## On certain Euler products

by

## N. KUROKAWA (Tokyo)

We denote by P the set of all rational primes. Let X be a subset of P. We define the zeta function  $\zeta(s, X)$  of X by

$$\zeta(s, X) = \prod_{p \in X} (1 - p^{-s})^{-1},$$

where s is a variable in C, the complex numbers; obviously this product converges absolutely in Re s > 1, and  $\zeta(s, P)$  is equal to the Riemann zeta function  $\zeta(s)$ . Since

$$\zeta(s, X) = \zeta(s, P)\zeta(s, P - X)^{-1} = \zeta(s) \prod_{p \neq X} (1 - p^{-s}),$$

we see that if X or P-X is a finite set then  $\zeta(s, X)$  is a meromorphic function on C. It seems that the analytic nature of  $\zeta(s, X)$  is not so clear when both X and P-X are infinite sets. In this paper we prove the following

THEOREM. Let  $\chi$  be a Dirichlet character of order 2. Let

$$X_{+} = \{ p \in P; \ \chi(p) = 1 \}$$
 and  $X_{-} = \{ p \in P; \ \chi(p) = -1 \}.$ 

Then  $\zeta(s, X_+)$  and  $\zeta(s, X_-)$  are continued as analytic functions (with singularities) in Re s > 0 with natural boundaries Re s = 0.

EXAMPLE. Let m = 3, 4 and 6, then the infinite product  $\prod_{p \equiv 1(m)} (1 - p^{-s})^{-1}$  is analytic in Res > 0 with the natural boundary Res = 0.

Proof of theorem. We use a modification of the method of Estermann [1] (cf. [3]). Let  $X_0 = \{p \in P; \chi(p) = 0\}$ , which is a finite set. We put:  $a(s) = \zeta(s, X_-)$ ,  $b(s) = \zeta(s, P - X_0)$ , and  $c(s) = L(s, \chi)$ , where  $L(s, \chi)$  denotes the Dirichlet L-function. From  $P = X_+ \cup X_0 \cup X_-$  (a disjoint union) we see that  $b(s) = \zeta(s, X_+)\zeta(s, X_-)$  so  $\zeta(s, X_+) = b(s)/a(s)$ . Since  $b(s) = \zeta(s)/\zeta(s, X_0)$  is meromorphic on C, to prove theorem, it is sufficient to show that a(s) is analytic in Res > 0 with the natural boundary Res = 0.

By definition

$$\frac{a(s)^2}{a(2s)} = \prod_{p \in X_{-}} \frac{1 + p^{-s}}{1 - p^{-s}} = \frac{b(s)}{c(s)},$$

hence we have via iteration

(\*) 
$$\frac{a(s)^{2^{n+1}}}{a(2^{n+1}s)} = \prod_{k=0}^{n} \left(\frac{b(2^k s)}{c(2^k s)}\right)^{2^{n-k}}$$

for each integer  $n \ge 0$ . Note that  $a(2^{n+1}s)$  is non-zero holomorphic in  $\text{Re } s > 2^{-n-1}$  and that the right hand side of (\*) is meromorphic on C. Hence  $a(s)^{2^{n+1}}$  is meromorphic in  $\text{Re } s > 2^{-n-1}$ . Thus, by letting  $n \to \infty$ , we see that a(s) is analytic (with singularities) in Re s > 0.

We now prove that the line Re s = 0 is the natural boundary of a(s). It is sufficient to show that a(s) has at least one singularity (actually, infinitely many singularities) in the region

$$D(t, \varepsilon) = \{ s \in C; \ 0 < \operatorname{Re} s < \varepsilon, \ t < \operatorname{Im} s \leqslant t + \varepsilon \}$$

for each real number t and  $0 < \varepsilon < 1$ . We treat the case t > 0, since the case  $t \le 0$  is exactly similar. For a positive integer n satisfying  $5 \cdot 2^{-n-2} < \varepsilon$ , we put

$$D_n(t,\varepsilon) = \{ s \in \mathbb{C}; \ 3 \cdot 2^{-n-2} < \operatorname{Re} s < 5 \cdot 2^{-n-2}, \ t < \operatorname{Im} s \leqslant t + \varepsilon \} \subset D(t,\varepsilon).$$

To simplify the notation, for a function f(s) meromorphic in  $D_n(t, \varepsilon)$  we denote by P(n; f(s)) (resp. Z(n; f(s))) the number of poles (resp. zeros) with multiplicities of f(s) in  $D_n(t, \varepsilon)$ . Note that  $a(s)^{2^{n+1}}$  is meromorphic in  $D_n(t, \varepsilon)$  since  $3 \cdot 2^{-n-2} > 2^{-n-1}$ . We put:

$$P(n) = P(n; a(s)^{2^{n+1}}),$$

$$P_k(n) = 2^{n-k} P(n; b(2^k s)/c(2^k s)),$$

$$Z_k(n) = 2^{n-k} Z(n; b(2^k s)/c(2^k s))$$

for k = 0, ..., n. Then, by (\*), we see that

$$P(n) \ge P_{n-1}(n) - (Z_0(n) + \ldots + Z_{n-2}(n) + Z_n(n)).$$

We prove that there are positive constants  $C_1$  and  $C_2$  such that

(\*\*) 
$$P_{n-1}(n) \ge C_1 \cdot n2^n$$
 for sufficiently large  $n$ ,

and

(\*\*\*) 
$$Z_0(n) + ... + Z_{n-2}(n) + Z_n(n) \le C_2 \cdot 2^n$$
 for all  $n$ .

Then we have the desired result:  $P(n) \to \infty$  as  $n \to \infty$ ,

First we show (\*\*). For each meromorphic function f(s) in Re s > 0 we



denote by  $N(\sigma_1, \sigma_2; T; f(s))$  the number of zeros of f(s) with multiplicities in the region  $\{s \in C; \sigma_1 < \text{Re } s < \sigma_2, 0 < \text{Im } s \leq T\}$  for  $0 < \sigma_1 < \sigma_2 < 1$  and T > 0. Let f(s) = b(s) and c(s). Then it is known that (see Titchmarsh [5], Chap. 9; Montgomery [4] and Fujii [2]):

$$N(\sigma_1, \sigma_2; T; f(s)) = \frac{T}{2\pi} \log T + O(T)$$
 as  $T \to \infty$ 

if  $\sigma_1 < 1/2 < \sigma_2$ . Hence (\*\*) follows from a result of Fujii [2] (Theorem 1' and § 4) saying that positive proportion of zeros of  $\zeta(s)$  and  $L(s, \chi)$  are non-coincident, by noting that:  $s \in D_n(t, \varepsilon)$  if and only if  $3/8 < \text{Re}(2^{n-1} s) < 5/8$  and  $2^{n-1} t < \text{Im}(2^{n-1} s) \le 2^{n-1} (t + \varepsilon)$ .

Next we show (\*\*\*). Note that if  $s \in D_n(t, \varepsilon)$  then  $\text{Re}(2^k s) < 5/16$  for  $k \le n-2$  and  $\text{Re}(2^n s) > 3/4$ . Hence, for k = 0, ..., n-2 and n, we have:

$$Z_k(n) \leqslant 2^{n-k} Z(n; \zeta(2^k s)) \leqslant 2^{n-k} N(0, 5/16; 2^k (t+\varepsilon); \zeta(s))$$
  
=  $2^{n-k} N(11/16, 1; 2^k (t+\varepsilon); \zeta(s)).$ 

By Titchmarsh ([5], Theorem 9.17) we see that for each  $1/2 < \sigma < 1$  there are positive constants 0 < c(1) < 1 and c(2) such that

$$N(\sigma, 1; T; \zeta(s)) \leq c(2)(T+1)^{1-c(1)}$$

for all T > 0. Hence there are positive constants 0 < c(3) < 1 and c(4) such that

$$Z_k(n) \le c(4) 2^{n-k} 2^{k(1-c(3))} = c(4) 2^{n-c(3)k}$$

for all n and for k = 0, ..., n-2 and n. Hence we have

$$Z_0(n) + \ldots + Z_{n-2}(n) + Z_n(n) \le c(4) 2^n \sum_{k=0}^{\infty} 2^{-c(3)k}$$

$$= c(4) 2^n (1 - 2^{-c(3)})^{-1} = C_2 \cdot 2^n$$

for all n. Thus the required estimations (\*\*) and (\*\*\*) hold, and theorem is proved.

Remark 1. We may look at zeros of  $a(s)^{2^{n+1}}$  instead of poles by using

$$Z(n; a(s)^{2^{n+1}}) \geqslant Z_{n-1}(n) - (P_0(n) + \ldots + P_{n-2}(n) + P_n(n));$$

here we use an estimation of the form

$$N(\sigma, 1; T; L(s, \chi)) \leq c(2)(T+1)^{1-c(1)}$$

which is contained in Montgomery [4].

Remark 2. From the equation (\*) we have formally the following:

$$a(s) = \prod_{n=0}^{\infty} b(2^n s)^{2^{-n}} c(2^n s)^{-2^{-n}}.$$

ACTA ARITHMETICA XLVIII (1987)

This is considered to be an analogue of the expansion of an Euler product into an infinite product of "basic Euler products (*L*-functions)" used in the method of Estermann [1] (cf. [3]).

Remark 3. Our result can be generalized to some extent by similar method, but, for example, we have no result on the analytic nature of  $\zeta(s, X)$  when X is the set of all Mersenne primes.

## References

- [1] T. Estermann, On certain functions represented by Dirichlet series, Proc. London Math. Soc. 27 (1928), pp. 435-448.
- [2] A. Fujii, On the zeros of Dirichlet L-functions (V), Acta Arith. 28 (1976), pp. 395-403.
- [3] N. Kurokawa, On the meromorphy of Euler products, Proc. Japan Acad. 54 A (1978), pp. 163-166.
- [4] H. L. Montgomery, Zeros of L-functions, Invent. Math. 8 (1969), pp. 346-354.
- [5] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford 1951.

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY Oh-okayama, Meguro, Tokyo, 152 Japan

Received on 20, 2, 1985 and in revised form on 11, 9, 1985

(1496)

## On well distribution modulo 1 and systems of numeration

b

JÓZEF HORBOWICZ (Lublin)

1. Introduction. A sequence  $(\omega(n))$ , n = 0, 1, ..., of real numbers is said to be well distributed modulo 1 (w.d. mod 1) if for all real numbers a, b with  $0 \le a < b \le 1$  we have

$$\lim_{N \to a} (N^{-1} \operatorname{card} \{ n \ge 0 \colon k \le n \le k + N - 1 \text{ and } a \le \{\omega(n)\} < b \}) = b - a$$

uniformly in  $k = 0, 1, ..., \{x\}$  denoting the fractional part of x. We shall say that a sequence  $(\alpha(n))$ , n = 0, 1, ..., of nonnegative integers has the substitution property with respect to w.d. mod 1 (swd-property) if for every w.d. mod 1 sequence  $\omega$  the sequence  $\omega \circ \alpha$  is also w.d. mod 1.

In recent years Coquet [1], [2] has constructed certain sequences having the swd-property. In particular he showed that if  $q \ge 2$  is an integer and  $\sigma(n)$  denotes the sum of digits of n in the q-adic expansion (n = 0, 1, ...), then the sequence  $\sigma$  has the swd-property. The aim of this note is to generalize this result and also to give some new classes of sequences with the swd-property.

Our basic tool will be the Weyl criterion for w.d. mod 1 ([5], p. 41). Therefore, the following notation will be convenient.

Let  $h \neq 0$  be an arbitrary integer and put  $e(t) = e^{2\pi i ht}$ ,  $t \in R$ . For any sequence  $\omega$  of real numbers and for any integers  $u \geq 0$ ,  $v \geq u$ , and  $M \geq 1$ , denote

$$S(\omega; u, v) = \sum_{n=u}^{v} e(\omega(n))$$

and

$$\delta(\omega; M) = \sup_{N \ge M} \sup_{k \ge 0} |N^{-1} S(\omega; k, k+N-1)|.$$

Clearly S and  $\delta$  depend also on h, but we have no need to point out this dependence explicitly.

2. Two criteria for the swd-property. Let  $\alpha$  be a sequence of nonnegative integers. If for all sufficiently large n we have  $\alpha(n) = n + K$  with some