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On certain Euler products
by

N. Kurokawa (Tokyo)

We denote by P the set of all rational primes. Let X be a subset of P.
We define the zeta function {({s, X) of X by

s, X) =TT —p"07
. . peX .

where s is a variable in C, the complex numbers; obviously this product

converges absolutely in Res > 1, and {(s, P) is equal to the Riemann zela

function {(s). Since

s, Xy = (s, PYLGs, P=X)" V=L [T =P,
EX

we see that if X or P—X is a finite set then { (s, X) is a meromorphic
function on C. It seems that the analytic nature of (s, X) is not so clear
when both X and P—X are infinite sets. In this paper we prove the

following : B

TueoReM. Let ¥ be a Dirichler character of order 2. Let
X.=lpeP:z(p=1) and X_={pePiyxlp=—1.

Then {(s, X ) and {(s, X_) are continued as analytic functions (with singuler-
ities) in. Res > 0 with natural boundaries Res = 0. ' _

ExampLe. Let m = 3, 4 and 6, then the infinite product [T t=p !

: =1(m)
is analytic in Res >0 with the natural boundary Res = o,

Proof of theorem. We use a modification of the method of Ester-
mann [17 (cf. [3]). Let Xo = {peP; x{p) = 0!, which-is a finite set. We put:
als) = (s, X ) b(s) = (s, P—Xoh and c(s) = L(s. y). where L(s, y) denotes
the Dirichlet IAfunction. From P=X_.uvX,uX- (a disjoint union) we
see that b(s) = {(s, X )C(s. Xy so {(s.X)= b(s)fa(s). Since h(s)
(= ()L (s, Xo)) 18 meromorphic on C, to prove theorem. it is sufficient to-
show that a(s) is analytic in Res > 0 with the natural boundary Res = 0.
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By definition
a(s)* _ I+p™°  bis)
a(2s)  pex_ 1-—-p7*

hence we-have via iteration

()
a(s)z"H _ n b(QkS) an—k
() a2 g 11 (('(st))

k=0
for each integer # 2 0. Note that «{2"''s) is non-zero holomorphic in
Res >27""" and that the right hand side of (%) is meromorphic on €, Hence

a(s)*"" " is meromorphic in Res > 2"~ . Thus, by letting n — %, we see that
a(s) is analytic (with singularities) in Res > Q.

_ Wg now prove that the line Res = 0 is the natural boundary of a(s). It
is sufﬁclnent to show that a(s) has at least one singularity (actually, infinitely
many singularities) in the region

D(t,5)={seC; O <Res <g, t <Ims < t4s)

for eac;h real numbcr tand 0 <& < 1. We treat the case t > 0, since the case
t < 0 1s exactly similar. For a positive integer n satisfying 5-27"" 2% < £, wWe
put '

Dyt e) = {s€C; 3:27""2 <Res <5-27""% 1 <Ims < 1+0} < D1, ).

To simplify the notation, for a function f(s) meromorphic in D, (t, ) we
denote by P(n; f(s)) (resp. Z(n; f(s))) the number of poles (resp. zeros) with

n.lultiplicities of f'(s) in D,(t, &). Note that a(s 27ty meromorphic in D, (1, g
since 3:27"72 » 27" 1 We put: "

P(n) = P(n; a(s)>"" "), ‘
Py(n) = 275 P(n; b(2¥s)/e(245)),
Zy(n) = 2" Z(n; b(2*5)/c(2* )
for k=0,..., n. Then, by (%), we see that
P() 2 Py (0~ (Zord+ .+ Z, () + Za ().

We prove that there are positive constants C; and C, such that

(+4) Pyoy(m = Cy-n2"  for sufficiently large n,
and
(o) ZoMt+.. +Z,_2(N+Z, (M < Cy° 2 for all n,

Then we have the desired result: P(n)— o0 as n— co.
First we show (x+). For each meromorphic function f(s) in Res >0 we
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denote by N (o, 5,; T; f(s)) the number of zeros of f{s) with multiplicities in
the region {seC;o, <Res<a,, 0<Ims< T for 0<g,<06; < 1 and
T > 0. Let f(s) = b(s) and c(s). Then it is known that (sce Tiichmarsh [5],
Chap. 9; Montgomery [4] and Fuji [2]):.

T :
N(al,az;T;_f(s))=ﬁlogT+O(T) as T-—-ow

if ¢, <1/2 <o,. Hence {*#) foliows from a result of Fujit [2] (Theorem 1’
and § 4) saying that positive proportion of zeros of {(s} and L(s. y) are non-
coincident, by noting that: seD,(t, &) if and only if 3/8 < Re(2" ts) < 5/8
and 2771t <Im(2"71s) < 2" Y +e).

Next we show (xsx). Note that if seD,(t,€) then Re(2*s) < 5/16 for
k <n—2 and Re(2"s) > 3/4. Hence, for k=0,..., n—2 and n, we have:

Zo(n) < 275 Z(m L2 9) S 27F N (0, 5/16; 22 +2); {(5)
= 2N (1116, 1; 2t +2); L ().

By Titchmarsh ([5], Theorem 9.17) we see that for each 1/2 < ¢ < 1 there are
positive constants 0 < ¢(1) <1 and ¢(2) such that

N(o, 15 T {(8) < e+~

for all T > 0. Hence there are positive constants 0 < ¢{3) <1 and ¢{4) such

that .
Z (1) € c(4) 21 H 280 A = £(4) P

for all n and for k=0, ..., n—2 and n. Hence we have
Zo(m)+... +Z,_ (N +Z, ) < c(4) on Z PRGELL
' : k=0

s = (@2 (1-27) T =Gy 2

for all n. Thus the required estimations (+%) and {(x+x) hold, and theorem is
proved. a _ '
" Remark 1. We may look at zeros of a(s)?"" ' instead of poles by using

Z(n: alsP™" ") 2 Zaoy (N —(Po (M + ...+ Puzz (1) + Po();
here we wse an estimation of the form
| N{a, 1; T; L(s, ) € T+ 1)t 7D
which is contained in Montgomery [4].

Remark 2. From the equation (+) we have formally the following:

als) = Ijob(Z"s)r"c(Z's)"z—".
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This is c-onsidcred to be an analogue of the expansion of an Euler product
into an infinite product of “basic Euler products (L-functions)” used in the
method of Estermann [1] (cf. [3]).

Remark 3. Our result can be generalized to some extent by similar
method, t?ut, for example, we have no result on the analytic nature of £ (s, X)
when X is the set of all Mersenne primes.
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On well distribution modulo 1
and systems of numeration

by
Jozer Horsowicz (Lublin)

1. Introduction. A sequence (© (m), n=0,1, ..., of real numbers is said
to be well distributed modulo 1 (w.d. mod 1) if for all real numbers «, b with
0<a<b<! we have

lim (N"'card {n 2 0: k<n<k+N—1 and a< (@) <bl)=b—a .

N = : :
uniformly in k =0, 1, ..., {x} denoting the {ractional part of x. We shall say
that a sequence (a(n)), nm=0,1,..., of nonnegative integers has the substiru-
tion property with respect to w.d. mod 1 (swd-property) if for every w.d, mod 1
sequence « the sequence wow is also w.d. mod 1.

In recent years Coquet [1], [2] has constructed certain sequences having
the swd-property. In particular he showed that if g 2 2 is an integer and o(n)
denotes the sum of digits of n in the g-adic expansion {n =0, I, .. ), then the
sequence o has the swd-property. The aim of this note is to generalize this .
result and also to give some new classes of sequences with the swd-property.

Our basic tool will be the Weyl criterion for w.d. mod 1 ([5]. p. 41).
Therelore, the following notation will be convenient.

Let h+ 0 be an arbitrary integer and put e(r) = ¢*™*, te R. For any
sequence w of real numbers and for any integers u =0, vz u, and M > 1,
denote ' ‘

v

Slw:u, v) =Y. e(w(n)

n=u
and

§{w; M) = sup sup|N"*S(w; k, k+N—Di. -
NEMK2O

Clearly § and § depend -also on h, but we have no need to point out this
dependence explicitly. R

3. Two criteria for the swd-property. Let o be a sequence of nonnegalive
integers. If for all sufficiently Jarge n we have a(n) =n+K with some



