)

cgpemmti-aa P
We shall apply this with ¢ =1,.
Since

t 3s 3s
s—tz(l—\/g) <~1-+s\/gét1+s & <5+s\/§$§;

(for & < &£p) and the interval [5s/3u, co5] < [, ¢55] contains no admissible £,
we get, by our remark,

ol 3, el 3 'i"i‘-’f’*)

s—lz(l_ve) p 735134 < p 5 2008 4

Su(ss/?m) (1+0(1/s)+0(\/5)).

€95

zSpEs

The last expression is < 7/4, if ¢s > 20/21, s 2 5, and & < min (g, (104)™7), as
we may assume. Thus (**) with t = t, implies (1 <) «’ < 7/4. Applying part
(i) of the Main Lemma and Lemma 4, we then get for s 2 s, and every pair
(¢, w) satisfying (+x) with r =1,

M,(s, ) = 1—logu'+ O (1/s) = 1—logu'+ 0 (1/./s)
= M, (s, ' +s7 5%,
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Moreover, Lemma 6 yields the right-hand side can be estimated by
1— |
exp( f(p))g u1+o(—), sio 3 L@

zS.pS:Smlz{lq\JE) P \/:g_ z€&pEx p

provided ¢4 (£ t,/5) is sufficiently close to 1. Hence +1( 5 (1—F () (=1 (p2)) (1 1 l—f(Pa)))+O(1)
WA L1457 2 2% plpaSx P1P2 zspzsx Pa . AS
PPz Sx
for every w' satisfying () and s = 5,. We thus get 1 g3 1
» _ 2 l—logu+= (1-———)1 2uﬁ—()()
M, (s, u)— M_{s, u(1+8) 2 eM, (s, W)+ 05+ 0 (™) 2 3

for some u' < u(l4+s"43)-1, ie. the estimate (i) of the Main Lemma for where
every a = 1.

U= exp( Y _1_‘“'0}).

7. Proof of Lemma 6. Let 5, =. x, u and f be as in the lemma. By Lemma From this and (7.1) we conclude
4 we have the upper estimate

The proof of the Main Lemma (subject to Lemma 6) is now complete.

1 log3 1
ou) = 1——10gu+-(1~—3§—)10g2u1+0 (E)

() RS Y 0 = M.is, ) < o)+ 0 (us). | 2
Nny We shall presently show that the function
To prove Lemma 6, we shall derive a lower estimate for {1/x) }: f(n), which : 1 log3 '
| o | PG4 = 00— 1-Togu-+3(! ———) og*(u— 1))
will contradict (7.1}, if the conclusion of the lemma does not hold. We shall ' 3

use different methods according as 2 <u <3 or u > 3.

Assume first 2 <u < 3. In this case we apply Lemma 3 with kg = 3, is non-positive in the interval [2, 3], so that

getting log? uy < log?(u—1)+0(1/9).
This implies
R(z)~ 1 Ef ZQ_(PQ_J_ Z g(p1)g(pa) P » .
X px pex P 25 0msx P1Pa2 ' 1y < (u—1)(1+0(1//5) =u—1+0(1//5),
pypasx
i ‘ ' i.e. the assertion (i) of Lemma 6, since if u; = u—1 (> 1), then
) 1
iy 3 (1 13)9;191})9("13;)%0(;), _ . )
B IYIET 1283 1 ‘ _
s (1og 20| < tog*u, ~log’u—1) =05 ).
where
For u=2 and u=23 we get the inequality ¢{u)<0 by direct
g(p): { 0 b <z}, Iculation: We have
- calculation:
fm=1 (p=2z).
@2)=¢()-(1-log2) =
Since g(p) <0 for every p and . and
g(p) A 1 log 3
) ; = X _;Mglogu < log3, - 0 (3) =9(3)-(1-1og3)—2(1-%)logzz = 0(3)~0.053... <0,
psx zE€psx .
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where in the last inequality we have used the numerically computed value
2(3) = 0.04860... (see [4]).
If now 2 <u <3, then

o(u—1) _I—Iog{u-ml)

W= — = ”

and so

o'W =o (u)+—:;—l (1 _log 3)2log(u_ 1)

2 3 u—1
_log{u—1) (10g3_£
ou—-1 3 u/l

Hence .(p (u) is decreasing for 2 <u < 3/log3 and increasing for 3/log3 <u
< 3. We therefore get ¢ (u) < 0 for every ue[2, 3] and thus the assertion (i)
of the lemma.
Now suppose u > 3, let /2 <t < s be fixed and put
yi=2z"""
We may assume for the proof of part (i) of the Lemma that s is sufficiently
large (in absclute terms) and t < 5 /; so that 292 2z y = 5 3 e,

The proof is based on the estimate

!
°gx2f() - T J(ylogn
1
=3 2 fm Y logpm
nSx PPlin
i
== 2 S logp” Y f(n
o s
]
; Z{ f(Dlogp ¥ fn
_ s e
1 —
> Z fn z log p— Z ,(}__f_(f_))_;f)_gwﬁﬁ z f(n.
xy<n$x,’y y<g§x{n y<pExfy p xn&x,’p

By the prime number theorem with error term we have

o
2 logP:g“y+0(%exp(—\/logy))+0(1ogn):%~y+o(§s—)

r<p<xin
pAn
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for y < n < x/y. Hence, putting

M= T sy
and "

Ma)imp B S0 (3 )
we obtain

| , 1 X 1

”_.1__(1+ Y (_I.M) max M, (x).

y<pExy P y<x <xfy

From Theorem 1 we get for x' =y »5)

(>:
Mz(x')spgc,(lm;)(l+m§§ S ) ( ( g wf(p))
(o Epr)ro (5 )
5 1f(p)) ( ( —f(p)))
{vofeoz rolee),

In the range (Z‘E\{) y < x' <75 (with z 3> ¢ the error terms of the last
expression can all be estimated by O(l/\/s_). Noting further that ¢t} and
t

Kinp (-

hence also o (f)/t = (1/r) [@(t)dt’ are non-increasing functions of t, we
0

obtain

(1) ( 1 ))
M, (x) < R(z) T2 (1+o ,
 max 1(x) € R(2) 0, N

Uy = exp( Y }:,];(.Q),)

zE€psy 14

where

The same estimate holds for M, (y)/logy, namely

S eraBino(7)
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This follows as above on using instead of Theorem 1 the theorem of [11], and
K 7l —
according to which the estimate of Theorern 1 holds with - Zj( ) L;=_L( QM+1
log x 2, n g x \, 02 P )
i . i i i hich ted
instead of (1/x) ngx f(m. (In fact, it was this version which was stated and Now, observe that
proved as the main theorem of [117; Theorem 1 of the present paper is an
. a,logp a
easy corollary to it) Llogx < 14 maxq 3 “+—>:0<a,<1, exp( Y 2y,
We next derive a lower estimate for M, (x/y). Define a multiplicative vepssy P y<p<sy P
function ¢ by 1o 1
<+ ¥ L -—+O( )
f*g =1 ) PSP EAfY P YPo logpﬂ
so that where pg (1) is the largest prime < x/y such that
g -+f(Prglp™ N =1 ‘ exp( 2 (/p)=w
poSpsxly

for every prime power p™ It follows that 0 <g <1 and hence for every The definition of p, implies
0

xz1
. . 1 1 )
£l 5 Ll (5 0y gl w=co( T —+o(f-))=li;§ﬂ?l(1+o(*i-)),
a1 nm= x’ nm N n<x I Amex M puf‘in‘f.\'y‘rp Po Og Po Iogp()
d t
<( M) (1+ 5 g(p”’?) and we ge .
ngx M Jpsx me1 " LQM(I—-L%-O( 1 ):.{(1_}_)+0(.1_)_
: -1 { logx V' wuy logpy /) s u, 8
(2R b
néxr B Jpsx P m31 P" ' We then arrive at the estimate
We thus get
- t 1 U+(u1) t 1 1
N R(z) Z e (1——-—)+0( )
Ml(f)z Tim (1_1)(1+ f(‘?n)) E R T S Uz w1 /s
¥ nS.fornpr,‘y P mz1 P : t { 1
= - 1—0’+(u1](u2 —'1)}"‘0( )
(log (x/7)) ()exp( 1 f(p))( +0(1)) it ui /s
=S p=aly Defining K by
Rz 4 — 1 . _
:(log(x/y))—-(—lexp(— > f(p’)(wo( )) exp(w— ) _]._,___}:@ ﬂiex,
Uy yapExy P S xjy<pSx P 8
Inserting the above estimates into (7.2), we obtain we have
ro1 ; ' u t
P (S I B _ T
X ngx § uguy Uy U /8 :
where ‘ and thus get

u 1 e ¥ u 1
Tmlog(x/y) Zslog(x/y)! ‘s :’=§xp( 3 lmf(p)) R(z)” ;}; (n) %1——a+ (1)) ( 1e"—1)+0(u1 \/;)}

log:z _ log x ye<pgsy P
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Comparing this estimate with the upper bound (7.1), we find

73 etuze %1—0(141)(“1 e —IJ}W(?%O(Z%)

If we now assume (3 <) u < u; +1 and K < K, for a sufficiently small

constant K, > 0, we get

)KO
"‘{1-a+(u1)(;‘—1ex—w1)} > e"“O{l-m (u,)(e"“wufa_;)}

>1— '5+(u1) ~0.01
by

U+(2 12

>1-=5 7 =001 =1} [o(0)di—001
2 o

>1- %(l-i-j(l—logt)dt) 0.01

2 1-3(1+5(1+1~log2)—001
= (log 2)/4—0.01 = 0.163 ...

On the 6ther hand,
u>1,

o(wu is a decreasing function of u > 1, since, for
(e@u) = oW+ (wu=ow)~ou—1) <0.
Thus, for u =3,

0(u < 3¢(3) =3-00486 ... = 0.1458 ..,

and we get a contradiction to (7.3), if s =
constant sy,.

Similarly, the assumptions u < u,/c,, and K < K, with suitable
constants ¢, <1 and K, >0 imply :

—K{I—U’.'. (ul)(%ex—l)}a

which again contradicts (7.3).
Hence we conclude

max (so, u*} with a sufficiently large

L]

bt

u, £ min{u—1, ¢you),
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whenever s > max(sq, uy) and K < K. Since

21_‘_1112)

x{y<p<x P

1—f(p) log x
= exp ( - +lo )
xn-;m p g log(x/y)

= exp( ‘Z< ﬂgl)(.“"o (IOLXJA)’

xjy<ps®x P

.8
e":;exp(—

the last condition follows from the hypothesis

I _

5 €1y,
xfp<pEx P

if ¢;; is sufficiently small. In view of the definitions of u, and y, we then
obtain the assertion (ii) of Lemma 6.

8. Proof of Corollary 1. The upper estimate for G(x, K) follows easily
from the well-known estimate (see [3])

1 _ ulogu
X n%x I_Q(u)( +O(10gx )),

(R 1/u

which holds uniformly for x = e and 1< u < (logx)'?: Putting

u:=max(1, ek~ ! ),

log x
we have for all sufficiently large x and K <iloglogx
1
Y -<K.

xliu <p-<.xp

Thus, by definition of G(x, K),

1 () (140 ()
Gix, K) < ~ I=gle¥———}[1+0
(. K) x .:éx ¢ log x logx//.

Q(u)g,\‘””

-l i)
N

where the last relation follows from the estimate (ef. (4.2))

'g__(t_)‘ _olt=1)

&1,
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To obtain the lower bound for Gix, K), we apply Theorem 2 to the
multiplicative functions f defined by

m 1 (p¢P,
(") = {
0 (ped),
where &2 is a set of primes < x satisfying
Y -<K.
pe,-ﬁp

Defining z by

logz == /logx,

we get (for sufficiently large x)

S(x, & 1 1
x ""'x ngx 1 B xnsxf(n)
1 1 1
= 1——Jo_ (ex ( ~))(1+O( p ))
ﬂa( p) P zs%xp (log %)
pel

+O(cxp( (log x)'%))

-1 (= e(on( 2 30 g

pes pef

+0(exp(— (log %))

= ,,];Iz o(eM?yp (em(ﬁ%ﬂi)}(l +0 (W))

pes pes
+0 (exp(— (log x¥*?)).
We shall presently show |
{8.1) Q) o(ua) 2 @uruz)  (ug, uy 2 1),

By (8.1) the above expression becomes

2 ¢ (eXP (Emg)) ( 140 (aw)}-}- 0 (exp(—(]og x)ﬂ/Z))‘
Since, by (1.3),
Q(u) > E—Bangu,
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the second error term hereof can be omitted, if we suppose

1
(Z ‘é) K égloglogx,

peP P

and we get in this case

2o (o5 ) 10 )
>0 10 g5 )

This implies the estimate

1
650> 01 1+0 g 7))
as wanted.

To prove (8.1) we note that, for Uy, Uy > 1

upiy

eluy) _ i _Q'(_t)
Q(”:uz)mexp( J Q(t)dr).

u1

Since the function, —o'(f)/e(t) is increasing for t > 1 {cf. (4. 1)) the above
expression is an increasing function of w; > 1. Thus

em) _ oM _ 1
ouiuy) ~ olu)  oluy)’

which proves (8.1).
The proof of Corollary 1 is now complete.

9. Proof of Corollary 2. Under the hypothesis of the corollary we have
[12, Lemma 1]

©.1) L(1, X)“éﬁ s Q_@+O(D‘”5);-

pengp? 1

where g = 1xy. The function g is multlphcatwe and satisfies g(n) 2 0 for all
nz1and g(n) = 1, if n is not divisible by a prime p with y(p) = —1. Hence
the right-hand side of (9.1) is

1 : - ' -1/5
[ 140D~ YE) = —g——8(D?, A)+0(D™),
D*logD D(EDZ (D7) D*logD
plr=x(pr#—1

d e Arin Avithenstica XLVIIL3
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where # = {p: ¥{p) = —1}. Under the assumption

L
T= Y - <minle, 1/2)loglog D

pél)zp
pe#
the last expression is
4 1
L | - 1/5 B T
Z TlogD e+ 0D 1Py » 10ED,Q(:: )

by Corollary 1 and the asymptotic formula (1.3) for ¢(u). This proves (1.4),

From (1.4) and (1.3) we see that the estimate
e"(T+ 1) » log(1/L(1))

holds, whenever L(l) € 1/log? D and (9.1) is satisfied. If (9.1} is not fulfilled,
then (1.5) holds trivially in the case

loglog(1/L(1)} < min(c,, 1/2) loglog D?,

and follows from Pintz’ estimate [12, Theorem 4]

oy log /L)

S e

loglogD
otherwise,
This completes the proof of Corollary 2.

10. Concluding remarks. For the proof of Lemma 6 we derived a lower
bound for (1/x) ¥ f(m) under certain conditions on £, namely, if the values

nEx
f _(p) are close to 1 on mean for large primes p. To this end we used two
different methods, the first one being based on the “sieve formula” given by
Lemma 3, and the second one on the identity

1
;Evf(")log”m Y fpMlogpm Y S,
; pPMEx n€x/ph

. o mpm=1
which, m(_:ldentally, had been also the starting point for the proof of the
upper estimate (2) in [9] and [10].

However, both methods fail in the case when f(p) is substantially -

smaller than 1 on average for large primes p, and it does not seem that they
. can be ada.ipted to yield the lower bound of Theorem 2. Moreover, the first
method gives a nontrivial lower bound only for small vaIu,es of u

—ap( 3 W i
p , whereas the lower bound given by the second

IS pSx

method in inferior to that of Theorem 2*, unless u is sufficiently large. For
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the proof of Lemma 6, we therefore had to carry out our estimations very
carefully, in order to obtain overlapping ranges of applicability. (The
overlapping occurs at u = 3). In particular, we needed a sharp upper bound
for p(3), which turned out to be less than the upper bound needed in our
proof only by a very small margin: Thus, in a certain sense, it was “by chance”,
that our proof of Lemma 6 worked. An alternative and simpler proof of this
lemma or of the Main Lemma would be desirable.

Theorems 1 and 2 give, in the case 0 <f < 1, upper and lower estimates
for the quantity

1
R, )™= f(n)

in terms of

L—f{p)

£l

zEpEx 14

where z is a free parameter. It would be desirable to have also an estimate in
terms of the weighted sum

1 (1—1(p)logp
Ing pEx P )

This quantity has the advantage of being almost unaffected by the values of
f(p) for small primes p, so that the resulting estimate would be practically
independent of these values, a phenomenon. which is to be expected for
heuristical reasons. In Theorem 2 we had been able to take account of this
phenomenon only by introducing the additional parameter z and thus
complicating the statement and proof of the theorem.
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On zeros of diagonal forms over p-adic fields
by
Yismaw ALemu {Addis Ababa)

1. Intreduction. Let K be a finite extension of @,, the rational p-adic
field, and Oy be its ring of integers. Assume that e and f are respectively the
ramification index and residue class degree of the extension K/Q, so that n
=¢f =[K:Q,]. Let p be the prime ideal of Oy and = a generator of the
ideal. Unless indicated to the contrary, v denotes the normalized exponential
valuation of K arising from the prime ideal (m).

Half a century ago, Artin conjectured that any homogeneous polynomial
over K of degree k in at least k*+1 variables represents (has a non-trivial)
zero in K. This conjecture has drawn the attention of many authors (for
details see the reference pages of [8], [9] and [10])

Call a field L C; if every form over L of degree k in at least k'+1
variables represents zero in L. Given k, a field L is called C;(k} if every form
over L of degree k in at least k'+1 variables represents zero in L. In
connection with Artin’s conjecture, for any number field L, Ax and Kochen
[2] have shown that:

A(k, Ly = {p| pis a prime ideal of L such that L, is not C5(k}}, L, being
the completion of L under p, is a finite set. In this sense, we can say that
Artin’s conjecture is almost true. On the negative side, the present anthor [1]
has generalized the recent counterexamples to show that K, any finite exten-
sion of @, for any p, is C,,. The counterexamples obtained to Artin’s conjec-
ture have a common feature: the degrees of the forms are divisible by p—1
and powers of p. In view of this and the stiiking tesult of Ax and Kochen, it
seems natural, to study Artin's conjecture in the following form.

CONIECTURE. For a number field L and a natural number k, pe Ak, L)
only if p and p—1 divide k, where p is the characteristic of the residue class

field of L.

Time will tell the validity of this comjecture.

In the present paper, we study the problem of diagonal forms over K, a
finite extension of Q,. Let k ‘%e a natural number. Let I'*(k, m) denote the
least s for which the congruence:

) F=a, ¥t +a5+ ... +a,xf =0 (mod )



