92 - R. Sitaramachandrarao i
and consequently by (1.4} and (1.3}

Lo=pBE =p - Z yi By =agT V= 3 iy el
i=0
which is (1.2).
Finally (1.5) follows from (2.3) and Eulers muftinominal formula [2]
which states that if by # 0 and s is any real number, then

(Z b, z-a)) = Z B (z— a)"

fl'—

where
BY =by and BY =— Y {i(s+)—n)b; B, for nzl.
: 0 i=1
Remark. We note that the numbers B¥ and g% are related by

n

B =(=1" Y (~1F B

=0

and that B{s satisfy the recurrence formula
n Y [

i n—1
BLM — Z aiBLk:i” = B(k-—1)+ 2 7 B(k",i.)l

i=0
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On sum-free sequences
by

H. L, Assorr (Edmonton, Canada)

A sequence A: a4, < a, < ds... of positive integers is said to be sum-free
il no member of A is the sum of two or more other members of A. P. Erd&s
[1] proved a number of results concerning sum-free sequences. One of these
is that for any such sequence

¥ (La) < 103.
This leads one to define ¢ by '

e=sup (Y 1/a;
deAd
where the supremum is taken over all sum-free sequences A. The powers of 2
form a sum-ree sequence so that 2 < g <103, Levine and O’Sullivan [2]
considerably improved on Erdds’ upper bound by showing that ¢ < 3 97 and
they constructed an example which shows ¢ > 2.0351.

The object of this note is to exhibit an example of a sum-free sequence
which establishes ¢ > 2.0648. The construction is fairly elaborate. The rela- -
tively modest improvement over the resuit of Levine and O'Sullivan can
perhaps be considered as evidence supportmg their conjecture that g is much
closer to 2 than to 4. The construction is given in the following theorem.

TueoreM. Let A be a |, ﬁmte) sum-free set. Let s = z a and let t be an

integer exceeding s. Define integers |, m, n, v and p as onIows

oS4 2 (T |
[:( 2 )’ m—-(_ 2 )’
l:l-—l-%s;]
n o= | —————,
r
ALy ]
ﬂz(z)"(z)+"

r=Il-nt—1,
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Suppose that A and 1 are chosen so that r > 0. Define setrs B and C as
Jollows:

B={w+1l:p=12...01, C=ip+tvr+liv=12 ... m+l}.
Then S =AUBUC is g sumfiree set,

Proof Suppose § = AUBUC is not sum-free. Elements of 4, B or €
arec denoted by the corresponding lower case letters.

Case 1. Some element of B is a sum of elements of 8. Since the least
member of B exceeds the sum of all elements of A, we must have

bO -‘55b|+b1+...+bk+[l|+le"f"..<+tfj, k,>«- I, k+j =2,

Since by = ¢+ 1. we get

(1 (Ho—t1—ty—...— )t =k—l+a,+a,+...+a.
Since the right side of (1) is positive we must have
Ho—Hy—Hz~..— e = 1,
so that _
kzt+l—a —ay—...—a; 2 t+1~s.
Thus |

k(k+1 —s5+2
o 3 Ty gy > A > (7 Jri>1,

& -

contrary to the definition of B.
Case 2. Some element of C is a sum of elements of A uB. We have

Co=bi+by+...+bhta+ay+. +a;, k=1, k+j=2.
Since ¢ = (p+vo)t+1 and by = yr+1, we get
(2) (ptvo—tty—tta—...—p)t = k=T4u, +a,+...+a,.
We need to distinguish three subcases. ' '
Case 2.1. p+vo—py—p3—...—p, = n. We then have, from (2)
3) n=k—1+a,+az+...-+a,
so thai

ksn+1l=l-r,
We also have, from the definition of p,

141 r+1
( ) )“( 5 )+#1+#z+~-+ﬂk_“’o-
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In order for this to hold we must have vo =0, k = /—r and the numbers y,,
Uy, ...y Py must be the numbers r-+1, r+2, ..., L We then get, from (3),
nt=l—r—1+a +ay+.. +a= 11t+a1.+a2+...+a1.
It follows that j =0 and thus that
Co=bytbyt . b =( +pa+.. )+

= ((’;l)—('izl))t-l-br =(p—nt+l—r=pi+1.

However, the least member of C is (p+ 1)t 1. This disposes of case 2.1.
Case 2.2. p+vo— ) ~fz~...— 4 = n+1. Then we have, from (2),

(ndt L k—1+a+ay+. +a;Sk—1+s<1-1+s.

l~14s

This gives n s[ ]ml, a contradiction.

Case 2.3. p:{»vo—~pl—-,u2—-...—,uk <n—1. Then we have, from (2),

k€(n—- i+ l—a—a;—...—gy < (n—1t+ 1 =l—r—1 <l-r.
Thus

I+1 r 1
pa ity <D= D)+ =D 4o 1) = . )_.( i )

But then

) I+1y e+l
P+V0_P1—I-‘z"---"‘.”k>i7+"o*"( 5 )+( 5 )="+Vo>"s

another contradiction,

Case 3. Some member of C is the sum of at least one element of C and
some elements of A B. It is easy to check that the sum of the smallest two
members of C exceeds the largest member. Thus we must have

Co=Cr+b +by+.. b +a +ay+...+a, k+jz1.
This gives, on setting ¢, =(p+v)t+1, b = yt+1,

(Vo—Vi=py=pa— .~ }t = k+a+ay+...+ 4
We must have

: : k(k+1
vo—Vy 2y Hpp+.H et ] ?"LT")"+1-
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’ icm

Now k+s2 k+ay-+as+...+a; =t so that

r—s)(t—s+1
Vo —V, ;%jﬁ_}.{ _m+]

contrary to the definition of C. This completes the proof of the theore

A computer program was written to compute 3. (1/a) for various sets
aes

and various chmces of t. It was found that if 4 = {1, 2, 4, 8} and 1 = 24, «
gets

Y. (1/a) > 2.0648.

acS
An infinite sum-free set may now be obtained by adjoining to §
sufficiently large powers of 2.
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