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1. Introduction. The purpose ol" this paper is to refine a theorem of
Bohr—Jessen related with' the value- -distribution of the Riemann zeta-functlon
Let's = g+ it bé a complex variable, and C( s) the Riemann zeta-funcuon
Bohr-Jessen [1] discussed the value-distribution of {{(s) on the’ fixed line ¢
=0y (> 1). Let R be any closed rectangle in the complex v-piane with the
edges parallel ‘to the axes, and L(T, R) the (Jordan} measiire of the set

re [0, T]l 1og C(ootht)eR' Theu, Bohr-Jessen proved that there ex1sts the
Timit

(Y - _‘ W(R) lim L(T R)/T

I—'r

which depends only on o"o and R. We can conslder W(R) as a probabllxty
of how many values of log {{s) on the line ¢ = g4 ‘belong to the reotangle R.
" We cannot obtain any quantitative version of (L1) by Bohr- Jessen’s
method only. Heénce, we will introduce the method of dlscrepanmes and will
prove the followmg sharpemng of (L. 1)

THI:OREM For any ¢ >0, . o .
(120 L(T,R) = W(R) T+0{(m(R)+3) Tllog log ) Tirom BT

where m(R) is the measure of the rectangle R, and the O—commm deper;ds onl
on gy and e

In [1], Bohr~Jessen used the celebrated Kroneokerv-WoyI théorem on
the uniform distribution of sequences. We put

N
fulf) = — ¥ log(l—p, ®exp(—it-log p,),
n=1

where p, is the nth prime number. Of course, £i(0) tends to the function
log t(oy-+it) as N tends to infinity. Then, by using the Kronecker-Weyl
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theorem, Bohr—Jessen proved that there exists the limit
(1.3) Wy(R) = lim Ly(T, RYT,

T

where Ly(T, R} is the measure of the set {re[0, T] fy()eR). Hence, our
refinement will require essentially the information on discrepancies—the
information on how rapidly Ly(T, R)/T converges to the value Wy (R). We
use the multi-dimensional version.of the Erdds—Turdn inequality, which was
proved by J. F. Koksma [3] and P. Sziisz [9]. (See Kuipers—Niederreiter [4],
Chap. 2. A further generalization is preved by Niederreiter-Philipp [77.)
Combining this inequality with a result on transcendental number theory
(Waldschmidt [10]), we can deduce the estimate of

E(T, N, R) = Ly(T, R)/T— Wy (R).

We note that a geometric lemma is mdlspensable in order to apply the
Koksma-Sztisz inequality to our. case. Such a lemma was already shown by
T. Miyazaki and the author [5].

Furthermore, we shall prove an upper-bound estimate of IWN (R)
—W(R)|. To prove this estimate, we must refine Bohr—Jessen's theory on the
sums of convex curves [2], and the details of our argument are rather
complicated. These estimates of E(T, N, R) and IWN( —W{(R)| lead to the
result of our theorem.

Throughout this paper, the rectangles we consider are closed and have
the edges parallel to the axes. For any subset X of (real or complex)
Euclidean space, we denote the boundary of X by 8X. By m(X) we mean the
Jordan measure of X. The symbol dist( , ) signifies the usual Buclidean
metric. The O-constants depend only on o, in the follong sections. AlbO C
denotes a posmve constant, which depends only on o, and is not necessanly
the same in each occurrence.

The author expresses his gratitude to Prof Akio Fujii for constant
encouragement and to Prof. Yuji Ito for careful reading of the manuscript.
He is also indebted to Prof. lekata Shiokawa, Messrs. Leo Murata and
Shigeki Egami for many useful advices and discussions, and 10 the referce for
valuable comments.

2. Outline of the proof. Let R be the given rectangle, sy a small pasitive
number, and A,+iB, (1<p, <2, i=y/~1, 4; < Ay, B, < B,) the four
vertices of R:

R=iz A, <Rez< A4, B <Imz<B,).

We consider two rectangles R; and R, defined by

Ry ={z| A+ < Re: 2~ Op, Bi+by < Im 2 CBy—3y)
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and
Ry=lzl 4;—dy <Rez < A,+8y, B 1=Ox <Imz < Byt oy}
If 8y satisfies
(2.1) [tog { (oo +it)—fy(t)] < Sy

for any real r, then we see that, if log { (o, +it)e R then fN(t)eR aﬁd, if-
In{heR; then log {(oo+it)e R.. Hence we obtain :

(22) ' Ly(T, R) € L(T, R) < Ly(T, R,)
Now we specnfy the value of 4,. We bave
(23)  flog {(o+it)~fy (0

23]
=| ¥ log(l——p,,".Oexp(»it-logp,,))l_
n=N+1
] — @ : . S ot s
< 2 Pt Y (nlogm e
n=N+1 n=N+1

<(10g N) "0[ "Oa:fx<N1 "0(1og N) o0,
: N

So we can choose Jy = CN'""(log N) " for some constarit-C, Under this
choice of dy, the inequalities (2.1) and (2.2): hold.

We already mentioned in Section 1 that we shall obtain:an estlmuate for
E{T, N, R), by using the Koksma—Szusz mequahty In fact, we obtain later
the followmg estimate:

Proposition 1. For any large positive mtege:s m and r, we have
(24)- (E{T, N, R)< N2(3n)"(m~! + D )+r*NI(N+1)N(3/2)+2ﬂo+T .
(=A;+A4,+ T, say}

PR

where
Dy = T7"(3+2-log m¥exp(C(mN -log N)* (log (mN))?)..
Since the right-hand side of (2.4) is independent of R, we cdn apply thzs
inequality to R, and R,, and get

(2.5) La(T, R)/T—Wy(R) € Ay + A, + T4,
(2.6)  Ly(T, RYT-Wy(R) € Ay + Ay + T~ g

Next we treat the evaluation of |Wy(R,)— WN(R)I and IWN( W)+ WN(R)J.
We first introduce some notations. Let Oy be the real N-dimensional unit
cube: QN ={(8;,..., 0y 0<0, < 1}. We define the tapping Sy from Oy to
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the complex z-plane by
N . .
Syi (01, o O)—>— 2, log (1—p, % exp{2nitt,)),
n=1 .

and we put
QN(R) =10y, .. HN)EQNI SN(Qh . Uy)eR}.

App ymg Kronecker-Weyl’s theorem, we can show that Ly (7, R)/T tends to

m{Qy(R)) as T tends to infinity. This, so far, is an outline of Bohr-Jessen’s
proof of (1.3). In particular, we see Wy (R) = m(Q2y(R)). Hence, our present
problem is reduced to a geometric one. We will compare. the volume of
Q4(R;}, Qn(R,) and Q2y(R), and will show the followmg result:

ProposiTiON 2. If we choose dy = CN' Tlog N) 770, then
W (R)— Wy (R) € N 77 (log M) (='d5, say),
and the same estimate holds for Wy(R,)— Wy (R).
Combining (2.2), (2.5) and’ (2.6) with the above proposition, we have
@7 L(T, R T— Wy (R) €A, + Ay + A3+ T4,

Now we proceed to the estimation of |Wy (R)—W{R)I. Bohr-Jessen (2]
showed the following results: -

(1) For any sufficiently large N, there is a funcuon FN( ), contlnuous in
the whole plane, for which

o8 Wy (R) = [ [Fy(e) dxdy (z;x+iy)

holds for any rectangle R.
(2) Fy(z)-converges uniformly to a continuous function F(z) (as' N — o),
and ‘

29) W(R) = | [F(z)dxdy.

R

In [2], Bohr-Jessen constructed concretely the functions Fy(z). In this
paper, we will investigate their construction in detail, and. will obtain the
following :

ProrosiTioN 3,

Fylz)- F(d)<N“ " (log N TP (2 A, say)
holds unifoermiy in the who[e plane.
4. Hence we have . -

1, (R~ W (R < IR[ IFy@—F)dxdy <mR) .
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Thlb 1nequahty and (2.7) show that. . " - .
L(T, Ry T~V WIR) < d,+A,4 4, +m(R)A4+T*

Lastly we choose the values of the parameters m, r and N and, obtam
the result of the theorem. We first note that it is obvious that 4; € Ay. We
can decide the value of m by the equation m~! =D, then decide r by
requiring A, = A,, and finally decide N by requiring A, = A,. This is the
author’s original method, but it requires rather complicated . calculatlous
Here we show the following slmple choice of the parameters, which is due to
Mr. S. Egdm] (by a prlvate commumcatlon to the author, Aprll 70 1984)

Let « = ;+30p. m = [$(log T)'/*] (where [x] is the integer part of x)

= [(6a-log tog m)~ 'log m] and r=[N°). Then we have :

Dy < T exp(C-log m+C (m-log m®(log m)?) < T~ 'exp(m?*) < T71H
N2(3nY < exp(2aN-log N) < exp(}-log m) <{log TH'®.
Sa,
| Ay < (log TY¥({log T4+ T7151%) < (log 7)™ 1.

Next we h;we

A2 < N~a+wz]+z¢0 <(log Jog log m:ag log T)“O_'I‘; _ ‘. ‘
Ay < (log log T) ~tea= D2 g0 log log 7)1, .
Ay < (log log log TV (loglog T) - (oo~ 17

and these estimates lead to ;he theorem.' In‘ fact, the abové estimate yields a
slightly stronger result statéd as follows:

(10) L{T, R) = W(R) T;O(m(R) T-exp [ —((oo—1)/7)log log log T+
e +(6/7) log log log log T+C‘ + :
+ T (log log Ty {e0 (]og log log )'L”'zl).' '

We remark that if we follow the orlgmai proof of the autlior, we can write
down explicitly the value of the constant C, appearmg in the right-hand 51de
of (2.10). An eiementary (but complicated) calculatlon shows that '

< {(op—1 /7) log((9000+57 )/14)+ O ( (log log log log 7710g g log T)

 Now. our remammg task is to prove the Proposmons 1, 2 :md 3.

‘ Before starting the prqof of these proposnmns we must sketch Bohr—

Jessens theory developed in [2]. Then we will start with the proof of

Proposition 3, which will be completed in Sections 5 and 6. Next, Sectlons 7

and & will be devoted to the proof of Proposmon 1 And in the last sectlon
we shall prove Proposition 2. ‘
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3. Sketch of Bohr—Jessen’s theory on the sums of convex curves. In this
and the next secuon we sketch Bohr—Jessen's theory [2] on the sums of
convex curves, and quote some of the lemmas proved in [2] ‘which we shall
use later. - :

"~ Let

o= {2 =2,(0,) = —log(1—g, “exp(2mif,)] 0< 0, <1}

for some positive integer g,. Then, T, descrlbes a closed convex Jordan curve
in z-plane. We can consider 6, as a fundtion of 2, defined on T,. If we put
f,,(zn) IdB (z ,,)/dz,,l then Bohr——Jessen proved that’ ‘

3.1) Suled = |1—q; " cxp(2mi,)/2mg; .
We remark that - . :
(3.2) Co By = () dz)

on the curve I,.

To study the geometric propertles of I',, we introduce some general
noticns on closed convex curves. At first we define the “inner radius” and the
“outer radius” of a closed convex Jordan curve I" as follows. For any point.z
on T, we denote by L, the tangent line of I' at z, The curve I’ separates the
z-plane into three parts: A: bounded open set [ (F ), another open set Y (I,
and I itself. Let

2€C; the tangent line to C at}

C; =< C: circl
s { T | s L, and cerpor

' . zeC the tangent line to C at
C, =+C: circle

- U |zis L, and FeIQuC (
By (C) we mean the radius of the circle C. Now we define the inner radius
ri(I) and the outer radius r (1") by

r,( I} = inf sup Q(C) (F) = sup inf Q(C ,

: ‘ ¢ zel Cely . ‘oozl C‘eCy ; ST '.‘
Then Bohr—]essen showed that - I '
(33) Hr) =, Ryl %”ﬂ ”“Wi

Next we define the “parallel curves” of the convex curve F Let ze!’
and n(z) be the unit normal vector of I' at z, driented to the outside of I'.
We put z(é) =z+3 ‘n for any real 8. Then, we define the pafalTel curve of I
with ‘the distance & by @ =14z zel} Then T(6)'is again a closed
convex curve, and it can be shown that ’ T e

(3.4 (F(é)»«r(n+5

i

(L) =r (Db

icm
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Now we discuss the “sum™ ¥ of two convex curves I' and. I'*:
= {z+z% zel, z*eI*}. We assume that
(3.5) P (D) 2 7, () > 7, (T%) > 1y (%),

Then we have that 8% consists  of two convex curves I, and I,, satisfying
Iy Iy, and X = I O(I(T)n Y(I))u Ty. For any point z, we denote the
set {2mwi wel'l by z—T. The convex curves F, and I', have the following
propertles

I U YN = e Tiz-I* =0,

Iyul, = {7l I'm(z—T¥*) consists of one point!,"

and
Y(I}}:h\f(]},) :l_{,zl r ﬂ(g%f*) CAOH'SiStS ’ouf" two poinf,s}. . :_
And also we have
Lemma 1 (Bohr—Jessen (2], § 18).
r(N=r ¥ <), K<y (D=r(l™),
RN+ e sr (), r (D) < (D) +r, (7).
Lemma 2 (Bohr--Jessen [2], § 19). Ler ze Y ()Y nI(I)), and we put
d = min{dist (z, 'r,),l dist(z, I',))

(where diSt (z, Iy = inf {dist (z, w)| wel}). The set I n(z—TI*) consists of two
points z', 2. Let L, L* be the tangent lines to I and z—TI'* respectively, at z'.
If L and L* cross each other at 2’ with angle &, theén we call O the cross angle
aof I and z—TI* at z'. Similarly, we denote by 6" rhe cross angle of I and
z—F* ar z". Then

dY2sin 0 < (2r (D), (T¥Y(r (D —r (T¥)?
and .
dY3sin 6 < (2r (D) r (T9(r: (D) =7, (r*)))”?. o
This Lemma 2 is quite useful in the sections below.

Now we return to the convex curves I’,,, introduced at the- begifining of
this section. We put

v tzyl Zie 0 (1 SjsN)‘-.

Thien, for any N, one of the following two cases happens:
Case [ The boundary 0Zy con51sts of one convex curve I‘ o N and

ZN-—I(FJ,NUFyN PN o

ZN:-"g Izl+22+
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- Case Il The boundary £Zy consists 6f.two convex curves I'y y and I y
and ¥ ’

EN:FJ-NU(I(F},N}ﬁY(F,‘N))W F:))N'

‘Now we decide the values of g,. We can choose the primes p,,,m* p,,, (235
pmﬂ, and p,,l(,,,’ for .which.the inequality’

36 I () 2 2r (F:m)

holds for & =1, 2, 3, where g, = p,y (1 < y
of the values of m{k) depend only on oy. (See (3.3)) Further we define ¢,
=p,xfor 5<n<m2)+2, g, po_s for m2)+3 K< n€<m3)+1, g, = po-y
for m(3}+2< n< md), and g,=p, for n 2m@)+1 (= Ng, say). Then, for
any N = Ny, Zy is the range of the values of the mapping Sy; Xy = Sy(Qn).
Under the condition (3.6), Case II holds for X,, X3 and Z,.

Our aim is to construct the continuous function Fy which satisfies the
relation (2.8). We put T

Sy (04, .. ()N o> — E Iog l—q,, exp(erf(),,))

n=1

and

Qx(R) = (91, o Oe QY Sy(0y, ..., Oy)eR}.
Then it is obvious that m(Qy (R)) = WylR) for N = N,. Bohr-Jessen

constructed. concretely- the continuous function F4(z) which satisfies

(37) S m(QN(R))_HFN )dxdy ’
for N'=4. Then we define mduct:vely

) i

(3.8) ' FN(Z) ij‘N"] (Z_ZN(()N))d()N‘ !

0

for N = 5. We can casily show that each of these Fy's again satisfies (3.‘?)?
and therefore, satisfies (2.8) as well for N = N,. In the next section, we sketch
Bohr-Jessen's method to construct the function I'4

4, Bohr—.lessen $ construction of the functmns Fz, F; and Fa. Wa remdrk
first of all that our F,, F;, F, are written as F,, F,, F; in-Bohr—Jessen’s
paper.

Let ['y=1T,,, Fy =1T,,. For any z eY(F)mI(I” ), the set ', n(z—17;)
consists of two points, zj and z{. Then, zj = z—z} .and. z§ =z—z} are on
I, We denote the cross angles of Fyand z—T1; at 2f and z{ by 8 and (",
respectively. (We can assume that 0 < (' < n2, 0< ¥ < n/2. - We always
keep this assumption in the following.) We define the function F,(z) as

< 4), We note that the choices

icm
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follows:

0 if  zel(I)uY(I),

Foz)=< o0 if zel;ul,,
(sin )7, (20) fa () +(sin 0)72 £, (29) 12 (25)
| if. zeY(.I-“i)ﬁ.l.(f'y).-
Then we have o _
LemMma 3 (Bohr Jessen [2]. §31). For any z¢[; qu,
Fy(z) <d ™' '

halds, where d = min (dist(z, I'), dist(z, I y)) ‘
We “cut off* the values of F;(2) if z is'close to the curve [ or F v, and
define the function Fi(z). For small positive d, we define
Fz(z) if  dist{z, I') > d and dist(z, I')) > d,
Fa(e) = otherwise.

And further, we define
1
Fi(z) = [Fi(z

0

—z5(03))d0;.

Then, F4(2) tends to the function
Fi(z) = IFZ (3—53(03))‘103
0 .
as d tends to 0. To estimate the speed of ‘this convergence, we first investigate
the shape of the set £5. The boundary #X; consists of two convex curves
F“ =I;yand I'), =1T,3, and X, contains other two convex curves [, and
Iy Iy = I(I“,y) F = I{Ty),.- Ty < 1{I',,)) These curves have the following
properties:
(1) Ifzej(r“)u Y( ) then Zg_ﬁ( r3) @
{2y ¥ zeTy, then Ez n(z—T5) consists of one point z', and z ‘el
Similarly, if zel,,, then £, n(z—1I3) consists of one point £/, and z er
3y If zeY(Iy) nI{Ty), then I'yn(z—1I3) consists of " two pomts
Similarly, if ”e:I(F”)r\Y(ry,) then I“,,n( —I';) consists of two points.
(4) Il = eI“u,, then I’ (z— Fy) consists of one point 2/, and similarly, if
zely, then I',n(z—1I;) consists of one pomt z' In both of these cases,
(=T~ l,,C:Y(A"' ﬁI(F)
5 I ze Y(Iy) NI (Ty

Let o be a small positive humber with the condition a >

A= {Zl dist(z, Fﬁ)‘B a, dlSt(.’.’, Fyi) =d, dlSt(Z, Fny(Z a

), then Z—F3CY(F)F\1(F) o
2d, and put

a, dist(z, I'y) 2
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Then, for sufficiently small a, the set 4 consists of five closed subsets
Ay =AnI(Ty), Ay=An Y(Fii)nj(rfy)s
A = ANV NI, Ay =AnY(T) I, A, =AnY(T,)

Let ze 4;,. Then, I;n(z—1T3) consists of two points, Furthermore, since
ze A, I';(8) niz—T3) consists of two points z' and z”, for any positive § € d.
We denote the cross angles of I;(8) and z—1I"; at 2z’ and =" by - (d) and
g"(8), respectively, and put . ' ’
gy =min | inf (sin & (8)), inl (sin 6"(3))}.
zed; zEAfy

0sdsa2 ) 0€3=<n/2

Also we define g, in a similar way. Thcn we have
Lemma 4 (Bohr-Jessen [2], § 33). If ze A,y, then

F3(z)~F5(2) €d"?/g,,.
If ze A, then S

F3(z)~F3(z) € d"?/g,.
If ze Ay uA* U Ay, then .

Fi(z) = Fi(2). o
Now we arrive at the stage to define the function F (z). We define
; .
FL(2) = [F4 (224 (6,))db,
and
Fi(z)= [F3{z—z4(04))db,.
]

By using .the definition of F,(z), we can easily prove (3.7) for N =2,

However, F, 1s not a continuous function, so we integrate F, twice to secure
the continuity. In fact, we can show that the continuous function F(z)

converges to. Fy (z) uniformly in the whole plane as 4 tends to 0. Hence F, is.

continuous, and it can be proved that this F, satisfies (3.7) for N =4
Therefore, ithis F,(z) is our desired fonction. . _
We quote a lemma of Bohr—Jessen related with the difference between
Fi(z) and F,(z). Let :
: Qu(a)={z| zeZ,, dist(z, T < al,

82, (a) = {z| dist(z, ') < a}, Q, (@) = {z] dist (z, I'y) <aj,
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Qula) = (2| zeXy, distiz, I',) <al,
Fy{a) = [zyely) 1=z e Qulu) U Qv Qu(ayu Q. (a)),
Ti{a) = Iy—Ta(a). |
Then, by (3.1) and (3.2) it follows that
(4.1) F4(7~’)“Fd4(3) < *.‘l (F3(2—34)ng(:—z4))|dz4|+ _f Faylzz,)|dzy
AT r'ita)
= Uk(2)+U,(z), say.
Further, if we denote the set [z—z,] z;el, (a)} by I.(z), then I',{z} belongs
to only one of the four sets Q,(a), Qi (a), Qyi{a) or 2, (a). In case
I.(z) = Q(a), we define §, and §, by
Sq = Inf{d| I, (B) "I (z) = @), 8, = sup!f| I, (2) # @),
and in case I',(z) = §,;(a), we define 5, d, in a similar way. Then we have
Lemma 5 (Bohr—Jessen [2], § 38). If I,(z) = Q(a) or $2,,(a), then
Uy(z) < a2,
If T.(2) = Q,(a) or Q,(a), then
Us(2) <(8,—380)"* log(1/(6, — 84)).
So we can say that for any z, we have
(4.2) Uylz) < a'*log(1/a)

for small a. It is worthwhile noting that Lemma 2 is used essentially in
Bohr-Jessen’s proof of Lemmas 3, 4 and 5.

Starting with the above function F,, we can construct the functions F N
(N = 5) by (3.7). We can show that as N tends to infinity, Fy converges to a
continuous function F. Let

_ " ;
ZNNtm = Ene1tineat bz zyrelne; (L <j<m},

Syn+m= sup dist(0, z),
2EIN N +m
and

{4.3) 3 (N) = 8Up Oy Nt m-
Then we have
Lemma 6 (Bohr—Jessen [2], § 41). For any N = N,,

SUp|Fy(2)—Fyam(2) € sup  [Fy, (2)=Fy (W),

mz dist(z,w) S 6{N)

-This implies the uniform convergence of {Fy). The function F = lim Fy
satisfies the relation (2.9). '
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5. Outline of the proof of Proposition 3. Now we shall start on thel prgof
of Proposition 3. For, any fixed z, by w = w(z) we mean any point satisfying
the condition dist(w, z) < 8(N). From Lemma 6 it follows that

(5.1) [Fu(2)~F2)| <suplF nglZ = Fy Wl
By (3.8) we see that
1
(520 (Fulg)=Fo(w)] < [|Fam 1 (2= 200 Py (w2, (0) dO,.
0
Hence, \

' sﬁij,,(z)_—F-"(w)\ < sup |yt (2} = Foe (W)l

=W .
By using thi$ inequality repeatedly, we have from (5.1) that, for‘ any small
positive d, .

(53) Fy(a)—F(@)
@ sup|Fa{z)—Fa(w)l
oW

< sup|F4(2)—Fé(2|+ sup|F4(z2)—F5 (W)l + SL‘zplF4(w)~fFi(w)l

=X, (z)+ X5+ X, (w), say. -
The estimation of X, is the most essential part of the proqu ol’.Proposmon 3,
and we devote the next section to the discussion of this point. The result
obtained there states as follows: ‘

(54) - Xy d P (N)+dTHES (N2
On the other hand, we shall prove in this _section tha}
(5.5) C X (7). X, (w) < d ™ log (17d).
Hence, if we choose d = §(N)*7, then by (5.3), (54) and (5.5) we have
(5.6) ' Fo(z)=F(z) € 8(N) log(/6(N).
Now we estimate the value of $(N). By (4.3) and (3.3) we have

S < Y nTh< 3 pt <N g )

n=N+1 n=N-+1

for N = Ny. (See (2.3).) Substituting this result in (5.6), we arrive at the result
of Proposition 3. : o ’

We shall estimate X;(z) in the rest of this section, by using several
lemmas prepared by Bohr and Jessen. The same- argument, of course, holds
for Xy {w). Ny

: Oilfr )Starting point is the inequality (4.1). Th’is“inequglity‘, with (4.2),
reduces our problem to the estimation of U¥(z). And the integrand of the
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term UF (z) was already estimated in Lemma 4. To use the result of Lemma
4, we need a lower bound of g, and g,;. We can get such 2 bound by virtue
of Lemma 2; we apply Lemma 2 in the case of I'=I,(§) and I'* = Iy,
where § is the parameter appearing in the definition of Giy. We remark that
8(I",+I'3) consists of two convex curves I, and I';y. The boundary of the set
I (8y+ 15 also consists of two convex curves I and I}, (I'f = [(T'%)) Then
we have :

Lemma 7. IF = [y (0), I' = ', (6).

Proof We only prove the former; the proof of the latter is similar. Let
zel'y. Then I'yn (z —I'3) consists of one point z'. So the curves I'; and z — I,
are tangent to each other at z', and we denote by L' the common tangent
line of I'; and z—I'y at =" Then, L' is parallel to the tangent line L of I',, at =.
(See Bohr-Jessen [2], § 17.) Hence, for the point z (8} = 2+ & n(z)e (5, the
curves I;(6) and z(8)~T; aré tangent to each other at z'(§) =z +&-n' (z"
(where n and n’ are the unit normal vector of I';.and I, respectively, see Fig.
1). This implies that I;;(d) = I'f. Both I';(5) and I¥ are closed convex
curves, so we have I';(8) = I'#. This proves the lemma,

z(8)- Iy

Fig. 1

' Now we deduce the lower bound of g, If ze 4;,, then by Lemma 7, we
have dist(z, /) = ¢~ 2 34, and similarly dist(z, I%) > e Applying
Lemma 2 in this case, we have IR

. . , 1/2
57 gy > (a(r (F&)—ry ()2 (Ti(@)r, (1)
By {34) and Lemma 1, we have

(T —ry () +8 < 1y (T1(8) S 7y ()~ T5) +3.
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Since we can assume r;(I'y)—r, (Fa)—ry(I3) = C = Clagy) >0, by (57) we can
say that
giy > allZ_

And similarly, we can show the estimate gy > a**. Hence, by using Lemma
4, we have ‘

Uk(z) <a V2l | |dzy < a”2dYE

I

From this result and (4.2), we obtain
(5.8} Fi(z)—Fi(z) €™\ 2d"P +a' log(l/a).

Now we choose a = d*/2, We remark that this choice satisfies the condition a
= 24 for sufficiently small d. Under this choice of g, (5.8) leads to the
estimate F, (z)— Fi(z) < d¥*log(1/d). This completes the proof of (5.5).

6. Estimation of X,. Our aim in this section is to estimate |F4 (z)
— F4(w)| under the condition dist(z, w) < 8(N). We first note that by using
(3.2) again, we have

(6.1)  |Fq(z)—Fi(w)
5 f r |Fdz(3““23“’34)—pé(wmza_34)|f3(33)f4(34)|433||dZ4L
Fa I3
so it is sufficient to estimate |F4(z)—F§(w). Let
3% = [zekX,| dist(z, I') > d, dist(z, I',) >d).
Then

Fi(z) = {FZ(E) "
{0
We (irst assume that both z and w belong to XZ%. Then we have
(6.2) [F5(2)— F4(W)| = |F2(2)~ Fz (w)]
< |(sin 8)7 11 (21) f2 (22— (5in @) Hf1 (W) J2 (wall +
+lisin 0771 f (20) 2 (29 — (sin @) Lfy (W) S (w3
= X3+ X5, say.

otherwise.

Here, z}, =}, 4, 25, 0 and §" are the same as those which appeared in the
definition of F,(z), and we define w), w}, wy, wh, @' and ¢” in a similar way.
Furthermore, for X, we have

(63) X5 < l(sin 0) 7 (25) L G0 —fiwi)l +
+isin 607U (Wil | f2 (22— fa(wall +
F|(sin @' sin )" f; (wh) f2 (w3)| [sin 6’ —sin ¢
=¥ +¥%+Y, say.
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To estimate the terms Y, Y, and ¥;, we first prove the following
lemma:

Lemma 8. If dist(z, w) < 6 (N), then
dist(z}, wi) €d™V2S(N), dist(zy, wh) <dT Y2 S(N).

- Proof Let z; =z +{(w—z)ew~T,. We define the four circles C;, C%,
Yy, (% as follows (see Fig. 2):

Fig. 2

Ci: tangent to I'y at z, Ciy = I{I')u Iy, and -
e(Ciy =g, "
CY: tangent to Iy at zj, Iy 1(C})w CY, and
| 2(CY) = g5 "AL—qy 02, |
Ch: tangent to w—1I at zy, Ch, < I(w—1I) w(w-T5), and
e(Ch) =4q,"°
C4: tangent to w—1I"y at z3, w—TI", < I{C%) v C%, and
2(Cy) = g7 "1~ gq; M2,

We denote then by z, z5, z5 and z, the intersection points of C) and C, ¥
and C%,' ¢} and %, and, €} and C3, respectively. Then, by an elementary
calculation, we can show that

dist(z}. z) <5in )7 3(N)  (=4,5,6, 7).
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We apply Lemma 2 to I'= I and I'* = I, and .obtain that

(6.4) sin ' » d“vz,

so it follows that dist{z}, z;) <d*”"5(N3‘ Hencc_ we have that
dlst(ﬂ,w) cd” ”’5(N).

And also, since w;—zy = ((w—zi)—(z—z7))+(2)

dist (=4, wi) <€d ™ Y28(N).

wl), it follows that

This |mphe:, the lemma.
Let z) =z, (0 and w, =z (p). Then, by (3. 1), we have

i) —f1 wil = (2rgy ) exp(La) —exp (L)l
where
L. =log|l—q; exp(2mif)] and L, = log|1—g; " exp(2mig)|.
There exists a real number ¢ between L, and L, for which
jexp (L) = exp(Ly)| <€ exp(&) Lo Lol < |L. =L
holds. So, by Lemma 8, it follows that
@) =f; )] €Il — Ly, < |zi—wi| € d7 2 8(N).

Hence, by using (6.4), we have that Y; <d~'3(N). Since the same argument
holds for Y,, we now obtain the following estimate:

(6.5) Y+ Y, €d” T 5(N).
Next we estimate the term ¥;. Using {6.4) again, we see
(6.6) Y, < d”tsin 0'—sin | €<d” |0 —¢|;

so our problem is reduced to proving the following lemma:

Lemma 9. Let z =z.(8) and w = z,(ip) be points on Iy, let K, and K, be
the rangent lines of T'y at z and w, respectively, and let @ be the cross angle of
K. and K,,. If dist(z, w) < & for some small positive d, then it follows that

IO—-'(,OI €8 and O <.
Also, similar results hold for any pair of poims z apd w on I'y.
By Lemma 8 we have dist(z}, wi) <d~ "2 8(N), and also,
dist (z5, w}) < dist(z}, wi)—+dist(z}, z3) <d~ 2 §(N).

Hence we obtain |0'—¢'| <d~Y28{(N) by the above lemma This resull and
(6:6) lead to the following estimate: 4

67 Y, € d 3 (N).
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The proof of Lemma 9 is quite elementary, so we omit the details. We
only note the fact that we can assume g, = ¢4 (o,) is sufficiently large.
By (6.3), (6.5) and (6.7) we have .

Xy < q’"-"/zé(N).
The same estimate holds for X9, so by (6.2) we obtain
(6.8) - IF4(z)—~ F4 (w)| €«d™325(N)

if both z and w belong to £%.
Let

{ ~ | - '
z lz——z3_“4| -3EF3:Z4EF¢}$
{

I—‘:J= lZEZ:}_l dist(:_’, rl) =d},
= izeZy| dist(z, Iy) = d}, ’ _
and .
K = {xez—ZX| min(dist(x, JY), dist(x, T9) < 5(N)].
{See Fig. 3) ' ‘
Fig. 3
Let zaely and zos [, Ifz— zg—..,;ezz K, then w—z3—z4é2’2",‘ so by
(6.8) wehave c Co -

[P (223 — 20— F (w3 =2, <™ 92 6(N).
If 2-23—24¢2Z% UK, then w—z;—z,¢Z%, so
F‘i (3“53—?4)”F-!£ (W_“:a““%) =0.
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Hence, by (6.1) and Lemma 3, it follows that
(6.9) IFi@-Fimls ]I+ ]

z~z3—z48K sy agek

<d V2 ldz ldza| 4 d ¥ S(N).
:—:3*:451\_.'
For any point u = x+iyeK, the set (z— I"a)n(u+ I',) consists at most
of two points. We denote them by z—=z3 and z—z3 J(If ue 0K, then z3 =z 3 )
Let ('(u) and §”(u) be the cross angles of z—T; and —T, at z3 and z3,

respectively. Then we have

i1 ldzslldzs] < H(sm o (W)

z—gg—a4ek

dxdy+ | [(sin 0" ()™ dxdy
K

=I'+I", say.

We remark that we can choose the values of zj and z3 for which the
functions &'(u) and &(u) are continuous in K.
Let

5(8) = {uez—Xf dist (u, 8z — X)) < 28 (N)}.

For any ueX(d), we put ¢ = dist (4, &(z—2X)). Then, by Lemma 2, we have
sin 0'(4) » t''%. Hence it follows that
2d(N)

[ (sin 0'(w)”*dxdy < | M < B(N)R,

K A3
On the other hand, since m{(K) < &(N), we have
[{ {sin 0'@)~" dedy <372 [Jdxdy < SN2,
K= 53 .

by using Lemma 2 again. Hence we have I’ € §(N)"/% and the same estimate
holds for I"”. Substituting these estimates in (6.9), we obtain the inequality
(5.4), so that the proof of Proposition 3 is now completed.

7. Some reductions for the proof of Proposition 1. Our next aim is the
estimation of the term

E(T, N, R) = Ly(T, RYT—Wy(R).

We first quote the Koksma—Sziisz inequality, which plays the essential
role in our proof of Proposition 1. Let xy, ..., x;, be any (given) points of the
real N-dimensional Euclidean space RY. A sub-interval J of Qy is a direct
product of one-dimensional sub-intervals [x,, £,), ..., [ay, By) of [0, 1):

J =0y, ., By eQn oy <0< B (1S TSN

We denote the set of all sub-intervals of Qy by /. And we define the N-
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dimensional discrepancy of the sequence x,, ..., x; by
Dixy, ..., x)) =sup|A{J)k—m(J),
Jer/
where A(J) is the number of elements of the set {jj 1 <j <
the following inequality holds:

Lemma 10 (Koksma [3], Sziisz [9]). For any h={h, ..
the ring of rational integers), we define

< k, x;eJ}. Then,

L hyeZV¥ (Z is

—=
=)

M| = max |[h| and r(h) =

1€jEN i

x(lhjl-: U

1

Then, for any positive integer m, we have

k
AN~ Y (T RN Y expl2ni KBy X)),

O<|{hl] €m =1

D(xy, oo x) <
where ¢ , > is the standard inner product of R,
This lemma is a multi-dimensional generalization of the famous
inequality of Erdés and Turdn. (See Kuipers—Niederreiter [47].)
Now we start to estimate E(T, N, R). Let CR(z ) be the characteristic
function of the rectangle R:

c L if zeR,
"(‘)”{0 if z¢R.

Then we have
(-1 1

T -
Ly(T, R) = _fCR(fN(f))df Z ICR(fN("+f))df+ j Cr{fx()dt
0 171
Hence
-1 1
E(T,N,R) =[T]"" ¥ [Crlfyin+)dt—Wy(R)+
n=0 0 '

T
+[T]7 | Cr(fv@)dt+{Ly(T, RYITY)- ([ T1—T)/T)

(¥ ]
1 711 )
= {([T17* ¥ Ca{fn(n+0)—Wy(R)di+0(T™.
Q n=0

It is easy to see that, if we put

x,;(g) = ({—{(n+ry2m)log p}, ..., {—{(n+1)/2n)log Px})

(where x! = x—[x]), then fy(n+1)eR if and only if x,(rte Qy(R). For any
subset S < Qy. we denote the number of elements of the set (n| 0 <n <[T]
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~1, x,(t)e S} by A,(S). Then we have

1
(7.)  E(T N, R) = [(ITT V4,(Qy(R)~m(Qy(R))dt +0(T™Y).
4]

“We shall éstimate the integrand of the right-hand side of (7.1) by the
Koksma-Sziisz inequality. For our purpose we must repldce the set Qy(R)
by a sum of sub-intervals. We put

Qnlay, .., ayy = {01, .... On)€Qnl ayr g;‘oj <(aj"l+" (1 <j< N)}

where a; is an element of the set {0, 1, 2, ...
obvious that

,r—1) for any f. Then it is

Qy = U

O=say <r

U Oxla, .0oay)

OSay<r

And we define )
R, = U Onlag, ..., ay)

Anlagi..ap) < Qy(R)
and '

Ry= U Oxlay, ..., ay).
Qulayse o) NQNIRY #Q .
Since R, < Q4 (R} = R,, we have
[T] 1A, (R)—m(R, )+m(Ry)~m(Qy(R))
< [T171 A (25 (R)) = m(Qx(R)
< [T] P Ay (Rg) —m{Ry)+m(Ra) — m(Qy (R)).
So, o
(720 |[T]' 4, (Qn(R) —m(2y(R))
< max (L7171 4, (Ry) = m(Ry) +{m(R) =

< ¥

0Ky, .6y <

m(@y (R))))

‘[T]_l AI(QN(aU [RRE) aN))__m(QN(als AR aN))i+

o+ 111210(2 |m(Rj}—m (2 (R))]
m (QN(R))[,

where Dr(r) == ( ([) Xy (f) . I[T (I))
For the evaluation of the term |m(R)—m(Qy(R)), some geometric
nvestigations of QN(R) are indispensable. Such a study was already done by

Matsumoto-Miyazaki [5] Since the length of the diagonal of the cube
QN{a1 .. ay) is P NYH we have o

< r¥ Dy () + max fm(R)—
' =t
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LemMa 11 ([3]). For j=1,2,-we have. .~ -~ AT

im(RJ)—ﬂl(QN(R))| £ rvN/(N-i-_i)N(?:Ii!H 20"0.‘

On the other hand, in the next section we shall prove the following
estimate of Dp{t):

(7.3) . Dyp{f) < N? 3N(m'1 +D7),

where D s the term defined in the statement of Prop051t10n 1
; Subsututmg these results in (7.2), we have

L7177 A (@(R) —m(Qy (R)) < N*(3r)" (m™ " + D )+r-Nf<N+”N‘3’””"°

Since the right- hand side of the above is independent of £, by combmmg this
result with (7.1), the assertion of Proposition 1 follows.

Remark. Professor H. Niederreiter kindly informed the author of the
existence of his paper [8]. (See also [6], p. 982)) We can apply the result in
[8], by virtue of the result proved in [5]. If we use the theorem of
Niederreiter—Wills, the result of Proposition ‘1 can be improved shghtly This
improvement, however, has no effect on our final result. e

8. Estimation of discrepancies. The purpose of this section is to prove
(7.3). By Lemma 10 we have

.[T]l‘

DT(t}<2N23N“( j1+ r(~t|LT] 2 cxp(Zm (h X, (r)>)|)

o<|| k]l €m n=0

We first evaluate the exponential sum

11—t
S= Y5 exp(2mih, X, (D).
n=0
We have
[T]—1

(8.1) IS} = |exp(—idD) 2, exp(—idn)| < 2/|t —exp{—iA)l,
neQ

where 4 =, log py+... +hylog py = log (p2L... oy,

We shall obtain a lower bound of |1-e""“| Wc first remark that we can
assume A > 0: if A <0, then we can use the relation [l —e —iAl = |1 —e” i ),
and the casc A =0 is impossible because of the uniqueriess of ‘the
decomposition of integers into prime divisors.

Let k=0 be the nearest integer to Af2n, and put n = (A/Qn:) k
Namely, ‘

82 LM N,
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We first assume k 2 1. In this case we have

(8.3) H—e | =[1—e 2™ » |y » k|n—A/2k| » |n~ A/2k|.
On the other hand, there exists a number & between w and A/2k, for which
(8.4) e"— et = (m— Aj2k) e '

holds. We claim that & <{3/2)w. In fact, if k =2, then 4/2n = 3/2, so we
have A4/2k = nd/(Ad—2mn) € nd/(A~-m) < 31:2/(31: 1) =1{3/2) r, and this im-
plies & < (3/2)n. And if k=1, then our claim follows from the inequality
Af2m < 3/2.

Hence, from (8.4), we have [e"— e <|n - A/2k| Therefore, with (8.3),
we obtain
(8.5} [1—e™™] 3 |em— "M,

Here we quote a result of M. Waldschmldt on the estimation of
transcendental measure of the transcendental number &

Lemma 12 (Waldschmidt [107). If « is an algebraac number wn‘h deqree D
and height H, then

{e"—a| > exp(—CD*(D+log H)(log(D+log H)?)
Jor some absolute constant C > Q.

In our case, « = %% is a real root of the equation X —p't .. pi¥ =0,

Hence we can apply the above lemma to the right-hand side of (8.5) with
D €2k and H < exp(2nk). So we have

[1—e™" » exp(—Ck® (log (k-+ 1))%).
By using the estimate

‘ N
e +“1N| log Py < Ilh” Z log P

=1

(8.6) k <€|hy|log p, +

<||K| N-log N € mN -log N,
we obtain .
(8.7) fl—e™"| » exp(~C(mN log N)3(108 (’"N))z)

If k = 0, then ll—' Tid) 5 > A » |e? -1f We wrlte et = p pN = ql/qz with
co-prime rational integers g, and g,. Since e 3 1, we have

=112 g7 2 (" ... px™) " = exp(— (] log py + . +m~uogm))

Hence, with (8.6), we see that the estimate (8.7) also holds in case k = 0.

Here we note that the author’s original proof of (8.7) included an error,
which the referee has pointed out. The simple argument to deduce (8.5) in
case k 2 1 is also suggested by the referee.
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By (8.1) and (8.7), we have
88) Dp(t) <N23N(m'+T7! ( (B~ %

<[ h|| <m
x exp (C (mN -log NY? (log (mN))* ))
Finally we evaluate the sum ¥ r(k)~!. We define the mapping ¢: Z" — Zv-1

by ¢: h={(hy, ..., hy—y, i) =@ (R =K =(hy, ..., hy_y). and put
W)= max .
1=jsN-1

We see that if ||h|1 m, then [lo(hl <m. Conversely, for any K
={h,,.... hy-)e Z"~! with the condition ||| < m, the number of the

clements of the set @~ ()~ [he Z"| [|h] < m} is 2m+1; they are the integer

vectors By = (hy, ..., hy—1, k) (=m <k <m). And it is easy to see that

kit Lkl <m
’"”"‘V’”‘):{l it k=0

The above discussion leads to the following relation:

Vo t= Y r(H)” Ml+2(14+27 1370+ cetm™h)
[hll €m 1w €m
<( % ri)"Y)(3+2-logm).
Al €m
We apply this argument repeatedly, and get
(8.9) ¥ r(h)'l€(3+2-log.m)"’.'

i Wl S
Substituting this inequality in (8.8), we obtain the result of (7.3). This
completes the proof of Proposition 1. ‘
Remark. The referee pointed out to the author that the inequality (8.9)
can be proved in a few lines. See [4], p. 155.

9. Proof of Proposition 2. Now the only task remaining to us is to prove
Proposition 2. Let 4 = R—R;, and we evaluate the measure of
Qy(d) = (O, -, ONEQN Su(01, ... Ode ).
Let 22.]\1 = '{Zz'l“ P +ZN| ZgErz, P ZNEFN}' Then
ZN = F1+ZZ‘N = '{21+Z| Z, Erl, ZEZZ,Nl'
For any zelX,y, we put
@(z)=mif,] 00, <1, z,(8)+zed}.

Then it is obvious that
11

©.1) m{Qy (4)) = g...g@(zz(am o zn(00) B ... dBy.
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The set z+1I"y is & closed convex curve, and it intersects with 4 only several
times. We consider one of such intersections of z+/, and 4. This
intersection is an arc of the curve z+1I';. We denote the end points of this
arc ' by z+z,(6,) and z+z,(0y): T'= {z+42,(0,)] 0, <0, <0,). We can
easily show that dist(z+z,(0q), z+z,(0p) €6}? in a similar (in fact,
simpler) way as in the proof of Lemma &. Hence. by: Lemma 9, we have
105—08,] < 83/?, and therefore, & (z) € 64>, Hence, by (9.1}, we obtain -

| Wy (R} — Wy (R)| < 352 < N 770" (lag N)™79"%,

This implies Proposition 2, since the same . estimate holds for
W (R,)— Wy (R). The proof of our theorem 1 thus completed. ‘
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Pisot sequences which satisfy no linear recurrence 1i
by

Davip W. Bovp (Vancouver, B.C) .

Introduction. In this paper we continue our study (_)f' Pisot sequences
begun in [1]. Recall that the Pisot sequence Efay, ay) is the sequenlce Qf
integers defined for 0 < ag, <a by : : :

(1) 2 ‘ "1/2<ar:1+1_.a3/“n-1 <172

In [1] we proved that there are Pisot sequences satisfying n? linee}r
recurrence relation. Our proof made use of an ineqpalllty frorp Plsqt s thesis
[5]. We recently discovered that the constant‘i‘n this inequality 1s incorrect.
Since it is used at three separate points in [1], it would appear that many of
[ ils in [1] need to be modified.

e Cgtl?;ﬂ;rlsl: Il:ugpose here is to show that all the theorems-of [1]'are G(_)rrec.t
as stated and to indicate the necessary changes in the proofs. To do this, we
prove a number of new inequalities for Pisot sequences. Sl'nge these shoqld
be useful in other investigations we give more general versions than needed

i epair the proofs of [1]. .
° Slglglysécgnd purpcr))se is to sketch a simpliﬁed pr?Of Qf the main _T}leorer}}
4 of [17, avoiding the use’of the~Kroneckcr—Wey1 theo‘;em. ComblnF;;%é'tghxs?
proof with results from [2] shows, for example,- thatrnong of E { m,
1782m) satisfy ‘a linear recurrence for any odd m. RN

1. The new inequalities. The notation will be 3s in [1].. L ‘

It la,) = E(ag, ay), write &, = Ay 1/a, and Pu = inf lﬂ'm_:l_ml;: nj
(misprinted in [1] as “sup”). We write O(aO,‘ql},—_—j_ ()= lim 0, .wluch always
exists. We are interested only in 0 > 1 for which it is necessary and sqfﬁcgnt
that aq 2 do+/do/2, according to results of Pisot [5] and Flor [4]. Let l
= lim a,/6" > 0, and define &, = A" —a,.

LevMa L. For all n2 0,

(3} . }8,,' = 1/(2(6— l)((Pnf 1)) :



