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Suppose for example that Ng = +4. Since 2 =z% where fc' = 34-6,
umque factorization implies that up to a unit factor, ¢ must equal =2, i or

* Slnce ¢ > 0 this unit factor is w” for some neZ. Now w= 27+10() 50

that w? = 1(mod4). Hence, ¢=n? n% 7% wr? wn%, or wiw(mod4),

Multiplying these out we find that none of them is compatible with the
hypothesis ¢ = 2+ 38(mod 4).

The rest of the cases in this proposition are settle:d by similar
calculatlons =
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On the lrank of ideal class groups
of certain number fields

by

Kivoaxr Iimura (Tokyo)

Introduction. Throughout this paper we shall fix an odd prime number L
Let Z and Z; denote the ring of rational integers and of l-adic integers
respectively. Let K be a nonabelian Galois extension of the rational numbers
Q satisfying the following conditions.

(2) The degree (K:Q) is nl with nj{/—1, ns 1. _

(b) The Galois group G of K over @ is generated by two elements ¢ and
7 with the relations

where r is a rational integer of order n in the multiplicative group (Z/IZ)*,

Let T {resp. S) be the subgroup of G generated by 1 (resp. o), anq let L
(resp. k) be the fixed field of T (resp. §). Then k/Q is a pyc]ic extension of
degree n, whose Galois group is generated by the restricufm of 7 to k."Also
L/Q is a non-Galois extension of degree [, with Galois closure K. An

important example of this situation is L= Q({/— ). k=Q(), and K = L-k,
where £ is a primitive fth root of unity and m is an lh power~free rational
integer; such a field is called a pure field of degree 1.

Let H (L) denote the Iclass group of L, ie., the Sylow I-subgroup of the
ideal class group of L. The lrank of H(L) is defined to be the J.aumber of
invariants of H (L) divisible by I, which we call rank H(L). The main purpose
of the paper is to establish lower bounds for rank H (L) (see Theorem 2.3 in
§2) by making use of the genus number formula found by Jaulent ([11],
Theorem 3). In particular in the pure field case L= Q(!/m),
[#£3, one of our lower bounds in the corollary to Theorem 2:3 is
equal to the number of distinct prime factors = +1(mod ) of m; this is an
extension of one¢ of the results in [1] which was a consequence of rational
genus theory. Also we shall illustrate ‘this Theorem 2.3 with some examples in
Section 4, one of which says that if p = (ch+ch)eo+ey) with 12 5 and ¢,
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cieZ, is a prime and if (co+¢;)” W = 1(mod p), then the [class group of
the pure field Q(!/p) is not cyclic, ie., rank H (Q(\’/E]) > 2.

We conclude this introduction with some remarks about notations. In
general we use multiplicative notations for groups and modules. Also the
action of a group or a ring on a module is expressed by exponentiation, and
(xﬂ')f = xﬂ"!.

1. Preliminaries. We use the notation of the introduction. For a finite
extension F/Q, let H(F) denote the I<class group of F. If 4 is & finite abelian
group, rank A is defined to be the number of invariants divisible by /. Also
Z,[A7 is the group ring of 4 over Z;. We denote by X the group of l-adic
characters of T, i.e.. homomorphisms of T into the group Z;* of units in Z,.
Note that Z,* contains the nth roots of unity since n [/—1. For a character y
in X, let ¢, be the idempotent of Z,[T] attached to y; ie.,

e,=n"1Y gl He.

oeT

Then the e, are mutually orthogonal. For a Z,[T]-module M, let M®

=M = {m; meM); then M® = {meM;m =m*®} and M = [] M®
xeX

(direct product). By & we shall denote the clement of X such that gog”

= ¢%®@ for all g in T, then 6 is of order r, so geverates X. Furthermore let 4
-1 _

=1—06,8= Y ¢, and n=1"1{4""~48); n is known to be a unit of Z,[5]
i=0

(cf. [3], proof of Proposition 4.1 and [10], Lemma IL6).
For each integer i = 0, we define

1

I = HK)F HEK)YHKY " HKY.

Then each J; is a Z,[G]-module and I} = 1. Also I; =1 for all i = I since
A'e1Z,[S]. As the degree (K : L} = n is prime to / by our assumption (a), the
inclusion map: H(L)— H(K) is injective, so H {_L) may be considered to be a
subgroup of H{K), and then H(L)= H(K) 0 where ¥o 1S the trivial

character in X.
-2
Lemma 1.1, rank H(L) = ) rank il

I=0

Proof. Since # is invertible in Z,[S] and H(L) =1, then H(L}
=H (K)”lﬂ““’), which implies the assertion of the lemma.

Lemva 1.2, rankIZ% =5, where s is the number of rational primes
ramified fully in L and decomposed completely in k.

Proof. This is immediate from [11], Theorem 3.

Let U be the keérnel of the A-map from I, onto I,. It is easily seen that
egd = de,  (mod 4*Z,[G]) (cf. eg. [10], Proposition IL5 (ii)); so that the

icm
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A-map gives rise to an exact sequence

A
1- U% Ig])—r ngo)—ﬂ 1

¥

and therefore
(1.1) rank IV = rank I® —rank U@,

The norm map, N, from K to k induces a homomorphism of the group
of ideals of K to the group of ideals of k and so of H(K) to H(k) and we
shall denote these homomorphisms by N also. Let H{K) be the kernel of
N: H(K)- H(k), and let J = H(K)/H{K)?; then H{K) and J are Z,{T]-
modules, and J! =1 since [e8Z,[S]+4"*Z,[8]. If K/k is unramified, then
J=1 (cf. eg. [6)). In the case that K/k is ramified, the genus number
formula obtained by Jaulent ([11], Theorem 3) provides rank J®, To

_describe it we introduce some notations. Let s, denote the number of

rational primes which are ramified fully in L and whose decomposition
groups in k/Q are of order <2 We define

1, if K/k is ramified and ! =3,

a= .

0, otherwise. '
Let E(k) be the tensor product, over Z, of Z, and of the group of units in k,
and let E = E(K)/(E(k)~ NK); E(k) and so E are Z,[GJ-modules. Then by
the genus number formula,
(1.2) rankJ¥ = 5, —g—rank E©.

Let H'(k) = NH(K) and H(k) = {he H(k); i = 1} they both, as well as
H(k), may be regarded as Z,[T]-modules by restricting T to k. Class field
theory says that H'(k)® = H({k)® for any character y# (" !, and that
H{EC WE ()@Y s trivial or cyclic of order [ according as K/k is
ramified or not; hence unless K/k is unramified and ! =3, then H'(k)®
= H (k). But in the case that K/k is unramified and / = 3, it is known that
rank H{L) = rank H (k)—1 (cf. [2] and [4]); so that from now on until the
end of the last seetion we shall leave out this case.

Now we let 1 H(k)— H(K) be the inclusion map; it is easily seen that
H(K)YH(K) = H(K)*1H' (k). But since H'(k}® = H (k)®, then

(H(K)* HKY)®. = H (KYAOuH (k).
Furthermore we define the canonical homomorphisms:

@: H(K) > H(K)/H(K)*H (K)' = 1,,

¥ B(K)~ H(K)/H(K)*=J,

&: H{k)— H(kyH (k).
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In particular if K/k is unramified, y is the trivial map since then J = 1.
Lemma 1.3. We have
rank /¥ = rank H (k)® +rank J@ — rank y (iH ().
Proof. Let B = H(K)/H(K)?; then rank I{? =rank (B/B“). The norm
map N gives rise to exact sequences: -

1-5JO 5 B® L H (k)@
| L o)

1D — RO _ﬁ’_ I’I(k)w”—b 1,

where D = w‘((H (K) H(KY)? ~ H(K)). As
(H(K) H(K)Y)® = (HK)NDHE®  and  H(K) < H(K),

the kernel D is the same as Y (tH(k)®nH(K)). But by definition,
H )W A H(K) = 1 HK®, so D=y (HK"™). The above exact sequences
now give the required result.

We conclude this section with the following

Lemmva 14, Let H be g Z,[ T]-submodule of H(K). Th_en
rank ¢ (H®)
= rank £(NH®) +rank W (HOH (k) ~ H (K))~rank y (iH (k)?).

Proof. Since (H(K)' H(K))® = (H(K)*)"® 1H k)", the module o (H™) is
isomorphic to W (HH (k)®)/f (1H (k)®) where § denotes the canonical ho-
momorphism of H(K) onto H(K)/H(K)4. The norm map N induces the
following exact sequences:

1= Y(H®H (k) ~ H(K)) ~ 'ﬁ(Hw) ,H(k)w))ﬂ', N H® H(k)® - 1,
& ' W v

1=y (H (O N HEK) - FHE®) 5 HE 1,

I
v (1H (k)9
Since N H® H(kf™/H (K)\® is isomorphic to ¢(N H®), the Jemma follows at
once from these sequences.

2. Lower bounds. We use the foregoing notations. Let H, (resp. H))
denote the set of elements hin H{K) with A4 = 1 (resp. h%s H(K)%; they are

Z,[G}-modules. Since H* =1 and e,4 = de, (mod A*Z,[G]), it follows

that HY = H{. For an ideal a of K, we denote by c(a) the ideal class of K’

\

icm
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ugmaining a. Let Hy be the subgroup of 1 (K) generated by the classes cla)
with o = a; H| is also a £,[G]-module. Then, by [14], Theorem 1.8, HY
= H{", and therefore HY = H'®,

Lemma 2.1, Let as before U be the kernel of the A-map:
Iy = H{KYH(KY H(K)'— I, = H(K)" H(K)YH (K" H(K)".
Then UW = o{H{®).

Proof. Let H, be the set of elements hin H(K) with he H(K)'; then U
= @tH,), and so we want to show that @(H,) = @(H,). First assume he H,:
then (he " " %4 = o=17 Y% for some ceH(K) since [=p"1 A"y 14,

"’1‘,_11""2

Putting h, = he™* and hy=¢™""' we have Af=Hhl and K

=k, hg“’uz; 80 that h, 5H1 and ¢(h) = @(h;). Conversely assume h,c H
then h{ = hj for some hye H(K), and it is easy to see that h'e H(K)' where h

= hy hy "I-'z; therefore hy eﬁl and @(h;) = @(h). This completes the proof.

Now let s be the number defined in Lemma 1.2, let p,, ..., ps be the
rational primes ramified fuily in L and decomposed completely in k, let p; be
a prime ideal of k above p;, and let <, be the unique prime ideal of K above
p;. Put e =g, Let g denote the order of the factor group C{k)/H(k), C(k)
being the full ideal class group of k. Let I' denote the subgroup of H(k),
generated by the classes ¢(9¥)°, 1 €i<<s. Then I'is a Z, [ T]-module, and it
is easily seen that

H% = I'1H (k)®,
Since (H (K)* H(KY)" = (H (K} 1H (k)}?, it follows from Lemma 2.1 that
U = (I,

So it is clear that
(2.1 rank U® =rank (/) < 5.

Prorosimion 2.2, With the foregoing notations, we have

rank 1Y = g — g—rank B9 +rank H (kpe
~rank  (F'tH (k) ~ B (K)—rapk E(NT)
= g5 a—rank E® +rank H (k) - rank y (1H (k)).

Proof By equation (1.1), '

rank 1% = rank I'? —rank U®.

By Lemma 1.3 and equation (1.2),

(2.2) rank It = rank H (k)" + sy — a~rank B —rank y (17 (k)®),
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Since rank U® < s by equation (2.1), then rank 179 > rank I‘O‘”v—s.. So the
desired inequality in the proposition follows at once. Also by equation (2.12,
rank U'® = rank ¢(I). But if we apply Lemma 14 to the Z;[T]-modvle I,
then .

rank @ (I) = ranky (NH (k)@ ~ A (K))—rank ¢ (1A ()*)+rank §(N T),

which together with equation (2.2) provides the desired equality in the
proposition. : _

Combining Lemmas 1.1, 1.2 and 2.2 yields the following

Treorem 2.3. We have

rank H (L) > s+, — a—rank E@ 4 rank H (k)"
- —ranky (MHK® ~ H(K))—rank (N T)
> 5, —a—rank B9 4 rank H(k)® —rank y (1H (k)'®).

Of special interest is the pure field case, L= Q(i/m} where m is an Ith
power-free rational integer. In this case the number s (resp. S,) is precisely the
number of prime factors = 1{mod {) (resp. +1(mod!)) of m. Also E(k)!® =1
or {35 according as ! # 3 or [ =3, where {; is a primitive cube root of unity
(cf. [14], § 1); in the cubic case it is known that rank E® = 0 or 1 according
to whether or not every prime factor 3 of m is congruent to +1(mod9)
(cf. [7]). Furthermore the extension K/k in which k is the lth cyclotomic field

and K = k({/n—:), is of course ramified. Therefore Theorem 2.3 then provides

CoroLLARY. Let L= Q(W) be a pure field of degree | where m is an l-th
power-free rational integer. Then

rank H(L) > s+ 5o+ rank H (k)® —rank y (T1H (k)? A H (K))—rank ¢ (N ")
= so+rank H(k)'® —rank y (15 (k)®)
Zsy i 1=35;
rank H{L) = s+sy—1—a' —rank y(I) i [=3.

Here s (resp. o) is the number of primes = 1(mod!) (resp. + 1 (mod [)) dividing
m, and @ = 0 or 1 according to whether or not every prime jactor 3 of m is
congruent to +1{mod?9),

Remark. The rank formula in the cubic case | =3 in the corollary has
been already obtained, independently of each other, by Gerth [2], Gras [4],
and Kobayashi [12]. The corollary applies to the pure quintic case I =5 to
show that if at least one prime = —1(mod35) divides m, then the class
number of the pure quintic field L = Q(f/;»;) is a multiple of 5; but this
follows also from Theorems 1, 2 and 3 in [11], and gives an answer to one of
the question raised in [8].
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3. Computation of the ranks of y (I'tH (k) ~ H(K)) and 1 (:H (k)®). In
this section we interpret the ranks in terms of the ranks of certain matrices
whose clements are in the finite field F, of [ elements. We put ¥
=MH{k)" ~ H(K) and W =H(k)®. By virtue of [6] Theorem 1, rank
(V) and rank (W) appearing in our lower bounds can be expressed as-”
follows. Let q,..., g be the prime ideals of k& ramified fully in K, let
( . K/k), be the norm residue symbol at a prime qof k in the cyclic extension
K/k (as to its definition and properties see [5], Part II, §6) and let 4 :k*
=k\{0} = § = G(K/k) be the homomorphism defined by 1, =(y, K/k),,
yek™ Let oy, ..., o, (resp. By, ..., B,.) be elements of &£ such that the classes
¢(N~Hay)'s (resp. ¢(N “1(B))s) generate V (resp. W), where N~ denotes the
inverse for N and (y) denotes the principal ideal of k generated by ye k™. Let
{e1s .., &,) be a set of generators for E(k)®.

For these o's (resp. f's; ¢'s), we denote by M, (resp. My; M) the vxt
(resp. w xt; u xt) matrix with i, j component qu {a;) (resp. qu(ﬁ,-); Ay, (), and

let
M, My
M = = .
, (M) My (M)

Then it follows easily from [6], Theorem 17 that
rank (V) = rank M, —~rank M,
rank y (W) = rank My, —rank M,

where My, My and M all may be viewed in the obvious manner as matrices
over the field Fy. Their ranks, of course, are independent of the choice of the
o's, f's and &'s.

Now we let 7 be an element of Z [T] such that & = ¢(mod IZ,[T]), and
let : T— Z be the map given by (o) = (g) (mod 1Z,) for all ge T Then for
all yek™ and for all pe T, we have

7% = y"0 (mod k *Y).

"As is easily secn, the a®s (resp. A%s; ¢®s) may be taken for the a's {resp. fs;

¥'s); we may write & {resp. f;; ¢) instead of of (resp. f7; ¢f), and then each
one of them, say y, satisfies ¥ = 7% (mod k*% for all ¢e T From this and
the basic properties of the norm residue symbol it follows that for all ge I

and for all prime q Aqa {7 =/1q(3:)”(“'2’; in particular this implies that if the
decomposition group of ¢ in G(4/Q) has an order other than 1 or 2, then
Ap) = 1. Let py, py. | i<y, be as defined in Section 2, let pyyq, ..., Psy bE
the rational primes which are ramified fully in L and whose decomposition
groups in G(k/Q) are of prder 2, and let p,, s+ 1 < i < sp, be a prime ideal of
k above p,. Let My (resp. My ; M) denote the vxsy (resp. wxsy; u x5g)
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o M
matrix with i, j component ;ij(ozi) (resp. ipj(ﬁi); /"ij (s)) and let M, = (MV)’
My = ( MW)' Then it follows from the above that

rank ¢ (¥) = rank M, —rank i,
rank y (W) = rank M, —rank M.

So our next task is to consider each 4, 1 <j < sp. Call p one of these
primes p;'s, let p be the rational prime below p, and let k, (resp. Q)
denote the completion of k (resp. Q) at p (resp. p). Then the compositum
K-k, is a cyclic extension of k, of degree I. Let J, denote the subgroup of £
= k,\ {0} corresponding to the cyclic extension K -k /k, in the sense of iocal
field theory. After identifying the Galois group G(K/k) that is isomorphic to
the Galois group G(K -k/k,) with the factor group k./J, in the natural

manner, we may regard 4, in question as a homomorphism of k* to kT,

So we are now interested only in the group J,. To examine it we use some
facts which may be found in [13)]. Let f be the conductor of the cyclic
extension K/k; then f =f We distinguish the following five cases.
. Case 1. p#1 and pe fpl, .o Ps}s in this case k, =@, and p

= | (mod ). Also p|ff. .

Case 2. p=lelp, ..., p,}. Write p = [; then k=@, and F*||f.

Case 3. p# 1 and pe{Pss1s ..., Psy)» in Which case k,/Q, is a quadratic
. unramified extension and p= —1 (mod}). Also pilf.

Case 4. p=le{ps1,--.s Psy} and k/Q; is a quadratic unramified
extension. In this case I3{|f.

Case 5. p=leipizqs..e» ps()} and k/Q, is a gquadratic ramified

extension. If I = 5, then B||f. If [ = 3, then either [*||f or I*||; but in this case
the Hasse’s product formula for the norm residue symbol enables us to delete

the column of the matrices M, M, and M, that involves the prime [, and so

“we may leave out this cubic case.
Now we let, for each integer i > 1,
U = {aek’; o =1 (mod p)},

let UI; = {eek); (2,'p) = 1} be the p-units, and let {,, be a primitive mth root
of unity contained in k. L
Case 3. In this case it is seen that
Ty Py x a2 U,Sl’(direct product).

In fact p|if means that U < J, . Since the extension L'Qp/Qp is nonabelian
of degree /, local class field theory shows that @) < J,. Also this extension is
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tamely ramified, so we have L-quQp({/;;&) for some de @), which

implies that pde.J,. As the index of the group (pd>x<f , M¥xUD in k*is

exactly [ it must coincide with J,. r ' ’
Case 4. An argument similar to the above shows that

Jo={Hx <€,z_1> x(UP n Q) U,

Case 5. In this case there is an element n of k* such that n2elZ* and
k = @;(m). Then we have

Ji= <y x iy > x UP,
Case 1. It is seen that J, is written in the form

J;J = <pup> X <Crr—].>I x U£1)’

where e Z, p, # 0. We note that there are exactly I subgroups of k) of such
form; they are oy x ooy Y x UM where {py, ..., )} is a set of coset
representatives of (Z/pZ)*' in (Z/pZ)*. However one has always

Jp M UFJ = <Cp~.1>1 X Ugl).

Let I(f) be the group of ideals of k prime to f, and let J denote the
congruence subgroup of I(f) corresponding to the cyclic extension K/k in the
sense of global class field theory. We shall show that the complete
determination of the number g, may be done when the congruence group J
is given. Let |' = f/p, and let I'({") be the group of ideals of k prime to f'. As
plif, ' is prime to p, and so I() £I(f). Let P(={(); ack”, «
=1 (mod f)}, and P({') = {(}; aek™, « = 1(mod f)}. Since the conductor of
Jis f, then J(N n P(f) & J, and so J(I()) ~P(f)) 2 J. This implies that I (f)
=J{I(H P(f)) since J is of index I in I(f). Also the canonical .
homomorphism of I(f)/P(f) to I(f)/P({) is surjective. Hence it follows that

I{f) = I{f) P(T) = J (I(N P P(F) = JP(F),

and therefore there is an element w, of k™ such that (w,)peJ. Now we let u,
1 €i< p—1, be elements of k™ such that % = 1(mod '} and u; = pi{mod p?).
For each i, put ¢ =(u)p~"; then gel(f). By the definition of the norm
residue symbol in [5], Part II; § 6, we have

(s K/, = (’%ﬁ)

K/k
where («»Z«w) denotes the Artin symbol of K/k. From this it follows that

-

el <= qgeJ. But it is clear that ¢eJ<=(w,u)et. Also we have
wel, < piel, since u; =pi (mod p?) and since U = J,. Thus we conclude
that pi satisfying (w,u)eJ belongs to J,, and accordingly we may set-u, = pi.
As was shown in- [13], the congruence group J can be defined by a linear

§ ~ Acla Arithmetica XLVI1.2
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functional on the F-space (O/f)*A/f) ™" where D is the ring of integers in k
and (YR is-the group of units in the factor ring O/f. Hence in Case 1 the
linear functional attached to the congruence group J enables one to determi-
ne completely the group J,.

Case 2. In this case J, is written in the form

Jy= A+ Dy x ey x UP

where e Z, 1 < iy < I There are | subgroups of & of such form. As in Case
1, if we let &, be an element of k™ such that () [sJ (such w; does exist) and
if we let v, 1 <i</ be elements of k™ such that v; = 1 (mod /%) and ¥,
= [(1+4il) (mod 1), then it is seen that [(1+il} satisfying (w ;) eJ belongs to
J,, and accordingly we may set /(1+ D) =I(1-+il). So again the linear
functional attached to the congruence group J enables one to determine
completely the group J,. Of course, it would not be hard to express the
above numbers g, and g by means of the coefficients of the linear functional,
but we shall not explain it here. _

Now we mention how to find the numbers o’s and f's defined above.
For an ideal a of k, let ¢’(®) denote the ideal class of k containing a. Let
by, ..., b. be ideals of k whose classes ¢'(bj’s generate the group H (k)
= lhe H})®; #' =1}. For each i, write b} = () with F,ek™. In view of the
definition of the f's, we may choose f¥s as the B's. As is well known, the
ideals B's and hence F's may be chosen to be prime to the ideal f: then the
B%s also are prime to § since {* = The restriction of the homomorphism
A, k™ — kS /J, to the group k* n U, induces the homomorphism of ™ n U,
to U,/(J,nU,). Our result about J, described above shows that the group
J, n U, depends only on a pair {k, f) (though J, itself does not always). So by
choosing these f's prime to {, we conclude that rank (W) depends only on
the pair (k, T); namely if we denote by K, i = 1, 2, metacyclic extensions of
O with the same maximal abelian subfield k and with the same conductor f
over k, then with respect to these fields K, dnd K, both rank y (W)'s are the
same, and therefore so are both of the second lower bounds in Theorem 2.3
that involve these ranks. .

To find the numbers o’s associated with the group V
= I'H (k)® ~ H(K), we must recall the definition of the group I described in
Section 2, where I' was defined to be <{ec(pf); 1 <i=<s) so that NI
= {'(pf); 1 <i<s). Also NiH (k)9 = H (k)“’”. Therefore we have

N{THED) = & (pD: 1 <1 <55 HRO

Let a4, -.., a, be ideals of k such thal ¢c¢’ (al), coo C(a)> = H(K)Y, and let P,
denote the group of principal ideals in k. If we let («}), ..., (a)) be generators
for the factor group

(%, a5 1< L1 <j<r>nP) PP,

it follows from the above that these numbers a,
¢'s 'in guestiomn. ; :

...y %y MAay be chosen as the
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We conclude this section with a remark about the congruence subgroup
J,. A defining polynomial of L over Q, if known, enables one to determine
1mmed1ately J, in our Cases 1 and 2 (cf. [9]).

4, Examples. As our first example, we let k/Q be a quadratic extension
with class number 1. Let p,, p, be distinct rational primes = 1 (mod /) which
are completely decomposed in k, let f = py p,, and assume that every units of
k are Ith power residues mod |. Let D be the ring of integers in k, and let ¥
= (O *AD/M*, which may be viewed as a Fpspace. Then Y is a F,[7]-
module where 7 is the generator for the Galois group G(k/Q), and Y F}.
As before we let I(f) denote the group of ideals of k prime to f, let P(J)
= Iy} yek™, y= 1 (mod P}, and let C = I(f)/P(f). Then it follows from our
assumption on the units of k that Y is F, [r]-isomorphic onto C/C' through a
map v defined by v(y) = (7} for every ye O, Let Y = {ye¥, y* =y} and ¥~
={yeY;y*=y Yl:then Y* = F} and Y~ = F}. For i = 1, 2, we denote by

" r; a genérator for the group (Z/p; Z)*. Take x, e k™ such that x, = r, (mmod p,)

and x, =1 (mod p,); take x,ek™ such that x, =1 (modp,) and x,
=r, (mod p,). Then {(x; mod {),(x, mod f)} is a F;-basis for Y*. Further-
more take x;ek” such that x, =r; (mod py), x5 =r7? (mod p}) and x,
= 1 (mod p,), and take x,ek™ such that x, = l(mod py), x4 =7;(modp,)
and x, = r3 ' (mod p3), where for i =1, 2, p; is a prime ideal of k above p,.
Then {(x; mod f), (x4mod f)} is a Fi-basis for Y™. Let # be the set of
congruence subgroups J of I(f) with the following properties: J contains
P(f), is of index [ in I(), and has a conductor f, and the abelian extension K;
of k that corresponds to J is dihedral of degree 2/ over Q. For 1 <j < [—1,
let ¥; be the subgroup of Y generated by ¥* and by (x; x4 mod f). Then it is
easily seen that ¢ == {v(¥}); 1 €j<[—1}, and so there are precisely (/- 1)
dihedral extensions of Q with the given conductor f over k. Now fixing j, put
J=v(Y) and x = x; x4. For i=1, 2, write p; = (m;) with m;& O; then ntte
= p,q; with e {1} Ciearly we can pick for i =1, 2, o mnl *, o; being as
defined in Section 3. Also our assumption that every units of k are Ith power
residues mod f implies that M =0, hence M, = (A, (mi ) I<ijs2
However, from the Hasse’s product formula for the norm residue symbol we
™ =1. So
rank ¢ (V) = rank (4,, (v ™9, A, (3 79).

We now want {o determine the group J,,, Put ¥ = {/p,. Since I(f)
= JP(f) in which I{f") is the group of ideals of k prime to f and P(f) = {(%)
yek”, y=1(mod )}, then

xl e.'z E"z (n’lodr) With : ejEFja (Z)EI(ﬂ

Putting x, = x3* x32x 32" and ug = m, x5 ', we have that u, = 1 (mod f),

(ug)ep, J, -and xosr?”az’(mod p.)- Take beZ such that my =p. b
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(mod p7); then u, = p, brl_el“egz" (mod p3). On the other hand it follows

— + -
from 7m}"* = p,a, that b=a,r; " 3 z7" (mod p,). Hence

3 Mo = pyry -t a; {mod p3),
so that p;ry “"'eJ, , which implies that

oy = <pury N ) Ly Y ) U,
Considering the map 4, to be a homomorphism of k> to the factor group

kM1, we have from the above that
Aoy (1} = (r1"® mod J,,).

In view of the definition of ey, it is clear that its vanishing is independent of
the choice of J in ¢, and therefore so is rank (4, . (z}~™). But this follows
also from the fact that 4, (n} ™) =4, (=} %", which was a consequence of
the Hasse’s product formula. Thus rank (V) and hence the first lower
bound in Theorem 2.3 that involves this rank are independent of the choice
of J in #. (Note that rank ¥ (V) = rank oy (379, Ay, (11 77)) by means of the
product formula.)

For our next example we let L — Q(+/p) where p = (ch+c)(co+c,} is a
prime, { = 5, and ¢p, c;eZ. Let { be a primitive ith root of unity, k = Q{{),
and P(X) = ¢cy+c, X. Then p is a norm of P({), and so p=1(mod ). Also p
=(P({)) is a prime ideal of k above p. Let r be a generator for the group
(Z/IZ)", and 7 be a generator for the Galois group G (k/Q) defined by ¥ = (",
As before we denote by e the idempotent of Z, [G(k/Q)] attached to the
ch:larzzcter 0: in this case @ is defined by 6(z~") = r(mod J). So putting g(X)

= ), r X' where for 0<i<I-2 r,eZ are chosen such that 1 €1 €l-1
i=0 . . .

: -2
and r; = (mod }), we have e = —g(r) (mod J). Put n(X) = Y X' and f(X)
- : =0
= g(X)—n(X). For elements yp;, 7, of k* both. prime to p, y; = 7, (mod p)
t

. I3 - : )
means that y, y2' is an lth power residue modp. Then it follows from the
properties of the norm residue symbol that -

(PO, k(\’/i)/)c),, =1 P "’f) 1{mod p).

As will be seen below, the latter condition is equivalent to saying that ¢,
+¢; =1 (mod p), or, what amounts to the same, (co+c,)?™ ¥ = 1 (mod p).
m .
Put
-2 rir—1
Q(X) = [[(eo+e, X i

i=1

icm
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then Q(¢) = P({)'™. Furthermore put

i—-2
=TI and  R(X) = cQ(X);

i=1

since { = —cofey {mod p), then R({) = R(—cofcy) (mod p). Lemt“
A=ln-11<i<I=-2)={1,2,..,1-2}, A=1{2,3,...,(—1)/2}, and 4
= (. jzded x4 ji+j, =1} In the following the product || and
summation Y, are both taken over all j,e4, the product H’ over all
(i1, jajeA, and the summation Y over all je A’. Putting d = —¢,, we have

R(—cofey) = d{d—c) ] d(d* ~ 2yt (2~ iy,
But, for each (j,. j,)= A, _
PAL Y = @ = (= Y = ] (2 (mod )
So we have _ |
R(=cofe) [T'd"2 = dd—e) [T T (= 17" & (@ — )} (mod p).
Therefore '

. v
QO  =d{d—c)]] et (mod p).
i .

Since ! 5, then 14> ji = 0 (mod I), which implies that
. 2 :
[T 2 =]]d"* ™ = d (mod p).
@

Also .
2 P=0+Y+Y (=) =371 (mod ),

8o that

2
€ in Cj11 {mod p).

Thus we conclude from the above that

Q()=d~c, = co+c; (mod p),
) 0
which was to be shown, . : _
Now we assume that (co+c)? V=1 (mod p). Let T be as defined in
Section’ 2, and let P be the unique prime ideal of K m—-k({/g_)) above p
= (P({)); then I' is generated by ¢(P), and so NI' = 1, which implies that V
=T H(K)® =TW. Then (P()° K/k),=1 implies that rank y(V)
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= rank i (W), Therefore the first lower bound for rank H (Q({/E)) in the
corollary to Theorem 2.3 becomes 2+ rank H (k)'® —rank i (W} in particular

this says that the [-class group H (Q({/;'))) is not cyclic.
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LeVeque’s superelliptic equafion over function fields
by

R. C. Mason (Cambridge) and B. Brinpza (Debrecen)

1. Introduction. In a letter to Mordell written in 1925, later published,
Siegel [9] proved that the hyperelliptic equation y* = g{x) has only finitely
many solutions in integers x and y: ¢ denotes a polynomial with integer
coefficients, possessing at least three simple zeros. Siegel's later investigations
revealed his celebrated theorem [10] concerning the solutions of any
polynomial equation F(x, y) = 0: he proved that there are only finitely many
integer solutions, unless the curve associated with F has genus zerc and no
more than two infinite valuations, Siegel's proof was ineffective: he employed
both the Mordell-Weil theorem and his own theorem on the approximation
of algebraic numbers by rationals, which was a development of the
pioneering work of Thue. In 1964 LeVeque [3] generalized Siegel's result on
the hyperelliptic equation to prove that the superelliptic equation y™ = f(x}
has only finitely many solutions in any ring of algebraic integers, unless of
course it falls into the exceptional cases predicted by Siegel's general
theorem. The conditions on f and m equivalent'to the exceptional cases are
given below (). LeVeque’s result was incffective. In 1968 Baker proved the
first general effective result on Diophantine equations by employing his
celebrated lower bound for linear forms in logarithms: he effectively solved
first the Thue equation, and then the hyperelliptic and certain superelliptic
equations [1]. Baker’s bounds were improved by SprindZuk [11], [12].
LeVeque's theorem of 1964 was recently made completely effective by
Brindza {2].

This paper is devoted to establishing a bound on the solutions of
LeVeque's equation. in the analogous case of function fields. Let k denote an
algebraically closed field of characteristic zero, and k(z) the rational function
field over k. Let us consider the set of solutions X, Y in the ring of
polynomials k[z] of the hyperelliptic equation ¥? = G(X), where G is a
polynomial with coefficients in k[z] and possessing at least three simple
zeros. It is plainly possible for this equation to have infinitely many
solutions, for example if the coefficients of G actually lie in k. However, it is



