On index formulas of Siegel units
in a ring class field

by

HEIMA HAYASHI (Kumamoto, Japan)

Introduction. Let \(\Sigma = Q(\sqrt{d}) \) be an imaginary quadratic number field with discriminant \(d \), and let \(K \) be an abelian extension over \(\Sigma \) with rational conductor \(f \) such that \(K \) is contained in the ring class field \(N_f \) modulo \(f \) over \(\Sigma \). In the previous paper [5], we studied the several properties on Siegel unit \(\delta_K(C) \) in \(K \) and gave an index formula related to \(\delta_K(C) \). The purpose in the present study is to give other kinds of index formulas related to \(\delta_K(C) \), using the results in [5].

In Section 1, we shall summarize the properties of \(\delta_K(C) \) and some preliminary facts in the theory of group algebra. In Section 2, we shall give two index formulas related to \(\delta_K(C) \) (Theorems 1, 2). The unit group \(\delta_K \) dealt with in Theorem 1 is an analog of the group of cyclotomic units in a real abelian number field studied by Leopoldt ([17]). The main task in this paper is to deduce Theorem 2 from Theorem 1, and it will be done in Section 3. The unit group \(\delta_K \) dealt with in Theorem 2 is fairly larger than \(\delta_K \). The method used in Section 3 is mostly based on the fundamental facts in Section 1, and partially similar to that of Gillard ([22]). Of course these two groups are quite different from those in [2]. As an application of Theorem 2, a formula of Schertz ([3], Satz 3.3) can be proved under the restriction that \(K \subset N_f \) (Corollary 2). Moreover, using the results on Siegel unit in Section 1, we shall construct three unit groups \(\delta_K, \delta_K^*, \delta_K^{**} \) such that \(\delta_K \subset \delta_K^* \) and \(\delta_K \subset \delta_K^{**} \subset \delta_K^{*} \), and give the more refined index formulas for them (Propositions 1, 2, 3). Proposition 3 permits us in some special case to express the class number quotient \(h_K/h \) just as the index of \(\delta_K^{**} \) in the group of the whole units in \(K \).

1. Notations and preliminary. Let \(Q \) be the field of rational numbers, \(Z \) the ring of rational integers and \(\Sigma = Q(\sqrt{d}) \) an imaginary quadratic number field with discriminant \(d \). Let \(K \) be an abelian extension over \(\Sigma \) with rational conductor \(f \) such that \(K \) is contained in the ring class field \(N_f \) modulo \(f \) over \(\Sigma \). We denote by \(O_f \) the order in \(\Sigma \) with conductor \(f \) (\(O_1 \) means the
maximal order in \(\Sigma \) and by \(\mathcal{R}(f) \) the ring ideal class group modulo \(f \), i.e. the group of the equivalent classes of proper \(O_f \)-ideals in \(\Sigma \) by the usual relation.

Let \(\sigma: \mathcal{R}(f) \to \text{Gal}(N_f/\Sigma) \) be the isomorphism from \(\mathcal{R}(f) \) to the galois group of \(N_f \) over \(\Sigma \) via Artin's reciprocity law, and let \(\mathcal{S} \) be the subgroup of \(\mathcal{R}(f) \) whose image by \(\sigma \) is equal to the galois group of \(N_f \) over \(K \).

Hereafter, for each number field \(K \), we denote by \(h_\Sigma \), \(E_\Sigma \), \(\mu_\Sigma \) and \(w_\Sigma \) respectively the class number of \(K \), the unit group of \(K \), the torsion part of \(E_\Sigma \), and the number of elements in \(\mu_\Sigma \). (When \(- \equiv \Sigma \), the subscript \(-\) is omitted from these notations.)

Let \(C \) be a class in \(\mathcal{R}(f) \) and let \(\alpha_f \) be an \(O_f \)-ideal in \(C^{-1} \). Then there exists an element \(\alpha \) in \(\Sigma \) such that \((\alpha_f O_f)^{1} = (\alpha)\) as a principal \(O_f \)-ideal. We define the Siegel unit \(\delta_f(C) \) by

\[
\delta_f(C) = \alpha^{12} \left(\frac{\Delta(\alpha_f)}{\Delta(O_f)} \right)^{h_\Sigma}
\]

Herein \(\Delta(\) \) means the usual lattice function expressed by using the Dedekind eta-function as follows:

\[
\Delta(m) = \left(\frac{2\pi}{\omega_1} \right)^{12} \eta \left(\frac{\omega_1}{\omega_2} \right)^{24},
\]

where \(m = [\omega_1, \omega_2] \) is a 2-dimensional complex lattice with \(\mathbb{Z} \)-basis \(\{\omega_1, \omega_2\} \), \(\text{Im}(\omega_1/\omega_2) > 0 \). \(\delta_f(C) \) depends only on the class \(C \), not on the choices of \(\alpha \) and \(\alpha_f \), and is a unit in \(N_f \). As is well known, \(\delta_f(C_1) \delta_f(C_2) = \delta_f(C_1 C_2) \delta_f(C_2) \) for any \(C_1, C_2 \) in \(\mathcal{R}(f) \), and \(\delta_f(C_0) = 1 \) for the unit class \(C_0 \) in \(\mathcal{R}(f) \).

We define \(\delta_k(C) \) as the relative norm of \(\delta_f(C) \) w.r.t. \(N_f/K \), i.e.

\[
\delta_k(C) = \prod_C \delta_f(C^C)/\delta_f(C),
\]

where \(C \) runs over all classes in \(\mathcal{S} \).

Remark 1. In his paper [8], Schertz dealt with the similar unit \(\theta_k(C) \), which is defined by:

\[
\theta_k(C) = \beta^{12} \prod_{t \neq 0} \left(\frac{\Delta(\alpha_f b_j)}{\Delta(b_j)} \right)^{w_k}
\]

Herein \(b_j \) ranges over a system of the complete representative \(O_f \)-ideals of all classes in \(\mathcal{S}_k \), \(m_k \) is the least positive rational integer such that \(m_k \neq 0 \pmod{h} \) and \(\beta \) is an element in \(\Sigma \) such that \((\alpha_f O_f)^{w_k \eta_0} = (\beta)\) as a principal \(O_f \)-ideal in \(\Sigma \). As can be easily seen, \(\delta_k(C) = \theta_k(C)^{\frac{w_k \eta_0}{\beta}} \).

However in our arguments, we use \(\delta_k(C) \) instead of \(\theta_k(C) \) for a few reasons. (For example, one should refer to Lemma 6 in Section 3.)

Now let \(l_k \) be the homomorphism from \(\mathcal{R}(f) \) to a subgroup \(\mathcal{R} \) of \(\mathbb{Z} \langle 24 \rangle \) defined in [6]. Herein \(l_k \) is uniquely determined by \(K/\Sigma \), and indeed \(\mathcal{R} \) can be realized by using the \(K \)-admissible \(O_f \)-ideals in \(\Sigma \). Of course \(l_k(C^3) = 1 \pmod{24} \) for any \(C \) in \(\mathcal{R}(f) \). Then the following lemma holds.

Lemma 1 ([6], Prop. 1). Let \(C_1 \) and \(C_2 \) be any two classes in \(\mathcal{R}(f) \) and let \(n \) be the least positive rational integer such that

\[
n(l_k(C_1)-1)(l_k(C_2)-1) \equiv 0 \pmod{24}.
\]

Then \((\delta_k(C_1) \delta_k(C_2))/\delta_k(C_1) \delta_k(C_2) \) is contained in \(E_k^{24} \).

In the rest of this section, we shall provide some preliminary facts from the theory of group algebra.

Let \(G \) be the galois group of \(K \) over \(\Sigma \), and let \(g \) be its order. We denote by \(\mathbb{Z} \langle g \rangle \) (resp. \(\mathbb{Q} \langle g \rangle \)) the group ring of \(G \) over \(\mathbb{Z} \) (resp. \(\mathbb{Q} \)) and by \(\mathcal{A}(K/\Sigma) \) the character group of \(G \). For any \(\chi \) in \(\mathcal{A}(K/\Sigma) \), we denote by \(\chi \) the block to which \(\chi \) belongs, i.e.

\[
\chi = \{ \xi \in \mathcal{A}(K/\Sigma); \langle \xi \rangle = \langle \chi \rangle \}.
\]

Herein \(\langle \cdot \rangle \) means the cyclic group generated by \(\cdot \). Every character in \(\chi \) possesses the common kernel \(U_2 \) and common order \(g_2 \). We often use the same notation \(\chi \), identifying it with the \(Q \)-irreducible character of \(G \) to which \(\chi \) belongs. Let \(K_2 \) be the intermediate field of \(K/\Sigma \) associated with \(U_2 \). Then \(K_2/\Sigma \) is a cyclic extension of degree \(g_2 \) and its galois group \(G_2 \) is isomorphic to \(G/\Sigma U_2 \). If \(K_2 \subseteq K_2 \), i.e. \(U_2 \subseteq U_2 \), then we denote this relation by \(\chi \subseteq \chi \). Let \(\chi \) be a total order in the finite set \(\{ \chi \}; \chi \in \mathcal{A}(K/\Sigma) \}, satisfying the condition that \(\chi \leq \chi \) whenever \(\chi \leq \chi \) (cf. [2]). Hereafter we keep this ordering.

For any \(\psi \), \(\chi \) such that \(\psi \neq \chi \), we denote by \(U_2 \chi \) the subgroup of \(G_2 \) which corresponds to the subfield \(K_2 \), and we let

\[
v_{2, \chi} = \sum_{\gamma \in U_2 \chi} \gamma.
\]

The following lemma is well known as a result of Martinet (cf. [2]) and very useful in our later arguments.

Lemma 2. Let \(\mathcal{A}_2 \) be the ideal in \(\mathbb{Z} \langle g_2 \rangle \) generated by \(\{v_{2, \chi}; \chi \neq \chi\} \). Then

\[
\mathcal{A}_2 = P_{g_2}(\mathcal{S}_2) \mathbb{Z} \langle g_2 \rangle,
\]

where \(\mathcal{S}_2 \) is a generator of \(G_2 \) and \(P_{g_2}(X) \) is the \(g_2 \)-th cyclotomic polynomial.

The idempotent \(e_2 \) corresponding to the \(Q \)-irreducible character \(\chi \) is given by

\[
e_2 = 1 \sum_{\gamma \in \gamma(S)} \chi(S^{-1}) S.
\]
As is well known, $\sum_{j=1}^k e_j = 1$ in $Q[G]$ and $Q[G]e_k = Q(\zeta_{2k})$, where ζ_{2k} is a primitive $2k$-th root of unity. Moreover, we define $\tilde{\alpha}_k$ in $Q[G_2]$ and γ_k in $Z[G_2]$ respectively by

$$\gamma_k = \frac{1}{g_2} \frac{1}{s \in G_2} \tilde{\alpha}(\bar{S}^{-1}, \bar{S}) \quad \text{and} \quad \gamma_k = \prod_{\nu} \langle 1 - S_\nu^{2\nu} \rangle,$$

where $\tilde{\alpha}_k$ is a generator of G_2 and p runs over all prime divisors of g_2. Of course γ_k depends on the choice of $\tilde{\alpha}_k$, but as an ideal in $Z[G_2]$, $\gamma_k Z[G_2]$ is uniquely determined independently of the choice of $\tilde{\alpha}_k$. Plainly γ_k is the restriction of e_k to $Q[G_2]$. For each $\tilde{\alpha}_k$, it is easy to see that

$$\gamma_k \tilde{\alpha}_k = \gamma_k.$$

2. Statement of results. Let the notations be the same as in the preceding sections. For any $\tilde{\alpha}_k$, K_2 is contained in the ring class field N_{K_2} modulo g_2 over Σ. Of course g_2 is a divisor of f. Let $\tilde{\alpha}_k$ be the subgroup of K_2 which corresponds to K_2 and C_2 a fixed class in K_2 such that the coset $C_2 \tilde{\alpha}_k$ is a generator of K_2. Then we may take $K_2 \tilde{\alpha}_k$ as a generator of C_2. We define two unit e_2 and $\tilde{\alpha}_2$ in K_2 respectively by

$$e_2 = \delta_{K_2}(C_{2}), \quad \text{and} \quad \tilde{\alpha}_2 = \tilde{\alpha}_{K_2}(C_{2}).$$

Then $N_{K_2 K_2}(e_2) = 1$ for any $\tilde{\alpha}(\tilde{\alpha} \neq \tilde{\alpha})$. Herein $N_{K_2 K_2}$ means the relative norm w.r.t. K_2/K_2. Furthermore we define two subgroups δ_k and δ_k of E_k as follows:

$$\delta_k = \mu_k \prod_{\tilde{\alpha}_k} \delta_k, \quad \text{where} \quad \delta_k = \mu_k \tilde{\alpha}_k \tilde{\alpha}_{K_2}(C_{2}),$$

$$\delta_k = \mu_k \prod_{\tilde{\alpha}_k} \delta_k, \quad \text{where} \quad \delta_k = \mu_k \tilde{\alpha}_k \tilde{\alpha}_{K_2}(C_{2}).$$

Then we have the following index formulas.

Theorem 1. $(E_k; \delta_k) = M_1 h_K^2$, where

$$M_1 = \frac{w}{w_k} (24h)^{a_1} \sqrt{g_2^{d_2}} \prod_{\nu = 1}^{g_2(1)} P_{g_2}(1).$$

Herein D_2 means the discriminant of the cyclotomic field $Q(\zeta_{2k})$.

Theorem 2. $(E_k; \delta_k) = M_1 h_K^2$, where

$$M_2 = \frac{w}{w_k} (24h)^{a_1} \sqrt{g_2^{d_2}} \prod_{\nu = 1}^{g_2(1)} P_{g_2}(1).$$

Herein $\varphi(\)$ means the Euler function.

Theorem 1 is an analog of Leopoldt's formula on cyclotomic units in a real abelian number field ([7]), and its proof can be accomplished by the almost similar way to that in [7]. Now it is evident that $\delta_k \subseteq \delta_k$. Then in order to prove Theorem 2, we have only to prove that

$$(\delta_k; \delta_k) = \prod_{\nu = 1}^{g_2(1)} \frac{g_2^{d_2}}{g_2(1)}.$$

We shall give a complete proof for the formula (2.1) in the next section. In the rest of this section we shall give several index formulas which can be derived from Theorems 1 and 2.

Taking into consideration the fact that $N_{K_2 K_2}(e_2) = 1$ for any $\tilde{\alpha}(\tilde{\alpha} \neq \tilde{\alpha})$ and the result of Lemma 2, we have

$$\delta_k = \langle \delta_k \rangle, \quad 0 \leq j \leq \varphi(g_2) - 1 \rangle_{K_2},$$

$$= \langle \delta_k(C_2); 1 \leq j \leq \varphi(g_2) \rangle_{K_2},$$

where $\delta_k(C_2)$ means $\delta_k(C_{2})$. Then we have the following:

Corollary 1. $(g - 1)$ units $\{\delta_k(C_2); \tilde{\alpha} \neq 1, 1 \leq i_2 \leq \varphi(g_2)\}$ constitute a maximal system of the independent units in K_2 and generate δ_k in Theorem 1.

In Theorem 2, it is evident that

$$\delta_k = \langle \delta_k \rangle, \quad 0 \leq j \leq \varphi(g_2) - 1 \rangle_{K_2}.$$

On the other hand, by Lemma 2 and Lemma 6 (in § 3), we have

$$\delta_k = \prod_{\tilde{\alpha}_k} \langle \delta_k \rangle, \quad 0 \leq j_2 \leq \varphi(g_2) - 1 \rangle_{K_2}.$$

Then we have the following:

Corollary 2. $(g - 1)$ units $\{\delta_k(C_2); \tilde{\alpha} \neq 1, 1 \leq i_2 \leq \varphi(g_2)\}$ constitute a maximal system of the independent units in K_2 and generate δ_k in Theorem 2.

Replacing $\delta_k(C_2)$ in Corollary 2 by $\delta_2(C_2)$ (Remark 1), we have the similar formula as follows:

Corollary 2'. $(g - 1)$ units $\{\delta_2(C_2); \tilde{\alpha} \neq 1, 1 \leq i_2 \leq \varphi(g_2)\}$ generate a subgroup Θ_2 of finite index in E, for which the following index formula holds:

$$(E; \Theta_2) = \frac{w}{w_k} (24h)^{a_1} \sqrt{g_2^{d_2}} \prod_{\nu = 1}^{g_2(1)} \frac{m_2^{d_2}}{g_2(1)}.\sqrt{D_2} \prod_{\nu = 1}^{g_2(1)} P_{g_2}(1)).$$

Herein m_2 is the least natural number such that $m_2 \equiv \bar{S}_2 \equiv 0 \pmod{h}$.

Corollary 2' is essentially equal to the formula of Schertz ([8], Satz 3.3 under the restriction that $K \subseteq N_2$). Namely $\langle x(C_2); 1 \leq i_2 \leq \varphi(g_2) \rangle_{K_2}$
constitute an integral basis of the principal ideal \((g_2 - 1)\) in \(\mathbb{Z}[g_2]\), whose absolute norm is equal to \(P_{\mathfrak{q}}(1)\) (see Satz 1.7 in [8]).

Now we are going to deduce the more refined index formulas from Theorems 1 and 2. Namely, using Lemma 1, we shall construct three large unit groups \(\delta_2^2, \delta_2^2, \delta_2^2\) such that \(\delta_2^2 \subseteq \delta_2^2\) and \(\delta_2^2 \subseteq \delta_2^2\).

First we note that \(\delta_2^2\) is the 24th power in \(E_{K_2}\) with the exception of the case where \(g_2 = 2\). Indeed if \(g_2\) is odd, then it is always possible to choose \(C_2\) as a square of some class in \(\mathbf{A}(f_2)\) and hence by Lemma 1, \(\delta_2^2\) is in \(E_{K_2}^{24}\). If \(g_2\) is even but not equal to 2, then there exists a prime divisor \(p\) of \(g_2\) such that \(g_2/p = 2\). Then by the following equality

\[
\delta_2^2(C_2) \delta_2^2 = \frac{\delta_2^2(C_2) \delta_2^2(C_2^{p_2})}{\delta_2^2(C_2^{p_2 + 1})}
\]

and Lemma 1, we may conclude that \(\delta_2^2\) is contained in \(E_{K_2}^{24}\).

In the case where \(g_2 = 2\), we have

\[
\delta_2^2 = \delta_2^2(C_2) \delta_2^2 = \frac{\delta_2^2(C_2)}{\delta_2^2(C_2^2)},
\]

and hence by Lemma 1

\[
\delta_2^2 \in E_{K_2}^{24}\text{ with } n_2 = 1, 2, 3.
\]

Here \(n_2 = 3\) occurs in the only case where \(\Sigma \neq \mathbb{Q}(\sqrt{-3})\) and \(K_2 = \mathbb{Q}(\sqrt{-3})\), and \(n_2 = 2\) occurs in the only case where \(\Sigma = \mathbb{Q}(\sqrt{-3})\) and \(K_2 = \mathbb{Q}(\sqrt{-4})\). Moreover it always holds that \(\prod_{\varphi = 2} \delta_2^2 = \mu_{K_2}\). Hence for each \(\mathfrak{p}\), we may choose a unit \(\tilde{\eta}_2\) in \(E_{K_2}\) such that

\[
\begin{cases}
\delta_2 = \tilde{\eta}_2^{24} & \text{for } g_2 \neq 2, \\
\delta_2 = \tilde{\eta}_2^{24} & \text{for } g_2 = 2.
\end{cases}
\]

Remark 2. Units \(\tilde{\eta}_2\) in the equation \(2.2\) can be explicitly given by using the values of the Dedekind eta-function (see the proof of Proposition 1 in [6]). Of course \(N_{K_2/K_2}(\tilde{\eta}_2) \in \mu_{K_2}\) for any \(\varphi \neq \mathbf{A}\).

We define \(\delta_2^2\) by

\[
\delta_2^2 = \mu_{K_2}\prod_{\varphi} \tilde{\eta}_2^2 \text{ where } \delta_2^2 = \mu_{K_2}\tilde{\eta}_2^2.
\]

Then we have the following:

Proposition 1. \((E_{K_2}; \delta_2^2) = M_1^2 h_1\), where

\[
M_1^2 = \sqrt{g_2 - 2} \prod_{\varphi \neq 1} P_{\mathfrak{q}}(1).
\]

Corollary 3. In Proposition 1, if \(K/\Sigma\) is a cyclic extension, then

\[
M_1^2 = \prod_{\varphi \neq 1} \frac{\varphi(g_2)}{|D_{K_2}|}.
\]

Corollary 4. In Proposition 1, if \(K/\Sigma\) is a cyclic extension of degree \(p^a\) with a prime number \(p\), then

\[
M_1^2 = \frac{p^{a(g_2 - 1)} - 1}{p^{a(g_2 - 1)} - 1}.
\]

Proof. When \(K/\Sigma\) is a cyclic extension, it always holds that

\[
\sqrt{g_2 - 2} \prod_{\varphi \neq 1} P_{\mathfrak{q}}(1)^{1/|D_{K_2}|} = 1
\]

(Hasse [4]). Hence Corollaries 3 and 4 follow.

Remark 3. Proposition 1 can be used for the numerical determination of \(h_2/h\) and a system of the fundamental units in \(K\). For this subject the similar methods to those used in the paper of G. Gras and M.-N. Gras ([3]) can be applied (see also [5]).

Next we have

\[
\langle \alpha \rangle = \left\langle \alpha, \delta_2^{\mathfrak{p}, -1}, \delta_2^{\mathfrak{p}, 1}, \delta_2^{\mathfrak{p}, -2} \right\rangle_{K_2} \subseteq \langle \delta_2, \delta_2, \delta_2 \rangle_{K_2} \subseteq \langle \delta_2, \delta_2, \delta_2 \rangle_{K_2}.
\]

Moreover since

\[
\delta_2^{\mathfrak{p}, -1} = \frac{\delta_2^{\mathfrak{p}, 1}}{\delta_2^{\mathfrak{p}, 2}} \delta_2^{\mathfrak{p}, 2} = \delta_2^{\mathfrak{p}, 1} = \delta_2^{\mathfrak{p}, 2},
\]

we have

\[
\left\langle \alpha \right\rangle \subseteq \left\langle \alpha, \delta_2^{\mathfrak{p}, -1}, \delta_2^{\mathfrak{p}, 1}, \delta_2^{\mathfrak{p}, -2} \right\rangle_{K_2} = \left\langle \alpha, \delta_2^{\mathfrak{p}, -1}, \delta_2^{\mathfrak{p}, 1}, \delta_2^{\mathfrak{p}, -2} \right\rangle_{K_2}.
\]

with some units \(\eta_{\mathfrak{p}, i}\) \((i = 2, 3, \ldots, \varphi(g_2))\) in \(E_{K_2}\). Herein \(n_2\) is the least positive rational integer such that \(\eta_{\mathfrak{p}, i}(C_2) - 1) \equiv 0 \pmod{24}\) (by Lemma 1).

Namely \(n_2\) is one of 1, 2, 3, 5. Furthermore,

\[
\delta_2 = \eta_{2, 1}^{24},
\]

with some unit \(\eta_{\mathfrak{p}, 1}\) in \(E_{K_2}\) (by Remark 1). For the simplicity we write

\[
a(\mathfrak{p}) = 24n_2(\# \delta_1, h).
\]

We define a subgroup \(\delta_2^2\) of \(E_2\) by

\[
\delta_2^2 \subseteq \mu_{K_2}\prod_{\varphi \neq 1} \tilde{\eta}_2^2, \text{ where } \delta_2^2 = \langle \eta_{\mathfrak{p}, i}; 1 \leq i \leq \varphi(g_2) \rangle_{K_2}.
\]
Then we have the following

Proposition 2. \((E_k; \delta_k^*) = M_k \frac{h_k}{h}\), where

\[
M_k = \frac{w}{w_k} \sqrt{g^{a_1} - 1} \frac{\prod_{\gamma < 1} a(\gamma)}{g^{w(\gamma)}} .
\]

Especially when \((g, h) = 1\) then \(# \delta_k\) must be divisible by \(h\), and when \(g = \text{odd}\) in addition, then \(\delta_k\) is the 24h-th power of a unit in \(E_k\). (Note that \(\{A(\delta)/A(\delta)\}\) is contained in \(N^{24}_{\delta}\) \([1], \text{p. } 41)\). Therefore we have the following

Proposition 3. Assume that \(g\) is odd and \((g, h) = 1\). Then for each \(\gamma_i \in \mu_k\), \(\delta_i = \eta_i^{24a}\) with some unit \(\eta_i\) in \(E_k\), and \((g - 1)\) units \([\eta_i^{24a} : \gamma_i \neq 1, 0 \leq i \leq \varphi(g) - 1\] generate a subgroup \(\delta_k^*\) of \(E_k\), for which the following index formula holds:

\[
(E_k; \delta_k^*) = \frac{h_k}{h} \sqrt{g^{a_1} - 1} \prod_{\gamma < 1} \frac{P_{\gamma}(1)}{g^{w(\gamma)}} .
\]

Corollary 5. If \(K/\mathbb{Q}\) is a cyclic extension in addition to the conditions of Proposition 3, then

\[
(E_k; \delta_k^*) = \frac{h_k}{h} .
\]

3. Proof of Theorem 2

The purpose in this section is to prove the formula (2.1). For this purpose we shall provide several lemmas in advance.

The following lemma is a well-known fact in the group theory.

Lemma 3. Let \(A \rightarrow A^n\) be a homomorphism defined on an abelian group \(A\) and let \(A_0\) be its kernel. Let \(B\) be a subgroup of \(A\) with finite index and \(B_0 = A_0 \cap B\). Then

\[
(A:B) = (A^n:B^n)(A_0:B_0) .
\]

Now let \(L: E_k \rightarrow R^0\) be the usual homomorphism from \(E_k\) to the \(g\)-dimensional Euclidian space \(R^0\) defined by

\[
L(e) = (\ldots, \log |e|^{24}, \ldots = 0 \quad \text{for any } e \in E_k .
\]

Then the kernel of \(L\) is \(\mu_k\) and the image \(L(E_k)\) of \(E_k\) is a lattice in \(R^0\), which can be seen as a \(\mathbb{Z}[G]\)-module.

Lemma 4. \(L(\tilde{\delta}_k) = \bigoplus_{\eta \neq 1} L(\tilde{\delta})\) (dir. sum.), and for each \(\eta\), \(L(\tilde{\delta}_k)\) is a lattice of free rank \(\varphi(g)\).

Proof. Let \(u\) be any element in \(L(\tilde{\delta}_k) \cap \sum_{\eta \neq 1} L(\tilde{\delta})\) and we let

\[
u = L(\tilde{\delta}_k) = \sum_{\eta \neq 1} L(\tilde{\delta}_k), \quad \text{where } \nu_1 \text{ and } \nu_2 \text{ are suitable elements in } \mathbb{Z}[G]_k\text{ and } \mathbb{Z}[G_j]\text{ respectively. Then}

\[
u = L(\tilde{\delta}_k) = \sum_{\eta \neq 1} L(\tilde{\delta}_k) = \sum_{\eta \neq 1} L(\tilde{\delta}_k).
\]

Taking action of \(g\) on the both sides of the above equation, we see that \(\tilde{\delta}_k\) is in \(\mu_k\), i.e. \(u = 0\). Because \(\tilde{\delta}_k = \tilde{\delta}_k\), and \(L(\tilde{\delta}_k) = \sum_{\eta \neq 1} \tilde{\delta}_k \equiv 1\)

by (1.1)). The second assertion is evident by Theorem 1.

Lemma 5. \(L(\tilde{\delta}_k) \cap \sum_{\eta \neq 1} L(\tilde{\delta}) = \{0\}\).

Proof. Let \(u\) be any element in \(L(\tilde{\delta}_k) \cap \sum_{\eta \neq 1} L(\tilde{\delta})\) and we let

\[
u = L(\tilde{\delta}_k) = \sum_{\eta \neq 1} L(\tilde{\delta}_k), \quad \text{where } \nu_1 \text{ and } \nu_2 \text{ are suitable elements in } \mathbb{Z}[G]_k\text{ and } \mathbb{Z}[G_j]\text{ respectively. Then}

\[
u = L(\tilde{\delta}_k) = \sum_{\eta \neq 1} L(\tilde{\delta}_k) = \sum_{\eta \neq 1} L(\tilde{\delta}_k).
\]

By taking the relative norm \(N_{K/K}\) of both sides, we have

\[
u = L(\tilde{\delta}_k) = \sum_{\eta \neq 1} L(\tilde{\delta}_k) = \sum_{\eta \neq 1} L(\tilde{\delta}_k).
\]

Therefore \(\nu\) must be in \(\mu_k\), and \(u = 0\).

Lemma 6. For any two \(\tilde{\delta}, \tilde{\gamma}\) such that \(\tilde{\gamma} \neq \tilde{\delta}\),

\[
N_{K/K}\delta(\tilde{\delta}) = \sum_{\eta \neq 1} L(\tilde{\delta}_k) .
\]

Proof. From the definition \(\delta_k = N_{K/K}\delta_k(\tilde{\delta}_k(C_2))\), and hence

\[
N_{K/K}\delta(\tilde{\delta}) = N_{K/K}\delta_k(\tilde{\delta}_k(C_2)) .
\]

Then in the case where \(\delta_k = \delta_0\), then assertion is trivial. For the case where \(\delta_k \neq \delta_0\), we can apply the results of Lemma 3 in [6].

Proof of (2.1). By Lemma 3, \((\delta_k; \tilde{\delta}_k) = (L(\tilde{\delta}_k); L(\tilde{\delta})_k)\). Now let \(\tilde{\delta} \neq \tilde{\delta}_k \neq \tilde{\delta}_1 \neq \tilde{\delta}_2 \ldots\) be the arrangement by the ordering \(<\) in Section 1. Then

\[
(L(\tilde{\delta}_k); L(\tilde{\delta})) = \sum_{\tilde{\delta}_k \neq \tilde{\delta}_1 \neq \tilde{\delta}_2 \ldots} \sum_{\tilde{\delta}_1 \neq \tilde{\delta}_2 \neq \tilde{\delta}_3 \ldots} \sum_{\tilde{\delta}_2 \neq \tilde{\delta}_3 \neq \tilde{\delta}_4 \ldots} \cdots .
\]

\[
= \prod_{\tilde{\delta}_k \neq \tilde{\delta}_1 \neq \tilde{\delta}_2 \ldots} \sum_{\tilde{\delta}_2 \neq \tilde{\delta}_3 \neq \tilde{\delta}_4 \ldots} \sum_{\tilde{\delta}_3 \neq \tilde{\delta}_4 \neq \tilde{\delta}_5 \ldots} \cdots .
\]

\[
= \prod_{\tilde{\delta}_k \neq \tilde{\delta}_1 \neq \tilde{\delta}_2 \ldots} \sum_{\tilde{\delta}_2 \neq \tilde{\delta}_3 \neq \tilde{\delta}_4 \ldots} \sum_{\tilde{\delta}_3 \neq \tilde{\delta}_4 \neq \tilde{\delta}_5 \ldots} \cdots .
\]
and each \tilde{x}-factor of the above last product can be calculated as follows:

Let $x: \mathcal{L}(\tilde{e}_2) \to \mathcal{L}(\tilde{e}_2)^r$ be a homomorphism defined by

$$\mathcal{L}(e)^r = \mathcal{L}(e^{r/2}) \quad \text{for } e \in \tilde{e}_2.$$

Using the notations of Lemma 3, we let

$$A = \mathcal{L}(\tilde{e}_2) \quad \text{and} \quad B = \mathcal{L}(\tilde{e}_2) \oplus \mathcal{L}(\tilde{e}_2) \cap \sum_{\tilde{e}_2} \mathcal{L}(\tilde{e}_2).$$

Of course $(A : B)$ is finite. Since $P_{\tilde{e}_2}(\tilde{e}_2) = 0$, we have

$$A^r = \mathcal{L}\{\langle e^{r/2} \rangle; \ 0 \leq i \leq \varphi(g) - 1 \rangle K_{\tilde{e}_2} \}.$$

As can be easily seen, $\mathcal{L}(\tilde{e}_2) \cap \sum_{\tilde{e}_2} \mathcal{L}(\tilde{e}_2)^r = \langle 0 \rangle$. Hence

$$B^r = \mathcal{L}\{\langle e^{r/2} \rangle; \ 0 \leq i \leq \varphi(g) - 1 \rangle K_{\tilde{e}_2} \}.$$

Now let $f(X)$ be a polynomial in $\mathbb{Z}[X]$ such that $\deg(f) < \varphi(g)$, and we assume that $\tilde{e}_2^{r/2} \mathbb{Z}[\tilde{e}_2]$ is contained in $\mu_{K_{\tilde{e}_2}}$. Then $\tilde{e}_2^{r/2} \mathbb{Z}[\tilde{e}_2]$ is a priori in \mathbb{Z}. Since $\{e \in \mathbb{Z} ; \ 0 \leq i \leq \varphi(g) - 1 \}$ forms a system of independent units in K, $f(X)$ must be constantly equal to 0. Hence

$$A_0 = \{\mathcal{L}(e^{r/2}); f(X) \in P_{\tilde{e}_2}(X) \mathbb{Z}[X] \}.$$

Furthermore, by Lemma 2 and Lemma 6, we have

$$A_0 = \mathcal{L}(\tilde{e}_2) \cap \sum_{\tilde{e}_2} \mathcal{L}(\tilde{e}_2) = B,$$

and hence $B_0 = A_0$. Therefore we have

$$(A : B) = (A^r : B^r)$$

$$= (\mathbb{Z}[\tilde{e}_2] \tilde{e}_2 : \mathbb{Z}[\tilde{e}_2] \tilde{e}_2)$$

$$= (\mathbb{Z}[\tilde{e}_2] : \mathbb{Z}[\tilde{e}_2] \mathbb{Z}[\tilde{e}_2])$$

$$= \frac{g^{r/2}}{|D|}.$$

Thus our proof has been accomplished.

References
