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1. Introduction. The Pisot sequence E(ao, ¢y) is the sequence of positive
integers {a, defined by the non-linear recurrence relation :

(11) an+2 = N(a,?ﬂ/a,t),

where N(x) is the “nearest” integer to x defined by N(x}=[x+1/2].
It a, > ag+(aq/2M? then a,4,/a,— 6> 1 and attljal, — A>0 [8]
We call f the ratio of the Pisot sequence [a,}. If &, is defined by

(1.2 a, = A"+ g,

then &, is bounded and satisfies rather stringent inequalities (see Lemma 1).

Pisot [10] showed that if ap =2 or 3 then E (¢to, a,) satisfies a linear
recurrence relation. Galyean [9] made a computer study of Pisot sequences
for ay < 10 and found many that satisfy linear recurrence relations but also
many that seemed not to satisfy such relations. Cantor (4] developed a
theory of “familics” of Pisot sequences which explains many of the
recurrences found by (alyean. In [1] we showed that indeed there are non-
recurrent Pisot sequences and in [2] gave proofs of non-recurrence for some
of the sequences found by Galyean. '

I the recurrence relation of minimal length satisfied by {a,} is of the
form

(1.3) Uy gyt o FGebu_y =0 for nzmno,

then we call Q{x) = x*+qg;x* '+ ... +g, the minimal polynomial of {a,}.
From a result of Flor [8], the minimal polynomial of a recurrent Pisot
sequence is of the form

(L4) Q(x) = P(x) K(x),

* This rescarch was supported_‘ in part by NSERC.



14 D. W. Boyd

where P(x) is the minimal polynomial of a Pisot number or a Salem number
and where either K (x) =1 or K{x) is a cyclotomic polynomial with simple
roots ([1], p. 90).

Here we study the guestion of which Q(x) ar¢ actually realizable as
minimal polynomials of Pisot sequences. For convenience, let # and " refer
to the sets of polynomials P and K described above. We say that PK is
realizable if there is a Pisot sequence with minimal polynomial PK.

Flor showed that Q = P is realizable for every Pe# and gave a

necessary and sufficient condition for ¢ = P-(x—g), e = +1 to be realizable, .

namely that
(1.5) (B—¢)* < 1P(e).

He produced examples of P satisfying (1.5) for both ¢ = 41 and 2= —1.

The contributions of this paper are most easily summarized by stating a
number of increasingly more general questions and our (usually partial)
answers to them:

(A) Given Pe# and Ke #', is PK realizable?

Theorem 3 gives a complete answer which reduces to (1.5) in case K (x)
= X gL

(B) Given Pe 2, determine all Ke A for which PK is realizable.

In these circumstances we shall say that K is admissible (for P, or for ()
and that P {or 6) admits K. '

Our answers here are incomplete and depend on the size of @ relative to
its degree d. For example if # > 2972+ then P admits only K =1. If d =1
or 2 then 8 admits only K = 1 unless ¢ = (\/§+ 1)/2 in which case K = x—1
is also admissible.

The methods used for {B) usually answer the following question as well:

(C) Given a Pisot or Salem number 0, must every Pisot sequence {a,} with
ratio 8 be recurrent?

In this case we say that 0 is recurrent. We conjectured in [1] that every
Pisot or Salem number is recurrent. Qur partial answers support this. For
example, all & of degrees 1 and 2 are recurrent and if d > 3 and @ > 84 log d
then 8 is recurrent (Theorem 4).

(D) Given K, is there some P for which PK is realizable?

In this case we say that K is realizable. Our answers here consist of
producing pairs (P, K) to which Theorem 3 can be applied. Thus, in addition
to Flor’s I, x—1 and x+1 we show that x2—1, x*~x+1 and x*—x%+1 are
realizable. It seems unlikely that all Ke # can be realized but we have no
evidence to support or reject this supposition.

The paper is organized so that the results will appear in their logical
order. Thus some results on (B) and (C) appear first in Section 3 while others
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appear in Section 4 and 5. The answer to (A) appears in Section 4 together
with some Corollaries. The examples appear together in Section 6. The next
section contains some preliminary discussion.

2. Preliminary results and notation. Suppose that {a,} is a sequence of
integers satisfying (1.3). If ny = s, we call the recurrence relation pure. Since,
in this paper, we are only concerned with the minimal polynomial @ (x), we
may drop ng—s terms of {a,} if necessary and hence assume all recurrence
relations are pure. In this case, the generating function of {a,} satisfies

5 4, _ A

(2.1) _ ¥ — e

a=0%

where A(x) is of degree s—1 with leading coefficient a,. Both 4 and @ have
integer coefficients and are relatively prime.

Now suppose @ = PK with P and K relatively prime. Let deg P=4d
and deg K = k. Then we may wrile

(2.2) A(x) = E(x) K{x)+ D (x) P(x),
where E and D have rational coefficients and deg E < deg P, deg D < deg K.
By considering (2.2) as a system of s linear equations for the d +k coefficients
of E and D, we recognize the matrix of the system as Sylvester’s matrix
whose determinant is the resuliant Res{P, K) ([12], pp. 279-283). Hence
there is an integer ¢ dividing Res (P, K) such that

(2.3) A(x) = (E; (0K () + Dy (x) P(x))/q

where now E, (x) and D, {x) have integer coefficients.
Substituting (2.2) into (2.1) we have

A(x) E(x)+D(x)

eo 0~ PO KRGy
so that .
2.5) 4y = byt

where b, and ¢, are sequences of rationals with common denominator g and
generating functions E/P and D/K respectively, Since A is prime to Q we
must have E prime to P and D prime to K.

In terms of the zeros {«} of P and {w} of K, we may write

' Al . < E@ ,
6 - e lreRe AP
and
(m) D(w) ",
(2.7) Cp = Z P((.L) Z - K’ (C!J}
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3. Criteria for admissibility of K. It will be convenient in this section to
use the notation of the finite difference calculus. Let E denote the shift
operator on sequences {X,},»o defined by Ex, = x,,,. Il B(x) = bgx"+ ...
+b, 1s a polyrnomial with complex coeflicients then

(3-1) B(E)xl!=b0xm+n+ "'"I'bmxn'
Let L(B) = |bg|+ ... +|b.l. If {x,} s a bounded sequence then
(3.2) lim sup {B(E)x,| < L(B) lim sup |x,|.

Clearly this is a sharp inequality so in fact L(B) is the norm of B(E) as a
linear operator on the space {*/c,, with norm lim sup |x,]. This observation
makes a few of the subsequent calculations more transparent.

Except in the examples in Section 6, a Pisot sequence is any sequence of
positive integers satisfying
(3.3) @iz 0y~ <0 /2, n=01,..

That is, we need not insist on a particular choice for N(x) except that |[N(x)
—xf < 1/2.
Lemma 1. Let a, = A0"+¢, be a Pisot sequence with 0 > 1. Then

(3.4) lim sup (E—0%g,| < 1/2,
(3.5) lim sup [(E—0)e,) < L(2(6—-1)),
(3.6) lim sup s, < 1/(2(0—1)?).

Conversely, if a,, is a sequence of integers of the form A"+, with 8 > 1 and s,
bounded which satisfies (3.4) with strict inequality then {a,},>,, is a Pisot
Sequence.

Proof (see [3], Theerem 1). We sketch the essential points. First check
the identity

(37) an+2an'—a3+1 = ((E—B)zg")an—({E-—ﬂ)g")z,

Since {&,} is bounded [10] and a,~ oo, (3.3) and (3.7) imply (3.4). To obtain
(3.5) and (3.6), observe that E—@ is invertible on bounded sequences and its
inverse has norm 17(0—1).

Finally (3.4) with strict inequality, and (3.7) imply (3.3) for n > ng.

The following result is a refinement of Lemma 2 of [1].

THeorREM 1. Let 0> 1 be an algebraic number and let R(x) be a
polynomial with integer coefficients such thar R(6) =0, Let Ry(x) = R(x)/(x
—0). Suppose thar {a,} is a Pisot sequence with ratio 0.

(a) (Pisot) If L(R)< 2(0—1)* then {a,) is recurrent with minimal
polynomial dividing R(x).

(b) If L{Ry) < 2(8—1) then the same conclusion holds.
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{c} If L{Rg) < 20 then {a,} is recurrent with minimal polynomial dividing
(x—1)R(x). ‘

Prool. We begin with (b) since (a) follows from (b).

Consider the sequence of integers d, = R(E)a,. Write R(E) = Ry(E)(E
—). Since (E—#)a, =(E—0)¢, by (1.2), we have
(3.8) lim sup |d,| = lim sup |[Ry(E)(E—8)e,) < L(Ry) lim sup (E—8)s,|,
where we use (3.2). By the asswmption of (b), together with (3.5) and (3.8), it
follows that |4, < 1 eventually, and hence d, = 0 eventually. So R(E)a, =0
for r = n, proving (b).

Since R,(E) = R(E)(E—0)"1, taking norms we have L(R,) < L(R)(®
—1)7%, so (a) follows from (D).

To prove (c), we observe that

(39 lim sup |d,., —0d,) = lim sup |R(E}(E~6)e,| < L(Rg)/2 < 9,
using (3.2), (3.4) and the assumption of L(R,). Thus

(3.10) ldori—0d,| <8 for nzmny, say.

We claim that (3.10) implies that {d,! is eventually constant. There are
two cases: (i) d, = 0 eventually, or (i) d, # 0 for arbitrarily large ». In case (i}
our claim is obvious. In case (ii), suppose d, # 0 for some n=n, = ny. Then
(3.10) implies that

(3.11) | 2 10, ~10d,—d, s 1| > 01d,| — 0 > |d,|—1.

Since d, and d,, are integers, (3.11) implies that |d,.,] = |d,/. But then
{|d,|? is increasing for n 3 n, and since it is bounded (by L(Rg/(2(f—1))) it is
eventually constant. But (3.10) implies that d, and d, ., have the same sign so
'd,} is eventually constant, proving our claim.

Since (E—1)d, = (E—1)R(E)a, = 0 e¢ventually, (c) then follows.

TueoreM 2. Suppose that @ is a Pisot or Salem number of degree d.

(a) If 6> 2%"241 then @ is recurrent and admits only K(x) = L.

(b) If 6> 2872 then @ is recurrent and admits only K (x) = 1 and possibly
x—1

Proof. The zeros of Py(x) = P(x}/{(x—0) all lie in the unit circle so Py (x)
is majorized (term-by-term) by (x+1)*~*. Thus L{Pg < 27! so (a) and (b)
follow from (b) and (¢) of Theorem 1. .

CoroLLAry L. If 8 is a Pisot number of degree 1 or 2 then @ is recurrent.
Only K(x) =1 is admissible except for 0 = (\/54—1)/2 when K(x)=x—1is
alse admissible. _

Proof If deg® =1 then GZQ\> 27141 so the result follows from

Theorem 2{a). B
BN

2 - Acta Arithmetics XLV
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If degf =2 and 6 # (\/§+1}/2 then 0> 2=22"24.1 so (a) applies.
If 6 = (\/5 +1)/2 then (b) applies. From Flor’s result (1.5), x—~1 is admissible
for 6.

Remark 3.1. Theorem 1 can be used as was Lemma 2 of [1] to
show that certain algebraic numbers cannot occur as ratios of Pisot
sequences. For if, say, @ satisfies L{R,) < 20 and & is the ratio of a Pisot
sequence, then by (c), # is recurrent and hence a Pisot or Salem number.
Thus, for example any quadratic integer 6 which dominates its other
conjugate is not the ratio of a Pisot sequence unless 0 is a Pisot number. As
another example, if 8 = p/g is a rational which is not an integer and if ¢2
< 2p, then 0 is not the ratio of a Pisot sequence.

Remark 3.2. A more direct proof of Corollary 1 is possible in the case
deg 6 = 1. It can easily be shown that if {a,} = E{ay, ;) with m < a,/a, < m
+1 for integer m, then m< 8 < m+1 except in the case 6 =1. Thus an
integer 0 > 2 can only occur as the ratio of the Pisot sequences of the form
a, = aq 0"

Remark 3.3. A more careful analysis enables us to deal with the
question of whether a recurrence relation must be pure (n, = s in (1.3)). We
showed in [1] that Trecurrences must be pure if § > 2. The methods of
Theorem 1 will show, for example, that if deg 0 = 2 then the recurrence must
be pure. Since Deleon [6] has a characterization of all two term pure
recurrences for Pisot sequences, this gives a complete characterization of the
Pisot sequences whose ratio is Pisot number of degree 2. We do not pursue
this further here. '

4. The criterion for realizability. The following theorem generalizes Flor’s
criterion (1.5) for the case K(x) = x—z (e = +1), The proof is very similar
except that we must deal with polynomial congruences rather than integer
congruences and our method of handling the possibility of equality in (4.1} is
necessarily different. '

TreoReM 3. Let Pe & and Ke ¥ with k=deg K > 1.

Let {w} denote the set of zeros of K and let N be the smallest integer for
which o™ =1 for all @ in this set. Then PK is realizable if and only if there is
a C(x) with integer coefficients and deg C < k relatively prime 1o K such that

(4.1) max (¥ Clw

1
—— e (0 — )2 0" < =
ogneN-1 |5 K’((u)P(a))( )

5
The set of C which can satisfy (4.1) is finite and can be effectively
enumerated.

Proof. (a) Suppose that Q = PK is realized by {a,} and that 4 (x) is as
in (21). Let B(x)= A(x) (mod P(x)). with degB<d and - Clx)
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= A(x) (mod K (x)) with deg C < k. Let [a} be the set of zeros of P, and let

42 A() = A@)/Q' () = B@/(P' () K ()

and

(4.3) plo) = Aw)fQ (@) = C(o)/(Pw) K ().
Then, from (2.5)-(2.7),

(4.4) (E~0)g, =(E~0)a, =(E~0*b,+(E—0’c,
where '

(4.5) (E~0)%b, =Y Alw)a™{a—0)* = £,, say
and ’

(4.6) (E—6¢, =Y uwe"(w—=0)7>=4§, say.

The sequence &, is a periodic sequence of real numbers with period
dividing N. Hence max |3,} = §, say, oceurs for n in an arithmetic progression
n=nr, {mod N).

The sequence ¢, = &,+ &, where £, is the sum over jx| < 1 and & the
sum over |¢| = 1 {only present if 0 is a Salem number). Thus &,— 0 and & is
almost periodic. The o with juj=1 and Im o> 0 are mulliplicatively

independent ([11], p. 32) and hence, by Kronecker’s approximation theorem
(51, p- 53),
4.7 lim sup |£,| = lim sup |&)] = 3 [Ma)(x—O)F =&, say.

ja|=1

For the same reason, given & > 0, there are infinitely many n = n {mod N)
which satisfy & = £ —g and infinitely many which satisfy & < —&+s. Thus

(4.8) lim sup |(E~6)?¢,] = lim sup |£,+8,| = £+6.

By (34), we have £+ < 1/2 and hence § < 1/2.
We wish to show that § < 1/2 (which is (4.1)). If § = 1/2 then, for n = n,,

4.9 Cppz—200,, 4 +0%¢, = +1/2.
But {c,} is a sequence of rationals so (4.9) implies that deg & <2. By
Corollary 1 of Theorem 2, this means that 6 = (\/5+ 1)/2 and K (x) = x—1.
Thus ¢, is a constant and hence by (4.9) (6—1)* =(3 _ﬁ)/z is rational, a
contradiction,

(b) For the converse, assume that C(x) exists satisfying (4.1). If 8 is a

Pisot number, we may choose A(x) == C(x}+ F(x) K(x) where F(x} is chosen
so that A{x)# O for all roots of P. Then {a,} has generating function A/(PK)
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and
410 lim sup KE—~&?a,] = lim sup |&,+3,] = max |§,] < 1/2,

Hence by Lemma 1, |a,) is eventually a Pisot sequence with minimal
polynomial PK.

If 0 is a Salem number,
must insure that

(+.11)

A(x) must be chosen more carefully singe we

£ =Y | ea—0? < §-4.

Let D(x) be a polynomial with rational coefficients and deg D < k satisfying

(4.12) D(x) P(x)= C(x) (mod K (x)).
Let D(x)= D (x)/q where D, (x) has integer coefficients and ¢ is an integer
dividing Res (P, K); (cf. (2.3)). Let

Eg(x) = (gC(x)— Dy (%)} P{x))/K {x}.

Then E, has integer coefficients, deg E, < d, and
(4.13) Eg(x)K(x)+D,(x) P(x)= 0

If E,(x) is any polynomial of degree d—1 satisfying E; = E; (mod g), then
the polynomial A(x) defined by {(2.3) has integer coefficients and A(x)
= C(x) (mod K (x)).

Thus ¢, is independent of the choice of E,{x) and b, is given by (2.6)

(mod g).

with E(x} = E, (x)/g. We must thus choose E, = E, (mod g) so that
E(2)
(4.14) L o — ) _5_
o= 1 g P (=) w(x=0)

There are d coefficients in E,{x) and only d—2 roots x with |z| =1 so
by Kronecker’s approximation theorem we may simultancously make all
|E1 ()| sufficiently small so that (4.14) holds. Because of the side condition E,
= E, (mod g), this is generally an inhomogeneous problem.

(e Fmaily, we must show that the set of C(x) satisfying (4.1} is finile.

]S-;nce " =1, the sequence &, defined by (4.6) is a finite Fourier transform.
ence

(4.15)

N-1

Y 1
wen(o—0y = N Y B,

n={
hus Jp(w) (o~ 02 < 1/2 and so

(4.16) 0 < |Clw) < $IP() K {w)/jw—0/

‘ Since. deg C < k we can recover C(x) from the values of C(w) by
interpolation, and hence (4.16) defines a finite and effectively determinable-set
of polynomials.

for ail o.
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CoroLLARY 2. (a) If there is a polynomial C(x) with inreger coefficients,
deg C < k, and prime to K(x), for which

' Clw)
(4.17) % P K @ K’(wg(w

1
12
=<5

then PK is realizable.
(b) If PK is realicable then there is a C(x) with integer cocfficients,
deg C < k and prime to K(x), for which

_C(m) e
K@Y

L
i

(4.18)

m

Proof (a) Clearly (4.17) implies (4.1).
{b) This is a result of Parseval's formula applied to the sequence J,.

CororLary 3. The polynomial K(x) = x2~1 is admissible for 0 if and
only if
@- 1)2 B+ 1)2
R
1P IP(=1)

Proof. Clearly, i J, is given by (4.3) and (4.6) then

ICle~1* | |C(=1IE+1)?
2|P(1)] 21P (=1

(4.19)

(4.20) ax [5,] =
If (4.1} is to hold with C(1) and C(—1) non-zero integers then (4.20) implies
(4.19). On the other hand, by choosing C{x)= 1, (4.19) implies (4.1).
CoroLLary 4. Let @ be a Pisot or Salem number and let R(x), Ry{x) be as
it Theorem 1. :
(b} If L{Ry) < 2(0— 1) then every K (x) admissible for 0 must divide R(x).
(¢) If L(Ry) < 20 then every K{x) admissible for 6 must divide (x~1) R(x).
Proof. As in the proof of Theorem 1, let d, = R(E)a,. Since R(E}b,
= 0, we have d, = R(F)c,. By Theorem 3,

lim sup [(E—0)*¢,| =6 < 1/2.

Hence we obtain the strict inequalities lim sup |4, < 1 and (3.9) required to
complete the proof of Theorem I.

Remark 4.1. The difference between Theorem 1 and the above
Corollary 4 is that we allow equality in the conditions on L(R,) but assume
(i 18 recurrent.

Remark 4.2, By Corollary 3 and Flor's criterion (1.5) we see that if x—1
and x-+1 are admissible for 0 then so is x%—1. Example 6.1 will show that
the converse is false.
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Remark 4.3. It is possible to apply Theorem 3 without extensive
computations involving complex numbers. We observe that the sequence {c,}
has generating function C(x)F(x}/K (x) where F(x) has rational coefficients
and satisfies F(x)P(x) = 1 (mod K(x)). If we generate the periodic sequence
of rationals f, with generating function F(x)/K(x) and the corresponding
sequence 7, = (E—0)* f,, then we can produce the sequence §, = (E—0)c
= C(E)#, by cyclic shifts and additions. Example 6.6 illustrates this.

5. Another criterion for the admissibility of K. We will use the box
principle to produce suitable R(x) to use in Theorem 1 provided 0 is
sufficiently large relative to its degree.

LemMa 2. Let 0 be a Pisot or Sulem number of degree d. Suppose t > d
and L> 0 are integers satisfying
(5.1) E= 3Ly ¢.

Then there is a non-trivial polynomial of degree ar most t with integer
coefficients and L(R) < 2L such that R(6) = 0.

Proof. Let V be the set of vectors (vy, ..., v) of non-negative mtegers
satislying vg+ ... +v, < L. Let 8, =8, 6,, ..., 6, be the conjugates of & and
consider the mapping F(v) =(/fi, ..., ) deﬁne_d by fi=uvoli+ ... +1,. We
have 0 f; < L& and |f| < L if i 2 2. If we can find two.-different v™*! and
v in V¥ so that [fV—f®| <1, then R{x) = @ —o@)x + ... + (6 —si?)
will have [R(t)l < 1 for all i. But R(f,), ..., R{f,) are ali the roots of a
monic polynomial with integer coefficients, hence this implies R(B) = () for
all i. In particular R(6) = 0.

By induction, the number of vectors in V exceeds ILi/t!.

On the other hand we claim that the image F (V) can be covered by at
most 371" “rectangles” of the form []{|x;—b] < 1/2}, where bj———b_i if
0; = 9 For, the interval 0 < f; < L& can be covered by 2[L8]+2 < 3L¢
mtervals of length 1. If i > 2 and &, is real then the interval x| < L can be
covered by 2L+1 < 3L intervals of length 1. If 4, is complex, then the disk

|} < L can be covered by at most Zf L)? squares of diameter 1 and hence
by < (3L)* disks of diameter 1. The conjugate of this disk covers Lif fi= f
This proves the claim.,

Now the lemma follows by the box principle since the assumption (5.1)
insures that two distinct points in V have images in the same small rectangle.

THEOREM 4. Let @ be a Pisot or Salem number of degree d. If § > 8d log d
then § is recurrent. Furthermore the set of K admissible for 0 is finite and
effectively determinable,

Proof. The case d < 2 is handled by Corollary 1 of Theorem 2 hence
assume d > 3, Let L =14[6%2]. Thus, using ¢! < tfe* ™, (5.1) will hold if

(5.2) - 270 > f ot 1 (30220
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Now take ¢ == [(8.8)d log d]+1 and assume 8 > 84 log d > 9t and that 4 = 3.
Then it can be verified that (5.2) holds.

Thus by Lemma 2, there is a polynomial R of degree at most ¢ with
L(R) € 2L < #*+42 < 2(8—1)% By Theorem I{a}, 9 is recurrent and if K is
admissible then K divides R. There are only a finite number of possible K.
Since R is effectively constructible, the set of admissible K is effectively
determinable.

6. Examples illustrating the above theory.

ExampLE 6.1. Let R(x) = x"{x*—x—1)—1 for m=1. Then R has a
unique positive root 6 known to be a Pisot number [7]. The minimal
polynomial of @ is

6.1 Plx) = R{x), if m is odd,
(&1 X () = R(x)/(x+1), i miseven.
We compute Ry(x) = x"" +r x"+...=1 71 ... 1y to be

(6.2) Ry=1,6—1,02—0~1,6*~8*—6, ..., 9" t—g"—om" L.
Since 8>—0—1> 0, Ry has positive coefficients so
L(Rg) = Ry (1) = R(1A1—8) = 2/(6—1) < 20.
By Theorem 1(c), 8 is recurrent and admissible K (x) must divide (x—1) R (x).
If m=2, L(Ry) < 2(0—1) so K{x) must divide R(x).

By Flor’s criterion (1.5), if 8 < 1+(\/§/2) then (8—1)2 < 172 |P(1)/2
so x—1 is admissible for such #. This applies here unless m =2, and
indeed x—1 is not admissible for m =2. By (6.1) and the above, only 1
and x—1 are admissible for m odd.

If m is even, then 6 < 1.7548... and |P(—1)| = |R'(—1)| =m+3 so by
(15), x+1 is admissible for all even m. Since P(1) = —1, x*—1 will be
admissible only if (4.19) holds, ie.

(6.3) (@ —1)2+(0+ 1)}/ (m+3) < 1. _ .
If m>10 then 0<162158... so (6.3) holds while if m<8 then
0> 1.62710... so (6.3) is false. Hence, x*—1 is admissible if and only
if mz10.

ExaMPLE 6.2. Let R(x) = x™(x?—x—1)+1 for m = 2 which agam has a
root # > 1 which is a Pisot number whose minimal polynomial is

R(x)/(x—~1) if mis even,

64 P0 = {R(x)/(xl—l) if mis odd.

Again R, is given by (6.2) but now 6*—@—1<0 so only the first two
coefficients are positive. Hence

L(Ry) = —Rp(1)+2+2(6—1) = —R(L/(1—B)+20 = 26.
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Thus Theorem i(c) just fails to apply but we can use Corollary 4 of Theorem
3 to determine the admissible K (x). We find that K {x} must divide x—1 if m
is even and x*—1 if m is odd.

As above, 0 < (\/g—i— 1)/2 < 1+1/\/§ so x—1 i3 admissible in all cases.
If m is odd then P(1)= ~(m—1)/2 and P(—1)= —(m+3)/2. By
(L.5), (x-+1) is admissible only if m = 25. However, (4.19) reduces to

(6.5) (O — 12— 1)+(0+ 1)*(m+3) < 1/2

which is true if m = 13 but false if m

m = 13.
Note that if 13 < m < 23 then x?—1 is admissible but x+1 is not.
Note that the smallest Pisot number #, =1.3247... with minimal

< 11. Thus x*-1 is admissible only if

polynomial x*~x—1 is the case m == 2 of this example.. Although Theorem -

1(c) does not show that 8; is recurrent, it is possible to do so by consider-
ing d,=P(E)a, which, in addition to [(E-8)d, < L{Py)/2, satlsﬁes

(E—6)*d,| < L(Py2. Using both 1nequaht1&s one can deduce that d,
- eventually constant. ‘

Example 6.3, The other small Pisot numbers near (\/ 541)/2 have
minimal polynomials _
P(x) = x™(x*—x—1}+e(x*~1)
with m> 1 and ¢ = +1 ([7]). '
If =1 and m = |, we again have x3»—x—1.
If e=1 and m=2, then P(x)=x*—x>—1 with 0= 138027... the

second smallest Pisot number. Here P, has no-negative coefficients and

L(Pg) = 10— 1) < 26 s0 by Theorem 3(c), 8 is recurrent and only 1 and x—1
are admissible. (As usuai (1.5) shows x—1 is admissible.}
For other choices of m and ¢z, we have been unable to answer (B).
With m = 3, ¢ = 1, for example, we have § = 1.44326... and ‘L(Py) > 286,
If we examine [P(e')| we find that it is relatively large for 70° € o < 140°
suggesting that K (x) = x*+1 might be admissible. However, if we compute

1
(6.6) 8, =3 Re [C()(—2+30)"(i—0)%)

the conditions (4.16) give

0 <|CU)f < /130> +1) = 1.604 ..

So, without loss, we may take C(x)= 1. But then 01_(392-4-1/13
=.55762... > 1/2. Hence x%+1 is not admissible for 4.
ExampLe 6.4. Consider the polynomial of degree 16

(6.7 P:l—22*32—21001»12—22~21-——1

icm

Linear recurrence relutions satisfied by Pisot sequences 25

which is found in 2] and has 8 =1.62165...
and w, =exp(i150%) are 12th roots of unity then |P(e,) = 3.3007... and
{P{w,) = 9.3330... are relatively large sugpesting that K {x) = x*~x?-1 may
be admissible for 8. We find that the choice C(x) = x* —x— | satisfies (4.17)
so indeed K is admissible.

In some sense, K is a natural partner for P since

(6.8) POK(xH(x+1) = x'?(x*—x

I w; =exp(i30?)

1) x g x10

which is a more appealing cxpression than (6.7).

To determine an explicit Pisot sequence with minimal polynomial PK
we need only examioe the sequence {q,} generated by C/PK. We can verify
|Gy 1 2 0= 2] < a,/2 by use of (3.7) since (E—0)*s, and (E—#8)e¢, can be
expressed as sums of the form {44). We find that Ef(a,, ¢,..) is a Pisot
sequence if and only if m = 106. Explicitly, PK is the minimal polynomial for

E(7995086938825650416629, 12965300600822297402505).

We should emphasize that the proof that PK is realizable requires oniy
a hand calculator. It is omly in determining a specific sequence .E(a, b)
realizing PK that a small computer is helpful

ExampPLE 0.5. We give an example with @ a Salem number to illustrate
the proof of Theorem 3 and to show that x*—x+1 can be realized.

Let P(x) =1 ¢ —1 =1 —~10 1 with 0 =140126... and Jet K(x) = x?
—x+1 with roots w = exp(i60°) and @. Then |P(w)| =4, K'(w) = \/ﬁi and
|0—wf* = 1.56223.... Thus the choice C{x)=1 gives

16,0 < 2| —0)%|P{w) K (@)} = .45099...

so PK is realizable by Theorem 3.
To find a specific sequence realizing PK we begm by computing
D{x) P(x)= 1 (mod K (x)}. We find D(x)=1/4 hence D;(x)=1 and g =4.

~ (Note that Res (P, K) = 16. One can show that ¢* divides Res (P, K) if P

and K are reciprocal, ie. § is a Salem number and K(1)# 0)

Thus Ey(x) = (4—D; P))K= —1 ~1 1 -1 —1 (mod 4_1} Now we Wgnt
E,(x)= Eo(x) {mod 4) for which |E; ()] is small for the conjugates of & with
al = 1. B

Writing P(x) = x> R{x+x~") with R() = —4t—1, and ¢ = Q~|—0 L owe
see that P(x)/(x~0)(x—071) = x? R,{x+x~!) vanishes for all & with |2/ = 1.
Here

R,=1, g, o~ ~ 1, 2.11490, 47283

so a natural choice for E,(x) is an approximate multiple of x* R, (x+x71).

Say £, (x) = x2S§(x+x""') where §{t) = spt*+s;t+s,, where
(6.9) 51/So ™ 0, Safsom 1/e
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and
(6.10) Sg, S1, 82 = =1, —1, —1 (mod 4),
which is equivalent to the requirement E, = E, (mod 4).
Take sy = —1 (mod 4) and define s, and s, to be the nearest integers to

s and so0” ! respectively. Then, by Weyl's uniform distribution theorem

([5]. p. 66), asymptotically (1/4)* of the choices of 5, will satisfy (6.10) and,
among these, & = max (|s; — s, 9|, |s;—So ¢~ '|) can be made arbitrarily small.
A simple search yields the triple
(S0, 51, 52} = (24167, 51111, 11427)

with ¢ =.02943. For the corresponding E, (x), we have
=3 |AMapa—0) = .022367...
la] =1

and since & = max |6,) = 450634... we do have the required E+8 < 1/2.
Next computing A (x) = 6042, §736, 8204, 10615,... we know that A/(PK)
generates the required Pisot sequence once the contribution from 6! has

died out. We thus find that E(ayq, a5,) = E(306174824, 429033096) realizes
PK.

ExampLE 6.6. To illustrate Remark 4.3 we take again K (x) = x*—x2+1
and now P(x) =x!°—x%~x%—x*+1 which defines a Salem number
0 = 1.21639.... The sequence f, of period 12 is given by

(f)=0D"'2 -14 -120 -21 41 -20..)
so, truncating to 3 decimal places,
(na) = ((E—)*f,) = (854, —1.110, 941, --.577, .087, .533, - .854,..).
Thus, by inspection (using n,.¢ = —n,), we have '
(E+1)n,) = (320, —.256, —.169, .364, — 489, 620, —.320, ..}

and

(E+1)Yn,) = (—.299, 064, ~ 425, .195, —.125, .130, 299, ..).
Since this has all components less than 1/2, C(x) = (x+1)? satisfies (4.1), 50
x*—x*+1 is admissible for 6.

We leave as an exercise the determination of a specific Pisot sequence
realizing PK.
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