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The divisor function d;(n) in arithmetic progressions
by
D. R. Hearu-Brown (Oxford)

1. Introduction. We define the general divisor function d, {n), for positive
integral &, as the coefficient of n™* in the Dirichlet series

0w

L) =Y di(mn™s.

n=1

The primary object of this paper is to consider the case k == 3 of the sum

DX, q = 3 d(n),

nE
a=a(modq)

and, in particular, to investigate the ranges of ¢ and X for which the sum
can be estimated asymptotically.

To set matters in their proper perspective we first describe the situation
for general k. We assume (a, ¢) = 1 for simplicity in this discussion. For each
k there exists &, > 0 such that

DX, g, a)~ MJIX, q)

o P
uniformly for ¢ € X % ° {any ¢ > 0); here

X
M X, - ~ ‘ yw-.'l ¥ k_lr.-.w-l. § em
XL ) (P(q)Re‘i (871 Lis, xo) X+ s = 1),

where y, is the principal characler (mod ¢). When k =2 the best known
value is 9, =2/3. This is due to Selberg (unpublished), Hooley [15]
{essentially}, or see Heath-Brown [14], Corollary 1, p. 409. In each case
Weil's estimate for the Kioosterman sum is a crucial ingredient in the proof.
For k = 4, Lavrik {18] showed that one may take 9, = 8/(3k+4); the case
k =4 is implicit in the earfier work of Linnik [217]. The method here uses
estimates for character sums due to Burgess [6], together with the fourth
power moment estimate for the average of L(s, ) over characters y (mod g).
This technique also applies for k = 3, and yields 3; = 1/2. Recently Smith
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[297 (') has used Deligne’s bound for the generalized Kloosterman sum to
estimate D, (X, ¢, a). The argument is analogous to Selberg’s treatment of the
case k =2 and yields 9, = 2/(k+1). This however is inferior to the value
given by Lavrik, as soon as k = 4. Further improvements for k = 5 have
been obtained by Friedlander and Iwaniec [11] who gave 85 = 9/20,
3¢ = 5/12, 8, = 8/3k (k = 7). We shall say more about 8; in due course,

One important application of the above estimates is to the asymptotic
formula

(1.1) Y d(n)d(n+1) = My (x)+ E, (x),
nsx

where M, (x) is a main term of exact order x(log x)*, and E,(x) is an error
term; here we have written d(n) for d,(n.. For k=2 the sum was first
estimated by Ingham [17] who obtained E,(x) < x log x. Estermann [8]
gave E,(x) < x'1/12*% and the exponent was subsequently improved to 5/6
+:z by Heath-Brown ([14], Theorem 2) and then to 2/3+4¢ by Deshouillers
and Iwaniec [7]. The method of [14] uses D,(X, q, @) explicitly, and the
exponent 5/6 arises essentially as 3/2—8,. The improvement over
Estermann’s result is due solely to the use of sharper bounds for the
Kloosterman sum. The technique of Deshouillers and Iwaniec is far more
intricate and uses bounds for averages of Klcosterman sums, The case

=3 of (1.1} was first settled by Hooley [15], who obtained E;(x)
< x(log x log log x)*. (An earlier paper by Bellman [2] contains an error;
see the remarks in [15].) Hooley’s method depends on the fact that 3, = 2/3.
The case k = 4 is stated by Linnik [19]; details of the proof are given by
Bredikhin [4], with E,(x) € x(log x)*"(log log x)*. A further improvement,
due to Motohashi [24], gives FE,(x) < x(log )" *({log log x)* for some
¢ = c(k). The papers by Bredikhin and Motohashi use Linnik’s dispersion
method. An alternative approach due te Redmond [25], [26] is
erroneous. (%)

Linnik’s proof of (1.1) uses, in effect, an estimate very reughly of the
form

(1.2) ¥

Q1<gsQy

D> (X, q, —1)=M;(X, g)| <4, X(log X)™*

for any 4 > 0. In Bredikhin [4] this estimate is shown, essentially, to hold
for Q, = X%¢*¢, Q, = X'~* Of course (1.2) follows from the earlier results
on 9, if 0, =0, Q,=X*"% In fact Linnik claimed ([19], [20]) the
estimate (1.2) with Q; = X2 and Q, = X*~* from which indeed it would

(*) There is a minor error in {297 due to the use of Smith [28]. See our comment in
- Section 4. )
(*) In the proof of Lemma 10 in [25], H{s+¢) is not estimated uniformly.
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follow that one could take the complete range 1 < g < X'7% This would
easily yield {1.1) with

(1.3) E(x) < 4 x(log x)™*.

However Linnik’s claim was never substantiated. According to Fouvry (oral
communication, 1984) one may take @, = X***% 0, = X'% by using the
Deshouillers—Iwaniec theory of averages of Kloosterman sums. Thus there is
an annoying gap X*37¢ < g X¥3** for which (1.2) is not yet known.

An alternative method to obtain (1.1) was given by Motohashi [237; this
is at present the easiest route. It depends on estimates of the form

(14) Y ID(X, g, D)-M (X, @ <, X

g%Q

(log X)7*

with @ = X!/27¢ This estimate is implicit in Wolke [31], see also Motohashi
[22]. If one could take Q = X'/2*¢ then one could obtain {1.3). A weakened
form of {1.4) (essentially having the modulus signs removed), but with
Q= X'2*% may be derived by the method of Bombieri, Friedlander and
Iwaniec [3], using averages of Kloosterman sums. Thus (1.3) is indeed
attainable

For the case k=3 one can do rather more. This case is of special
interest because the “easy” value for §; is 1/2, which is the critical value for
(1.4), beyond which one can obtain (1.3). Very recently Friedlander and
Iwaniec [10] have shown that one may take 9; = 1/2+ 1/230. Their method
uses multiple exponential sums, estimated via Deligne’s “Riemann Hypothe-
sis”, together with ideas originating in Burgess' work [6] on character sums.

The purpose of this paper is to present an alternative method for
obtaining 9; > 1/2, which is simpler and, it turns out, also more powerful. We
g0 on to improve the estimate (1.3), for the case k = 3, saving a power of x.

Qur theorems are not restricted to the case (g, g) = 1. Consequently, to
replace M, (X, g), we shall define

X o
KN {( Z;

)

Xs-l
M/(X,q,a (M) m™ %) p ;Sml}
where (a, g) = 8.
THEOREM 1. Let g < X4, Then

Di(X, q, a) = M3(X, q, a)+O(XB6/107¥e o= 66107y

Jor any ¢ > 0. Hence we may take 8y =21/41 = 1/2+1/82.

Note that the error term above is O(X'*®gq™!) precisely when
q < XM, We can do marginally better with a- theorem of Bombieri—
Vinogradov type. .
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Tueorem 2. We have

Y max max |[Dy(x, g, a)—Mj(x, ¢, a)] < X*051+e 117,
gsQ *€X almoedg)
Jor any > 0.
This is more general than (14), and non-trivial for @ € X'Y21 %, We
shall apply Theorem 2 to (1.1).

TuroreM 3. There is a polynomial P of degree three such that

> d(md;(n+1) = xP(log x)+O(x*~ 1102+
S
Jor any g> 0.

Deshouillers (oral communication, 1984) has suggested that considerably
better error terms may, in time, be obtained through the use of estimates for
averages of Kloosterman sums.

The strategy for the proof of Theorem 1 is as follows. The sum
D3(X, ¢, a) is best thought of as a triple sum, and we shall give different
estimates according to the ranges of the three variables. In Section 2 we
make the preparatory transformations needed for each of these estimates.
The principal bound involves a multiple Kloosterman sum which is
essentially of the form K, (1, 1, rst; g). This occurs is Section 4, in a triple
sum where r, s, ¢ are iypically of size less than ¢'2. Thus no saving can be
obtained by summing over r, s, t in the obvious way. However we shall
transform the sum by combining r and s to produce a variable of size greater
than ¢'% from which a saving is available. This is the key step. In the
process we encounter a complete sum (mod g), with 5 variables. This is
estimated in Section 3, using for the case in which g is prime, a bound due to
Bircl: and Bombieri ([10], appendix), which uses Deligne’s “Riemann
Hypothesis”.

The two auxilliary estimates are dealt with in Sections 5 and 6. The first
of these is straightforward, and uwses Weil's bound for the ordinary
Kloosterman sum. The second is more complicated, but elementary, and
depends on bounds for

(1.5 # i, Ny, g, g 1S m <N, (0, q) =1, 5, +ny =ny +n, (mod o)}
when N is small compared with g. The three estimates are then compared in
Section 7 and various choices of parameters are made, producing the error
term’ which appears in Theorem 1. In each of the estimates there is a rmain
term which is not calculated explicitly. We merely know that it is
independent of a, if (a, g) = 1, However we show in Section 8 that this
suffices to determine the leading term explicitly. Finally, all the calculations
of Sections 2-7 are done on the assumption that {a, ¢) = 1, and we show in
Section 8 how this suffices to derive Theorem 1 in the general case.
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The proof of Theorem 2 differs only in the use of an avcraged_ bound for
(1.5), in the treatment of the second auxilliary estimate in Section 6. The
parameter N is independent of a and x, so that we may include the double
maximum in our statement of Theorem 2. Finally, the deduction of Theorem
3 from Theorem 2, in Section 9, follows standard lines.

We have tried in this paper to give estimates as accurate as this variant
of the method allows. However there are places where a slightly more
complicated treatment might possibly lead to improvements. In particular,
we have not verified that the division of cases in Section 7 cannot be done
more efficiently. ' .

Certain notations and conventions should be described. For the entire
proofs of Theorems 1 and 2 we shall assume that ¢ <X, and @< X.
Moreover except in the latter half of Section 8 we shall take a and g to be
coprime. The proofs will use small exponents ¢, which we shall change from
time to time, so that we may write {gX)’ < X* without comment, f(?r
example. We will use the function e, (m} = exp(2nim/g). The symbol 7 will
normally indicate the solution of nfii = 1{mod ¢) with 0 < i< g. We 01'.11}’ use
this notation when (1, g¢) =1, In Sections 3 and & the modulus will not
always be g however, but will be readily understood from the. context. We
shall use  * to denote summations restricted to variables coprime to q. We
will also need vector notation. We will write u- v for the usual scalar product,

and FF for the gradient of F. The summation
g

> or
x=1 x(mod g}
means that each coordinate x; runs from 1 to ¢. Finally we shall vse [[9]] to
denote the distance from & to the nearest integer or integers.
2. Preliminary transformations. We have
DX, g, @) = # {(u, v, weN*; uw < X, uvw = a(mod g¢)}.

Our first task is to remove the condition wow < X. Let gX ™' <4< 1 and
put { = 148 We split the ranges for u, v, w into intervals

ue s =(U, (U], wveys =(V,tV], we# =(W (W]
where U, V¥, W run over powers of { and
2.1) UV, Wsel, UVW<X.

We set
N(U, V, W) = # (4, v, w); ue.?, ve ¢, we £, uww = a(mod g)}.

Then
D;(X,q.q)= Y NUV,W+0( - 3 NU, VW)
X.

Uvw< dcuvwex .

3~ Acta Arithmetics XLVIL
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and

Y NU KW T

x~3<urwsy Xt 3< g a3
1 =a(mod gy

di(m) <€ X'y,

whence
(2.2) Dy(X,q,a)= ) N(U,V, Wh+0(X** g7 ).
UVW<X

We now transform N (U, ¥, W) in three different ways, in preparation
for our three alternative estimates. Firstly we have

NU, ¥V, W)

It
Mn

# {0, W), ue s, ve g, we X, gla—u, f~v, p—w)

(3 T etra—ri)(3 ¥ eqsp-su)(3
r=1 ugf §=1 vef . t=1 wed

03 =q7? i (¥

r&t=1  afy=1
apy = ﬂ(modq)

Forys, )=} éq(—ru))(zeq(—sv))(Zeq(—rw))

< min(l, ||r/gl) ™) min(J, ||s/gl| ="y min (K, [|/q] %),

with I = # {ue.#} etc. The o, B, 7 sum in (2.3) is the multiple Kloosterman
sum K, (r, s, at; g), so that

e (ty —tw))

1l
-M
=
1
W

eglra+sp+ 1)) F,(r, s, 1),

where

4
Z Ky(r, s, at; g F (r, s, 1).

rst=1

The other two expressions for N(U, V, W) are similar to {24}). We have

(24) N, V,W)=q?

NU VW)=Y Y #iw); ves, we X, qlfi-v, y—w)

uesfF Boy=1
apy ~u(mndq}
=% (Y 3 e (sB—s)(Y) 2, &lty—1w))
w.fiyy §= 1 vef =1 wel
(2.5) =q Yy ); ( }gj e,,(sﬂ%ty))Fq(s, 1,
‘s uﬁrg(_:n:wdq)
where
26 Fols, )= (Y eg(—st)( 3 e,(~tw))
. . vef weX”

<min{J, [ls/gll~ ) min(X, llz/gll™ ).
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The f, y sum in {2.5) is the ordinary Kloosterman sum K| (s, atil; g), whence

2.7 N(U, V, W) g *y Z K, (s, ati; ) F (s, 1).

ue¥ st=1

Alternatively we may write

(28) .
NU, v, W)=Y ¥ #{wed; w= auo(mod g)}
ue¥ vef
=3 q! i ¥ eeq(azﬂr;»tvv)zq"1 ¥ ieﬂ(atﬁ)Fq'(r),
w0 1=1 wgd - uc¥,vef 1=1
with
2.9) Ft)= Y eg{—tw) < min(K, lit/gl| ™).

W

3. Exponential sums, In this section we give estimates for an exponential
sum which will occur later. We begin by defining the multiple Kloosterman
sum:

q
K gy= 3* elax),

x=1
TTxp=1{modq)

where a, x are (n+ 1)-dimensional vectors. We note some basic properties of
K, (a; ). We only need the special case n = 2. By Smith ([27], Theorem 6)
we have

3.1) L Ka{a; ) < qla, g)ds (@),

where (a; q) = (a,, a,, a3; q); observe that o,(a; p*) < min(x, ¥) in the
notation of [27]. Moreover by [27], Theorems 2 and 3, we have

(3.2) Ky(p'a; P) = p* Kpla; p*77) (r<a),

(3.3) Ki(a;p) =0 (x=2(a p=1,pllla).

The sum in which we are interested is

q P —
Sk, ty,ty, 0,0, 9 = 2*e kDKo, 0, jti; K, (o, 0, jt2; 9).
. Jj=1

This has a product formula for (u, v) = 1, namely
(34) S(k: tls t25 2,0; MU) = S(Uzk, tla tzg e, 0; u)S(uzk, tis tZs 2, 0, D);

a general result of this type has been given by Hooley ([16], Lemma 3). This
product formula allows us to restrict attention {c prime power moduli.
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We shall write
S =Sk, ty, t2, @, 0; P9,

for convenience. Frem (3.2) and (3.3) we see that § = 0 unless

(t, P ) =0 P ) =(e. PP )=, ") =,

say, in which case

p4-r Z*

kl’ KZ(;Q U Jtlv ptt )KZ(Q’1 U’,jr’z; pa“r)!

where

e=p¢, o=po, =)t
We now replace j by j; +p* ""j,, where j, runs (mod p*~") with p tj,, and j,
runs (mod p”). The sum § then has a factor

pr

N -
Z epr(ka)_{o’ P

ja=t Prk.
Heuce § vanishes unless p'|k, in which case

(3.5) 8= p S, 1), th 0, 0’1 PP,
with k= p"k’. We proceed to investigate S, firstly for « =1, and then

for « = 2, (p, £y tzQO‘) == 1.
To help in dealing with the case o = T we note the trivial results

(3'6) KZ(“: U, w, p) = 1 (piu9 p/{')UW),
(3.7} Ky(u, v, w; p)=1-p  (plu, v, pfw),
(3.8) Ky(u,o,w; p)=(p—1)*  (plu, v, wh.

When p kkt,t; g6 we have, by (3.1),

r _— e —
(39 S= le e, (k) K2 (e, o, jty; p)Ks(, 0. jt2; p—IKa (e, 0. 0; p)I?
14
= 3 Z* e (kj+ox+ay+jt; Xy —oX —a¥—jt, XY+ 0 (1)
=1 xpX¥=1
= p§'+0(1),
where
. r’ N
(3.10) _ § = Y*  elox+oy—gX—cY).

X Y=1
plk+t I~ XY
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We replace x by gx, y by &y, X by —gX and Y by —d&Y, whence

P
§= ¥
e X ¥=1
aXFF PAY =1

ep(x+y-|jX;+- Y),

with & = —t, gok, f =, 0ok, This sum has been considered by Birch and
Bombieri ([10], appendix), who obtained |§'| < ¢; p*? for p.faf. Here ¢,
and later ¢,, ¢5, ..., are absolute constants. It follows that

IS| < ¢2 p°*
Since
y - 13 14 *k9
*e (kj) =
j§1 p( J) {P—l, Pik’
we can deduce from (3.6), (3.7) and (3.8} that
IS| < p~2(k, P)t1, P)t2, P)2. PV* (o, D)%,

whenever pl{t, t2), ple of plo. I p ¥ty, plts. say, and p ¥ go then (3.6) and
(3.1) yield

rt
Si< Y*|Ka(o, o, jts PN < 3plp—1).
j=1
Finally, when p|k and P ,{frl {200 We may use (3.9) and (3.10).The summation
condition plk+1; xy—t2 XY entails ¥ = tl t, xyX (mod p), whence

S= T* eloxtay—oX—at; %)

xy.X=1
=p L* e, (0x—aX)— Z* ,,(@x 0X) =p Z* epox(1—t51))—
nX=1 #X=1
r2x=tlx
Thus
2
P, plrl_t2§
S«
{p: p*tl—tl:
so that

IS} < e3 p*(ty—t2, P (plk, p Xt L2 00).

Collecting our various estimates we now find:
Lemma 1. Let § = S(k, t5, 3. 2, 0; p). Then

IS} < ¢y pP2 (K, ty~1a, PY (1, D)2, P)(a. D)o, P}
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The other case we have to examine is « = 2, (p, ¢, t, 00) = 1. Since

K (0, o,jt:; @) = K;(1, 1, jeotis 9)  ((eo, @)= 1)

we shall replace t; by got; and consider § = S(k, ty, 15, 1,1; p/) for f =2
and p¥t,t,. On noting that K,(1, 1, jt;; p/) = 0 for plj, by (3.3), we have

il —
§= Z*e;,f(kj)KZ(l: L jt POKS (1, 1, s o)
j=1

pf e
=3 e (k) Ko (1, 1, jte; YK, (1, 1, jtz; ph)
i=1
o
=y Z*epf(kj+m1+m2+jt1mxmz—ma—m4——jtzm3m4)
=1 omet

o
=p/ ¥ e,r(my iy — My —my)
m=1

where YV denotes the conditions (m;, p) = 1 and

k+t,m, my =t mym, (mod p'),
or equivalently,

kmy my, my my -ty my my =ty my my(mod pf).

Hence
o pf _
§=3 Z*ep,—(F(j, m)),
J=1 m=1
where
(3.11) F(i, m) = my+my—my—mq+jkmy mymymy+1, My my—1ty mymy).

We now require the following result.

Lemma 2. Let F(x)eZ [x,, .

s X,] and let A be a set of residue classes
Jor x(mod p). Write

»f
§= Z: epf(F(x))
<
and
B = {x(mod p%); xe A, p¥|FF(x)}.
Then '

(f=222,

S| < pV? # B
< (f =29+123),

p"fil Z p('!—"(x))f'Z

xcB
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where r(x) is the rank (mod p) of the quadratic form Q, whose mairix is

(1 82F \"
26xiaxj‘ i’jgl‘

(If p=2 we define r(x) =0)
To prove the lemma let x = u-+p?v+p’ ~?w, where u belongs to 4 and
runs (mod p%), v Tuns (mod p/ %), and w runs (mod p?). Then

F(x)=F+piv- FFw)+p' " w-FF (u)+p* Q, (v)(mod p/).
It follows that

o o/ 2
NES ;1’ 21 €,q(w- FPE (u))]-| ;1 epf_g(v'VF(u)+p"Qu(v))|
ned -0
=p" )| ¥ er-a(tetQul),

uef w=1

where FF(u) = p*c. If f = 2g the conclusion of the lemma is immediate. For
f = 2g+1 we need only note that @, can be diagonalised (if p # 2) and that

P
\ ; e,(c+00%)| < p'?  (p £20).

For our application A is the set of (j, m) with p Fm,. The conditions in
B for the function (3.11) are

(3.12) km, mymy my + My mg~t, 1 My = O(mod pf),
(3.13) 1+ jkmy my my — ji, my; = 0(mod pf),
(3.14) 1 +jkmy mg my —jt, my = 0(med pf),
(3.15) — 1 4 jkm, my m, +jt, my = 0(mod p),
(3.16) — 1+ jkm, my mg +jt; my = 0(mod p¥).

From (3.13) and (3.14) we have
My = jty —jkmg m, = my (mod pf),

and similarly (3.15) and (3.16) yield m, = m;(mod p), We may therefore
substitute for m, and m,. Then on adding (3.13) and (3.15) and dividing by j
we find

kmy my (m, +my) = tymy —t, my (mod pf),
while {3.12} becomes

(3.17 km?m? = t, m} —t, mj (mod p#).
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Then, on eliminating k, we obtain m3 =, t;m3 {mod p?). Thus for some root
7 of 8 =1, 1, (mod pf), we have my = zm, (mod pf). Hence 7, m; determine j,
m,, ms, m,. Moreover 7 can take at most 3 values {mod pf). Since (3.17)
yields

m2k=t,(t—1)(mod pf,
we have (k, p") = (t—1, p¥), whence m, takes at most 4(k, p?) values (mod p)
(or 2(k, p¥) for p# 2). We conclude that # B < 12(k, p7.

Now if (j, mje B we find that, for p # 2, the matrix of 20 ,, is given
{mod p) by

)

—mytie 0

—my Tt —mytit, omtit, omytiey |
—jty 7 jrt@=1) jtytic—1
—jty 12 0 jtir{r—=1 jtr(x=1)
my it jrtir—1) jit{t—1) 0 jtiT

i my 2ty fyt(r=1) jtyr{z—1)  jnrt 0

—m,

If we divide through by jr; =% and then multiply the first row— and first
column by ﬁﬁf (note that ptjt; m, 1), the matrix becomes

[0 -1 -1 1 1
-1 0 -1 1-7 1-7%
~1 -1 0 1-7 1-7%
1 1-T 1—-7 0 T
|1 1-T 1-7 7 0 4

and a simple calculation gives r{j, m) =35 unless p|3(r—1), in which case
r(i, m) = 4. Since (k, p?) = (t~1, p*) we conclude that

Y P2 < eg (k, pf) (K, )2,

xel
We have now established the following lemma.
LEMMA 3. Let pft,ty and let £ 22, and write § =Sk, t;, t5, 1, 1; pF).
Let g =[f/2]. Then S =0 unless (k, pP)|t, —1t,, in which case
1S < 1257 (k, ) (f even),
IS] < es P> (k, Pk, ) (f odd).

- We may combine the results of Lemmas 1 and 3 with (3.4) and (3.5) to
deduce the last estimate of this section:

LemMMA 4. There exists a positive constant A such thar
S(ks tl: tZs o, ag, Q)
< dy(q)a®? {2, (e, —12)%, 9)(ty, ) (22s gMes 9)Mo, @)} ((t: —12), @)M®.
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4. The principal estimate for N(U, ¥, W). For our principal treatment of
N(U, v, W) we think of U, ¥, W as being, typically, of order X 13 Qur
starting point is (2.4). Let N; = N, (U, V, W) denote the contribution from
terms with », s or ¢ equal to g¢. Since (a, g) =1 these terms will be
independent of ¢. We shift the ranges for r, s, r so that each variable runs
over (—g/2.¢/2], and divide these intervals into subsets R < |r|
<R, S <|s €28, T<|t|<2T where | €R, §, T « 4. We then write

F(R;q)=min(l, gR™"), F(S;q) =min{J, 45" "),
so that
N(U. V, W)=N,
<(log g)* F(R; ) F(S; 9)q > K@, s, at) Fo(1),

R<|r€2R T <|t|=2T
s<ls|<2s
for some choice of R, § and T .

We would now like to transform K, (r, 5, at; g) into sums of the form
K,(1, 1, arst; g). The “generalized Kuznetsov identity” of Smith [28] would
be ideal for this purpose, but unfortunately there is an error in the proof and
the “identity” is invalid. (%) Instead we argue as follows. Let r = or', where ¢
is a product of powers of those primes that divide g, and (', q)=1.1{r<0
we take ¢ < 0, ¥ > 0. Similatly set s = o5’ Then )

K,(r, s, at; q) = Ky{o, 0, ar's't; g).

For brevity we shall write K (n) to mean K, (g, o, an; g). Now, on replacing
', s by r, s, we find that ‘

@“1)  N(U,V, W)—N,
<(log *FR; F(S; g Y. 3| ¥  Ks)F (),

g, rs T<lij&2rl
where R < |p|r < 2R and § < jo]s < 28.

We shall need to know how many values ¢ and ¢ can take. Let
g=gl.,.q." (g primes) and let p, <..<p, be the first n primes. If
o= +gq'...q," satisfies 0<]o| < q then ¢' = +pit pin will also satisfy
0 < |¢'| < g. Consequently, if we set

¥(x,y)=+#{n; 1 <n<x,pin implies p <y},
(*) In [28], page 318, the statement *... the inner sum in (6) is zero unless r = L." is wrong.

Indeed the main theorem would yield K,(1,0,0;4) =K, (1, 1, 0; g}, whereas K,(1, 0, 0; 4)
= u(q) o (q), while K5(1, 1, 0; ) = pe(gy*. Consequently the estimate on [283, page 320, that

1K, (a: )l = g (0, @) dyr 2 (4),

is not proven. Indeed K31, 0, 0,0: q) = pigy (g, while the proposed - bound would be
0(g¥*™v, As we saw in (3,1) such a bound is-true for n=2.
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then

#10; 0<lo < q} <2¥(q, p).
However, from de Bruijn [5] one has
¥{x, 1) € x(log y)?exp{ —u(log w}—uflog log )+ 0 ()}, u=Ilog x/logy.
Since p, < log g we conclude that

log ¢
(4.2) #io; 0<lol<q} < exp{ (]og iog q)}-

The number of pairs g, ¢ is thus O(g) for any £ > 0. Hence (4.1) yields, for
some pair g, o,

(43) N(U, V, W)=N, < g >**F(R; 9 F(S; Y| T K(s)F, ().

ne T<|f€2T
We now replace R, S by R|g|, Slg], whence {4.3) becomes
(44) N(U.V,W)—N,; <4 >**F(Rlg};q) F(Slol;9) %,
with

o= 2 ¥l 2

R<r<2R S<s£28 T<{t|€2T

K(rsty)F, (I)f .

We have now arrived at the crux of the whole proof. The key idea goes
back a surprisingly long way; in the context of d;(n), for the Piltz Divisor
Problem, it appears in the work of Yuh [32], but it may indeed be even
older. _

We write h=rs, H = RS. Then, by Cauchy’s inequality, we have

Zi < o hZ::Hd(h)"r |E;:<2'1'K(ht)Fq(r)F
<{ Y dam*Pr{ Y | Y KmF 02

H<hs4H H<hs4H T<{t]22T

< [H(log H*}V2{Y F (tl)F (t2) Z“K(MI)K(hrz)“f2

Ttz

Il we now set F(T; g)=min (K, gT™"), then (4.4) yields

(45) N(U, V, W)—N, < H'?q > X*F(R|gl; q) F(Sla}; 9 F(T; 9) Y./,
where
Y.= ¥ il
T<ltylleg] €27 .
and

4.6 - I(ty, )= Y* KK K(hty).

Ha<hs4l
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The effect of this key step has been to replace a sum over two variables
r, 5, whose ranges are rather short, by a sum over" h, with a longer range.
Since H is in general larger than g¢'/% while R, § are typically smaller than
g'/*, some saving is possible from the h summation, while nore could be
obtained from r or s.

We proceed to transform X (t,, f;) into a sum over a complete range
(mod g). We have

q

rla IF2 Z

i=1 {Qk 1 H<h<4H

q
Y S(ak, ty, t 0, 0:9) Y.

1
qdr=1 H<hs4H

(k(f—h))} K{jt,) K (jt2)

e d—kh),

in the notation of Section 3. Thus

H ) B .
Z(rlat2)<zls(0, tl’ [25 Qa UsQ)I+ z 1]S(ak, !la t2: Qa U,Q)I

Lgkl<q

We now call on Lemma 4 to bound the sums §. We note that

Z k—l(kz,D)l"2$Z£i”2 z k-—lzzdlfl Z k—-l

1€ksq diD 131;25.; w14k
< Y d"* 5" log g < d(D)log g,
D

where & is the smallest positive integer for which 4|6%. Thus
(4'7) Z-(f], fz) < 45/2“ {(tlr Q)(tih ‘I)(Qs Q){as q)}I/Z
x((ty 12, @M (Hg ™ (1 — 12, @) +1).

We next consider the contribution to )", arising from terms ¢; # 1, with (t;, q)
= dyand(t; —t,, ) = &.It follows that dz(dl, 8)(d,, d5, 8) " dividest;, and that
t, determines t, (mod d, 8(d,, §)™*). We may take d, > d, by symmetry, The
number of f; with T<it| < 2T, t, #1, is then O(T*(d;, d;, 3){d; d,68)” o
+0(T(d,, dz, 8)d;'(d,, ") Since &< T the second error term is
O(T*(d,d;)™"?87"). Using the boinds

((ts ~t5)*, )¢ ((t1 — b, g)M?

< g*% s,
{(ty—12)s gt <813, (dy, da, ) Sy

dy)'?

we conclude that terms t; # ¢, contribute to ), a total

€ q*P*e (o, 9o, @A TH T (Hq Ve+87)

dl.dz,ﬂ

€ g0, 9" (e, @ T2 (Hg ¥+ ).



44 D. R. Heath-Brown

To deal with the terms ¢, = 1; we merely use {3.1) and (4.6), whence

D)< g* o, 0,1, 9 H < ¢*"*(g, 9)(o, 9 H.
Such terms contribute to 3, a total

<q*™(¢, g)(a, ¢) TH.
We pow insert these bounds into (4.5), using the estimates
TE(T;qy<q, TY*F(T;q) < (Kg)'?,
Rie. """ F(Riel; q) < R(o, 9)""*F (Rigl; ¢) < g,
R0, 9" F(Rlgl; ) < (Ig)*'*,

and the analogous results for S, ¢. This leads to:
LemMa 5. There exists N, (U, V, W), independent of a, such that

NU, V, W)—N, (U, V, W) < X“{q5/°+q’/4('].l)1/2+q“3[(1/2}.

5. The first auxiliary bound. We shall need an estimate for N(U, V, W)
which is efficient when one of U, ¥V, W (U, say) is “small”. We write

. q
Nl(Us Vv W):Nl =q“1.z Z Kl(sa aii; q)Fq(s9 f).

ues st=1
sori=g

This is independent of a, since
Kl (Sa 05 q) = Cq('s)’
where ¢,(*) is the Ramanujan sum. We now apply (2.7), using the bound

Ky (m, n; ) < q'* (m, n, 92 d(g).

K1 (0, ard; g) = e, {ath) = ¢q (1),

This 1s given by Estermann [9]; the essential ingredient, when g is prime,
being due to Weil We conclude that

g1
N(U,V, W)~Ny <q7*2d(g)1 Y. (5,1, }'/* F,{s, 1).

nt=1

By (2.6) the sum over s, t is

€« 2

q
Q*lsI 7 A" s 1, P < g Y (07 (s, 1, b2
1

O< sl €g/2 syt
q
<@ LAY 5T < q* Y d7 (log ¢)* < ¢? (log 9.
qg  s=1 dlq
ds

On combining estimates we now have the following result.
LemMA 6. For a suitable function N, (U, V, W), independent of a, one has

N(U, V, W}=N (U, V, W)< ¢"*** I, forany e > 0.
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6. The second auxiliary bound. This section is devoted to the estimation
of N(U, V, W) when one of U, ¥, W, (W say) is “large™ and the others are
“gmall”. We shall use the methods of Heath-Brown ([13], pp. 366-368) and
Balasubramanian, Conrey and Heath-Brown ([1], proof of Lemma 7).

Our slarting point is {2.8). On putting

N (U, V, W)=N, =g ' T* Y*F, (0),

nsf vef

which is independent of @, we find
g1 —
NWU,V,W)=Ny < g7 'Y ¥ IF (0|3 e, (atuv)].
y =1 0

Let
n(k) =3 [F, (1),

u.l

where the sum is for
(6.1) ue.f,  (u,q) =1L,
Then, by Hélder's inequality, we obtain

1grgg~1, ati=k{mod g).

aq
(62 N(U.V.W)=N, <q™'' Y n(l)[Y e, (kD)

k=1 I

q q q
<gm (3 nl0} LY nUP (T [T e, kmjep .
k=1 k=1

k=1 r

From (2.9) we have

g—1
(6.3} Yol =YIF,0l < ¥ llt/gll™" < gl(log g).
(=1

k /84

To estimate Zn(k)2 we shift the range of ¢ in the definition (6.1) so that 0
< |i| € ¢/2. We then split up this new range into intervals T < <27
where T runs over powers of 2, and 1/2 < T < g. We write n(k) = Y onlk, T)
accordingly, and note that

nik, T) < min(K, g7~ ") # {(u, 1); ue.#, T < |1 < 2T, atli = k(mod ¢)}.

Thns
t _ — —
3 onlk, T < min(K2, g* T™3 # (4, g, [4, t2}; Gty = Gty u; (mod g);.
K
The congruence condition requires fyt, =1, uy {mod q}. There are O(TI)
pairs (15, #;). Moreover, the number of integers » for which n= t, 1, {mod g)
and TU < |n| €2T¢U is O((14TUgq™"); and for each such n there are
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O{X?% seolutions of 1, u, = n. Hence

# [uy, uy, 1y, 1)) aty ug = aty 4y (mod )k < X*(TI+T2UIg™Y).
It now follows from Cauchy's inequality that

%:n(k)2 < X(log q) Y min(K?, gT~)TI+ T2 Ulg™ 1Y),
T

In estimating the sum over T we consider seperately the cases T < gK™ ! and
T > gK™", whence

(6.4) Y n(k)* < X*(log 9)*(gIK +qUD).
Finally we consider the third sum in (6.2), which is
g
(6.5) R; P,Z’ € (knﬁ)]“ =g #{06#; 0, +0,= v3+v,{mod q)} = qH( 7, g),

i.'jq;. Our first treatment of H{ #, q) follows Heath-Brown ({137, pp. 367-368)
- .

(6.6) m(s) = # {vy, V€ #; v, +0; = s(mod g)},
so that

q

H(S, q) = }, m(s)*

s=1
Each v, in (6.6) determines v,(mod g), and therefore
(67) mis) < T (1+q ).
Hence
q
(6.8) H(g, q)@J(1+q"1J)Z ms) <€ P (1+471J).
s=1

This trivial bound suffices unless J <
. g, as we now assume. If (; =d
(6.6) requires d|v, +v,. Thus, for any djq we have 9 then

(6.9) Smis) € J(1+d=1J).

dls
Since J € g, it follows from (6.7) that m(s} < J, whence

‘ .
(6.10) YN mis)le d(g)J*(1+D~1J).
dlgdzD s=1
. y=d

For small values of (5, g) = d we shall a

all v [ (5, 9) = | apply the strong form of Dirichlet's
apprommatlo'n theorem (see Hardy and Wright [12], Theorem 36, for
example). This shows that for any positive integer L there exist integers o, §
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for which
0<as<L, Is/q—Bfel < (aiL+1)).
Hence so = y(mod ¢), with 0 < a < L, {7 < g/(L+1). We shall choose
L = min{g/d—1, [(gV)*/*]).
Thus gd~! fo, whence g Jso, so that y s 0. The relation T, +7, = s(mod g)
now yields a(v; +v,) = yv v, (mod g), whence
(6.11) ooy +0y) = yv, v, —gt,
for some integer t. The bounds for o, y and v, yield
t < Vidg 4 v32gm 12,
To each value of ¢ there correspond O{X®) possible pairs vy, v;. To prove

this we write (6.11) as
' (yoy — o) (yop —a) = &® +4qi.

Here o, v are fixed, so that each t leads to O(X") possible factors yv;—a
of «?® +qt, except when «®+gr = 0. In the latter case, however, one unknown
must be «/y and the other is then determined by 7, +0, = s{mod ¢g). It now
follows that

mis) < X¢(1+ Vgt V3¥igT 12y
We may combine this with (6.9) to obtain

(6.12)
g

¥ OY me)t< ZX*‘J(1+d*1J)(1+V2dq'1+VSqu‘“z)

dlg  s=1 d

SR BT Xtd(q)UVEDgT ATV R VARG,
If we now choose D =1+[¢ *JV~*] we may conclude from (6.10) and
(6.12) that
(6.13) H(f#, q < Xedg)JP(1+V3ig L4+ V¥2g~ 13,
In deriving this we assumed that J < g, but it is clear that (6.13) follows from
the trivial bound (6.8) if J > g When we combine the estimates (6.2), (6.3),
(6.4), (6.5) and (6.13) we deduce the following

LemMa 7. There exists Ni(U, V, W), independent of a, such that

N{U, V, W)=N (U, V., W)

< Xt I3/4J1[2(K_+_ U)l,'4 (1+ qu—1+ V3,‘2q—112)1/4,

for any ¢> 0.

We now give our second treatment of H(#, g), following Balasubra-
manian, Conrey and Heath-Brown [1], proof of Lemma 7. This leads to an
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average bound, in which ¢ runs over the inierval Q < ¢ <
definition (6.5), we see that

20. From the

H{fZ,q)=# {ve f; qlv*],
T = Uy B3 0y F U Uy Uy — Uy Uy Uy~ 0y Ty g
Thus
Y OHF <€ Y divh+ Y Q<0 # e g 0% =0},
goys2Q vief uf 0 viad it =0
However

v (o Fog) o vg = (0 + 02 v — vy Ug) {{vy +03) Vg — vy 1y},

so that if v* = 0, then v,, v, determine O(V?) factors (v, -+ v,)
so there correspond O(V*) pairs v, v,. It follows that

(614) Z H(f! q)< J4+l:+QJ2'|‘E.
Q<qg2Q

We now write N(U, ¥, W, ¢, a} for N(U, V, W), and N (U, V,W;q) for
N (U, ¥, W). Since H(F#, g} is independent of a, we deduce the following
bound, by combining (6.2), (6.3), (6.4), (6.5) and (6.14).

Lemma 8. There exists N (U, V, W;q) independent of a, such that
Y max [N(U,V, W;q, )N, (U, ¥, W; g)|

Qg2 (ag)=1

U3 —~U; Uy, and

£ Xa QS,’!L 13i4J1/2 (K + U)l./A- (J2+ Q)IM-

7. The proof of Theorems 1 and 2: error terms. In this section we shall
feed Lemmas 5-8 into the formula (2.2) to obtain an asymptotic cxpression,
of the form D, (X, ¢, a) ~ M¥(X, q), with an appropriate error term. In the
next section we shall consider M} (X, ¢), and remove the condition (a, ¢) = 1.
We shall concentrate on the proof or Theorem 1, and merely indicate the
significant differences needed in establishing Theorem 2.

We begin by recalling, from Section 2, that U, ¥, W run over powers of
{ =1+4. Let Uy, ¥, W, run over powers of 2 and consider the contribution
to > N(U, V, W) corresponding to the ranges Uy < U < 2U, V, < V € 2V,
We < W < 2W,. The number of triples U, ¥, W will be O(87?), and if we
apply, say, Lemma 5, to each term, we shall be able to rcplace NU, ¥V, W)
by N (U, ¥V, W) with a total error

O) XG0T g T () 0T T K,
» v

Here, by Cauchy's inequality,

ZIU’Z (Z l‘|1/‘2 jz I}l/z
u

M2y L2,
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for example, whence {7.1) is
< X*{5” 34506487 2q1/4(U0 ARLE T 5/2 1/2W1/21

We may use Lemmas 6, 7 and 8 in a similar fashion. Smce the numberbc;af
triples Ug, ¥y, Wo is O((log X)*) we conclude from (2.2) that, for a suitable

function M*(X, q) independent of a, one has

Se -1 ax
(72) Ds(X. g —M5(X, q) < X (0 Xq '+ {EOI;I;O-WO}

min{ E,, E;, Ej}).

Here Uo, Vo, WO > 1, Uo Vo Wo £ X and
E, = 5—3 q5/6+5—2q1,'4(U0 %)1/2+5—~512 qlfl WDI,‘Z,
1=
from Lemma 35,
E, = 5“24112 Us,

from Lemma 6, and .
E, = U3 Y2532 Wit 57T UYL+ V3 g 4 15 71,
3=

from Lemma 7. Note that we may permute U, V, W, to our best

tage, in forming the E;. .
Eldvaf[nf vge use Lemma 8 in place of Lemma 7 we find similarly that

max max |D3 (xa q, a)“Mg (JC, Q)‘
0<gs2Q 5 @dh=1

< X*Q EXQ iy max min{E;, E;, Ef}).
Wo.¥ o Wol
Here E, and E, have had g replaced by @, while E; has become
E* _ Ua,‘ct- W/z(éwsfz Wc,ll4+5~7,14 U1[4){1+V01,'2 Q—l/iél/Z).
=

To simplify the task of using E,. E,. E optimally, we shall mtrc;czgr;:
parameters 4, B and estimate E; as follows, If any variable (U,, say) sati

U, < ¢, then
E, <6 2q 2 Uy < 572 4%,

If Uo, VQ, Wo A then
(7_3) El £ 5w3q5/6+5~2q1/4A+5-- 52 q]./:l,AljZ_

I any variable (W0; say) is in the range A < Wy < B, then

(7 4) E1 < 5*3q55'6+5—2quél-(X/WO)l,’Z_i_a—S/Z q1/2 Wol,fz
' < 5 3 S16+5-2q1/4 Xl]2 A—1[2+5—512q1[2B112.

4w Apta Arithmetica XLVIL1



50 . D, R. Heath-Brown

Finally, if V, < U, < W, say, and V, > ¢'?, W, > B, then
(15)  Ey < U V25 Wi (V2 g 1 4 it = 11%)
< W()IM((UQ V)8 g™ U (U, V) 316 1/3)
< 3*714@“1/4 X8 Wy 5/8+q- 18 y13/16 Wy 9/]6)
& 574 g 1A XTB RSB | 5 T/4 o~ U8 x13/16 p-9l16

Here we have used, for example, the fact that U¥* V, < (U, ¥,)""® whenever
Vo < Ug. Comparison of (7.3) and (7.4) now gives the optimal choice

(7.6) A == min (X3, 42 g x 12y,
while (7.4) and (7.5) produce the optimal value
B = max(5213q~2j3 X7/9’ 512/17q-10,’17 X13/17)'

Hence

min{E, E,, E;} € 873¢¥0+872gM* x V3457914 ¢%8 x4

4571316 gUS Y UIB | 573734 7134 x13(34

From (7.2) we see that the best choice of & will be

5 = max (gt /2 X 18 45112 x -2

qlljlﬁX- 3/13, q7;'19X~1]/57’ q41/10’?X-21/10'7)_

This vzvlil!1 satisfy gX~' <4< 1, as required in Section 2, providing that
g < X?Y% We now deduce from (7.2) that

Da(X, 4, Q) = MY (X, @)+ O (X1 13344 0 (X1 +e 4~ 11Y)

+ 0(X10I13+r:q“' 1‘5j26)+ 0 (X=1-6,‘57 +e q“ 12/19)+ O (XS(:/IO'f —H:q"- 66f1 07)
When X*° < g < X?'*! the last error term dominates, and when g < X°
the result of Smith ({291, Theorem 3) yields .

Ds (X, ¢, @) = ME(X, +0(X¥2%5) = MY(X, g)+0(X /10742 - co1107)
We now describe the estimation of E,, E,, E¥ for the proof of Theorem

2. This will entail a different choice of A, B a
‘ s nd & We shall
as before. Tf, say W, > B, V, > B3, then shalluse (73) and (14

E, < 07FQVAX/V, Wy) € 672 Q12 XB™2,
If, say, Wy > B and QY2671 <V, < U, < B3, then
E;: Z UgH %1]2.5—3[2 W01/4 . VOI,FZ Qv1,‘451/2
< 6—1Q-—1,‘4 XL,M(UD VO)SIS < 5-—1 leMX'.'/B B—S’l&.
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Finally, if W2 B, Ug, Vo < A, U < BS and ¥, < QY247 say, then
E¥ < U3 V01/2,5—3,'2 Wit < TR xR U R
This last estimate will be )
Eg: & cQ,‘—leiﬂd- X"I_IS B_SIB,
providing that
(1.7 QAB3* ¢ 6% X%,
We now choose A as in (7.6), and ‘
B = max(&'”5 Xz/s, S Q~2/3 X7’9].

Assuming that
(78) 569 Xl'? > Q30,
we will have B = 843 Q23 X" and (7.7) will be satisfied. The optimal
choice of 4 is then

5 - maX(Q11/24 X—l,’d— QS/ll X—2[9’ Q11/26 X—3{13 Q?/l'] X—ll/Sl)

- Q7/17 X-11I51

if < X' and (7.8) does indeed hold. Moreover gx"'<é<1, for
0 < X121 as required. We deduce that

max max [Ds(x, q, 9)— M¥(x, g)l <€ XL QTAT
O<gg2Q *£X {aq=1
8. The proof of Theorems 1 and 2: main terms. At present we have an
asymptotic formula D3 (X, g, )~ M*(X, q) for (a, g =1 in which we know
nothing about M% (X, ¢}, save that it is independent of 4. In this section we
shall show firstly how to teplace M%(X, q) by

(8.1) Mi(X, 9 = EJ{&—)Res(s”‘L(s, 1o X545 s - 1),

where ¥, is the principal character (mod ¢). We shall then go on to evaluate
D;y(X, q, a) Tor (a, q) > 1, by using our results for {(a, q) = 1.
We begin by observing that, by the estimates of the previous section,

4
(8.2) Z*D3(-X= 'q’ a) = ‘P(q} M§(X, q)+O(X86/107+“q41“07).
a=1

On the other hand, by Perron’s formula (see Titchmarsh [30], Lemma 3.12),

the left-hand side is
1+e+iX
Y*d (n)=~w1— Lis, x )3—)§ds+0(X28).
o 2mi A s
‘ 1+g—iX



52 D. R. Heath-Brown
We shift the line of integration to run from 3—~iX to $+iX, and use the
bound

L(s, x0) < 4" £ (3)] < (gX) XU ReWN3,

The two horizontal line segments then contribute O ((gX )*) while the vertical
line segment produces

X
' dt
35X1/2 ¢ it 3 3g y1f2te
<y JL(%-F—’N 5 L gt XA,
-x

by the fourth power moment estimate (see [30], (7.6.1)). We may now
conclude, on choosing a new value for £, that

q
Y*Di(X, g, a) = 9(g) M3 (X, @)+ O(X/*(gX¥).
a=1
Comparison with (8.2) then produces

ME(X, ) = M3 (X, q)+ O(X 08107 +egm 861107

for g < X*Y*1 An analogous argument for Theorem 2 shows that

Z max |M$} (x, g)— M, (x, q)| € X051 +e Q’?,’l’]
|

Q<gs20 xXSX

for 0 < X'!/2!, We can now deduce Theorems 1 and 2, at least for (a, g) = 1.
For use in treating the case (a, ¢) > 1 we introduce the function

8.3) Fin, 8} = ): p(oy) p(og) plots) dy (B3).

LALPLEY A
This is multiplicative, in the sense that

F(nyny, 8y 83) = Fny, 8,)F(ny, &) ((ny 6, g dy) = 1).

An easy calculation shows that F(p*, 1) =0 for e > 1 and that F(p°, p) =0
for e 2 3; and consequently F(n, 6) = 0 unless n|6% We now take (a, q) = 1
and observe that

(8.4) Zz Fin, Dy(Xn~ ', q,am = ¥ S F(n, 8)d; (m/n).
n|é ms nm
(-m})=l m Ea(fn)n(dq) (n.q‘]w 1

Since m= a(mod g) and r|m, the condition (n, ) = 1 is redundant. We shall
now prove the identity

8.9 Y. F(n, 8)dy(m/n) = d3(md).

nlm

icm
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The right-hand side is

Z o) ploes) e (ots) ds (BO) ds {y) = Z #(011)#(“2)#(‘13) ds (B5)
m=ayaya3hy m=zqap238y172¥3
=Yd() Y TI( X nlw)

Blm mif=pypgr3 PS3 m=a

The three innermost sums vanish unless p; = py = pz = 1, and (8.5) follows,
From (8.4) and (8.5) we now have

Y F(n, 8D, (Xn~ 1L, g, an) = D3 (X5, gé, ad).

né
(=1

Taking new values for X, g and a, we set (¢, a) =&, g = éqy, a =day,
and deduce, in the case of Theorem 1, that

Y. F(n, 8)D3(X(nd)™", q1, a17)

ns§2
(mgq)=1

S P, 6) {M (X (n)t, g5} + O (X307 g~ 60T,

DS(Xz q. a):

It is clear from (8.3) that F (n, &) < (ndy. Since n|6% and §|g we therefore find
that
DS (Xa Q5 a)
= X
niéz.(n,ql)= 1
According to (8.1) the leading term here is

Res (s~ (X/8) ™1 Lis, 2o Y F(n, 8)n~%; s = 1),

~66/107+4¢),

Fin, &) M, (X(6n)~1, g6~ 1)+ 0 (X361

—5_@(%)
where o is the principal character (mod q,). From (8.5) we see that this is
just .

—w-X——Rcs {s"(X/é)"l( S dy(md)ymTF); s = 1} =M;(X,q, a),
dpig;) =1 )

as required. This completes the proof of Theorem 1, and the final stage of the
demonstration of Theorem 2 may be carried out in an analogous manmner.

(m,q;) =1

9. The proof of Theorem 3. For the proof of Theorem 3 we shall need to
know a little about M5 (X, g). We write :

3
f?,(S)=I_[(1-';:> =2 an

pla : nig®
where njg® means that n|g® for some exponent e = e(n). We note that

{9.1) : a, € n'.
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Then

X
M, (X, q) =WRes{s'1C(s)3 X1 fls): s =1}

=X 3 Gy © (log nf(log XY ¢ (9)™",

0<a,f<2 g

for certain constants C,,. We also have

golp= Y n',

nlg®
whence
X
(9.2) My(X, 9 =— (log X)* ¥ b,zn”t,
q osps2 g
with
5.3) bug= 3 Cupy an(log mP <n®,
0Las2 m|n
by (9.1}

We start the proof of Theorem 3 by observing that
d(m) =2 # {qln; g < x'"?} —# {qn; nx" " < g < %7}
whenever n < x. Hence

Y dwds it = T (2{D3(x+1, g, 1)~1}—{Ds(gx""*+1, g, )—1})

nEx qu”z
=2 ¥ Di(x,q, 1)~ 3 Da(gx'? ¢, D+O('*),
g&x1f2 PEEE
By Theorem 2 this becomes
04 2 F Mima— 5 Mg g+0(xt 010,
g<xl/2 g<xli2

on taking @ = x"/?. Thus it remains to consider the contribution from the
two sums above,

Let m =m(n) be the product of ali the primes dividing ». Then (9.2)
yields . '

95 Y Mx,9=x Y (logx* )E bugn™ ¥ g7t
n= 1 J2

gsxti2 0<p<2 1
mim € x112 e
w0 .
=X (log x Y b,y(mn)~ " (log(x**/m)+y
DEY:E n=]
m<xt/2

+0(mx~ 1),
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where 7 is Euler’s constant. The error term here contributes

o]

(9.6) < x"*(log x)* 3 n¥74,
n=1
msxli2

by (9.3). We now observe that
97 #In< N; m(n) < M)} € min(M, N)N°

by the argument used for (4.2). Consequently (9.6) is O(x'/*"%). The main
terms of (9.3) are

98) x Y (log x)’:'ib,,_ﬁ(mn)"‘(log(x”zfm)-l—?)

0sas2 n=1
o
+0(x(log x)* ¥ m 'n¥*Y)
o 3112
=X Cp(log x)/ + 0O (xM?73
0<p<3

for suitable constants Cj, by (9.3) and (9.7). This completes our consideration
of the first sum in (9.4). The only major difference in the treatment of the
second sum lies in the use of the estimate

x1/2

2 (log gf ==— Y. (log mY (log x) +0(x?) (e <2).
g€x1/2 M ogfgs2

m|g frgs2

The outcome in this case is also of the form (9.8), and Theorem 3 follows.

Note added in proof. Fouvry's treatment of (1.2), with @, =x*°**, Q,
= x'"* and the estimate xexp{—c(e)(logx)*/?) on the right, has now been
published: Sur le probléme des diviseurs de Titchmarsh, I. Reine Angew. Math.
357 (1985), pp. 51-76 (Corollary 5). Moreover Fouvry states the asymptotic
formula (1.1) with E, (x) < xexp(—c(k)(log x)*/*). (Ibid. Corollary 4. In fact the
proof is to appear as joint work between Fouvry and Tenenbaum.)
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ACTA ARITHMETICA
XLVII (1986)

On the distribution of multiplicative
arithmetical fanctions

by
Janogs GaLampos (Philadelphia, Pa) and Persr Szusz (Stony Brook, N. Y)

1. Introduction. Throughout the paper, g(n) denotes a strongly multi-
plicative real valued arithmetical function. That is, for coprime integers m
and n, g(mn) = g(m}g (1), and g(p*} = g (p) for all integers k > 1 and primes p.

We use the notation Ay{...! for the number of positive integers n < N
for which the property stated in the dotted space holds.

We say that an arithmetical function h(n) has an asymptotic distribution
F{x)if, as N-» +o00,

Fy(x)=(1/N)Y Ay {h(n) < x}

converges to F(x) at each of its continuity points, and F(x) is a proper
distribution function {that is, F(x) is nondecreasing, continuous from the
right, and its limits at plus and minus infinity are one and zero, respectively).

Note that in this definition of convergence one may always -disregard a
denumerable set of points x.

Our interest is the existence of the asymptotic distribution of g(n).
Therefore, we may assume, and we do so in the remainder of the paper, that
g(n) # 0. Indeed, if P denotes the collection of those primes p for which g (p)
=0, then one can easily see that, as N— +co,

lim(YN)Ay{g(n) =0} =1

whenever
Y 1/p=+co.
pet

On the other hand, if the series above is finite then g(n) and g*(n) have
asymptotic  distribution  concurrently, where g*(n) is the’ strongly
multiplicative function defined as g(n) if g(n)# 0, and g*(p) =1 if g(p) = 0.
Now, the combined results of Bakshtys [1] and Galambos [3] on a
strongly multiplicative function g (n) reads as follows. :



