Conspectus materiae tomi XLVII, fasciculi 1

Paging

H. Hayashi, On index formulas of Siegel units in a ring class field . , . . I-11
D. W. Boyd, On linear recurrence relations satisfied by Pisol sequences . . 13-27
D. R. Heath-Brown, The divisor function ds(n) in arithmetic progressions . 29-56
J. Galambos and P. Sztisz, On the dlstnbunon of multiplicative arithmetical

© functions . . . P 5762
C. Pomerange, On the dlbtl‘lbullOD of the vaIucs of Eulcrs funct]on Lo 63--70
G. Greaves, The weighted linear sieve and Selberg’s A%-method . . . . . 71-96

La revue est consacrée 4 la Théorie des Nombres

The journal publishes papers on the Theory of Numbers
Dic Zeitschrift verdffentlicht Arbeiten aus der Zahlentheorie
MypHal nocBARIeH TEOpUM WHCE

I adresse de
la Rédaction
" et de léchange

Address of the
Editorial Board
and of the exchange

Die Adresse der
Schriftleitung und
des Austausches

Ajpec peldruEm
U KuMrootmena

ACTA ARITHMETICA
ul. Seiadeckich 8, 00-950 Warszawa

Les auteurs sont priés d’envoyer leurs manuscrits en deux exemplaires
The authors are requested to submit papers in two copies

Dic Autoren sind gebeten um Zusendung von 2 Exemplaren jeder Arbeit
Pykomicu cratell perakuus OPOCHT NPepIaraTh B ABYX IKIEMIUISPAX

© Copyright by Panstwowe Wydawnictwo Naukowe, Warszawa 1986
ISBN §3-01-06841-8 ISSN 00651036

PRINTED IN POLAND

W R OOCLAWSTEKADRTIUEIEKT ATRNIA NAUEK. .G W A

icm

ACTA ARITHMETICA
XLVIT (1986)

On index formulas of Siegel units
in a ring class field

by

Hemma Hayvasul (Kumamoto, Japan)

Introduction. Let Z = Q(\/:i) be an imaginary quadratic number field
with discriminant d, and let K be an abelian extension over X with rational
conductor f such that K is contained in the ring class field N, modulo f
over X. In the previous paper [6], we studied the several properties on Siegel
unit 8 (C) in K and gave an index formula related to 6,(C). The purpose in
the present study is to give other kinds of index formulas related to 8x(C),
using the results in [6].

In Section 1, we shall summarize the properties of 6;x(C) and some
preliminary facts in the theory of group algebra. In Section 2, we shall give
two index formulas refated to 8x(C) (Theorems 1, 2). The unit group 4y
dealt with in Theorem ! is an analog of the group of cyclotomic units in a
real abelian number field studied by Leopoldt ([7]). The main task in this
paper is to deduce Theorem 2 from Theorem 1, and it will be done in Section 3.
The unit group &g dealt with in Theorem 2 is fairly larger than &x. The
method used in Section 3 is mostly based on the fundamental facts in Section
1, and partially similar to that of Gillard ([2]). Of course these two groups
are quite different from those in [2]. As an application of Theorem 2, a
formula of Schertz ([8], Satz 3.3) can be proved under the restriction that
K < N, (Corollary 2). Moreover, using the results on Siegel unit in Section
1, we shall construct three unit groups &%, &%, 4%* such that & = 4% and
g < &F e &%, and give the more rcﬁncd index formulas for them
(Propositions I, 2, 3). Proposition 3 permits us in some special case to
express the class number quotient hg/k just as the index of 4%* in the group
of the whole units in K.

1. Notations and preliminary. Let Q be the field of rational numbers, Z
the ring of rational integers and X = Q(ﬂ) an imaginary quadratic number
field with discriminant d. Let K be an abelian extension over Z with rational
conductor f such that K is contamed in the ring class field N, modulo f
over %. We denote by O the ord with conductor [ (0, means the
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maximal order in %) and by R(f) the ring ideal class group modulo /, i.e. the
group of the equivalent classes of proper O-ideals in Z by the usual relation.
Let a: R(f)— Gal(N,/E) be the isomorphism from R(f) to the galois group
of N, over £ via Artin’s reciprocity law, and let § be the subgroup of R{f)
whose image by ¢ is equal to the galois group of N, over K.

Herein after for each number field —, we denote by h.., E_, u_. and w_
respectively the class number of -, the unit group of -, the torsion part of E..
and the number of elements in p_. (When — = X, the subscript — is omitted
from these notations). :

Let C be a class in (/) and let a, be an Op-ideal in C™'. Then there
exists an element « in X such that (ufOl)" ={a) as a principal 0,-ideal. We
define the Siegel unit §;(C) by

_ 4(a) ¥
6,(C) —0512(A (Of)) .

Herein A( ) means the usual lattice function expressed by using the
Dedekind eta-function as follows:

i2 24
=)&)

where m = [o,, w,] is a 2-dimensional’ complex lattice with Z-basis
{oy, @y}, Im(w,/w,) > 0. §;(C) depends only on the class C, not on (tch‘):
choices of a, and o, and is a unit in N;. As is well known, EJ(CI)” 2
= §,(Cy C,)/8,(C,) for any C;, C, in K(f), and §;(C) = 1 for the unit class
Co in K(f). '

We define dx(C) as the relative norm of §,(C) wrt. N/K, ie

8¢ (C) = lC—I 37 (CCYo,(C),

where C’' runs over all classes in §.

Remark 1. In his paper [8], Schertz dealt with the similar unit 8, (C),

which is defined by:

_ plz ﬂﬂ&ﬂd)mx
0 (C) = f H(ﬂ(bf) .

Herein b, ranges over a system of the complete representative Op-ideals of all
classes in §, myg is the least positive rational integer such that myg # $
=0 (mod h) and f is an element in Z such that (o Ol)m"#f’ =(f) as a
principal O,-ideal in Z.(') As can be easily seen, &x(C)= Oy (C)™#*9),
However in our arguments, we use 6 (C) instead of 8, (C) for a few reasons.
{(For example, one should refer to Lemma 6 in Section 3)

{(*}) # $ means the number of elements in $.
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Now let I: R(f)— %R be the homomorphism from K(f) to a subgroup
R of (Z/24Z)™ defined in [6]. Herein /; is uniquely determined by K/Z, and
indeed R can be realized by using the K-admissible 0, -ideals in X. Of course
Ix(CH= 1 (mod 24) for any C in K(f). Then the following lemma holds.

Lemma 1 ([6], Prop. 1). Let C; and C, be any two classes in K(f) and let
n be the least positive rational integer such that

n(Ix (€)= 1){ix(C3)—1) = 0 {mod 24).

Then (dg(C; Co)/0x(C)0x(CL)Y' is contained in EE*".

In the rest of this section, we shall provide some preliminary facts from
the theory of group algebra,

Let G be the galois group of K over I, and let g be its order. We denote
by Z [G] (resp. ¢ [G]) the group ring of G over Z (resp. Q) and by Z'(K/%)
the character group of G. For any y in &' (K/Z), we denote by ¥ the block to
which y belongs, ie.

T ={le X(K/Z); (&) = L}

Herein (> means the cyclic group generated by %. Every character in ¥
possesses the common kernel U; and common order g,. We often use the
same notation ¥, identifying it with the Q-irreducible character of G to which
x belongs. Let K; be the intermediate field of K/Z associated with U;. Then
K4/Z is a cyclic extension of degree g; and its galois group Gj; is isomorphic
to G/Uz. If Kz S K;, ie. Uy 2 U; for some two blocks § and 7, then we
denote this relation by IZ <y Let < be a total order in the finite set
{%: xe & (K/Z)}, satisfying the condition that § = 7 whenever § < 7 (cf. [2]).
Herein after we keep this ordering.

For any W, ¥ such that y % ¥ we denote by Usy the subgroup of Gy
which corresponds to the subfield Kz, and we let

VE,J; = Z g.
SEUy",‘T,

The following lemma is well known as a result of Martinet (cf. [2]) and very
useful in our later arguments. '

Lemma 2. Let 47y be the ideal in Z[G;] generated by {vy5: ¥ 3 %},
Then

Ag = Py, 8 Z [G5],
where gf is a generator of Gy and Pgi(X) Is the gg-th cyclotomic polynomial.

-~

The idempotent ey corresponding to the Q-irreducible character ¥ is
given by

ey =1 3 %5

SeG
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As is well known, Y e; =1 in Q[G] and Q[G]ey = Q((,,). where [,  is a

x - .
primitive gz-th root of unity. Moreover, we define 2; in Q[G;] and yy in
Z.[Gy] respectively by

Pp=— ¥ 78 H§ and 7y =101~

9% ety P
where §; is a generator of Gz and p runs over all prxme divisors of g;. Of
course 7; depends on the chcnce of §;, but as an ideal in Z[Gg], yEZ [Gx'l is
uniquely determined independently 0[ the choice of §;. Plainly &; is the
restriction of e; to @[G;]. For each ¥, it is easy to see that

2. Statement of results. Let the notations be the same as in the
preceding sections, For any 7, K; is contained in the ring class field Nyy
modulo f; over X. Of course f; is a divisor of f. Let $; be the subgroup of
K(fp which corresponds to K; and Cy a fixed class in R(f3) such that the
coset Cy Hy is a generator of KR(f;)/H;. Then we may take Resxfa(cz) as a

generator §i of G;. We define two unit &; and & in Kj respectively by
By = 0, (C3) and &

Then N:c_;a,,;(%) =1 for any ¥ (£ 7). Herein NKNH(.;r means the rclalwe norm

w.rt. Ky/Kg Furthermore we define two subgroups £, and &y of E, as
follows:

g =ux || &3 where 4;= i wazl,
1
- - - ~2Z{Gs)
(r)tK = g ].—.[ (')!2, Where 5 = #Kzei ¥ .
2¥#1
Then we have the following index formulas.
. h
TueoreM 1. (Egx: &%) = MITK, where
(1)
M, = - (24Rp~ JE? L
WK 71;11 \,/ iD I

Herein Dy means the discriminant of the cyclotomic field Q(J,.).
, hy
Tueorem 2. (Eg: &) = Mz—h--, where

/1P Py (1

M, = (2aRp1 Jg 2 [] L=
Wy

wloy)
Pl 93 4

_Herein ¢( ) means the Euler function.
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Theorem 1 is an analog of Leopoldt’s formula on cyclotomic units in a
real abelian number field ([7]), and its proof can be accomplished by the
almost similar way to that in [7]. Now it is evident that dy = . Then in
order to prove Theorem 2, we have only to prove that
ety

. . ¥
2.1) & dy) =
( (8x: %) 21;[; By

We shall give & complete proof for the formula (2.1) in the next section. In

the rest of this section we shall give several index formulas which can be
derived from Theorems 1 and 2.

‘Taking into consideration the fact that Nisxy (B = 1 for any ¥ (Z%
and the result of Lemma 2, we have

- by
Ez= 5 0<j< olgg— 1o, ()
where SKZ(C%) means . )'%. Then we have the following:

CororLary 1. (g—1) units {5,( (C j?) F#1,1g rp(gz)f constitute o
maximal system of the independent umrs in K, and qenerate & in Theorem 1.
In Theorem 2, it is evident that

dy = <<E§$; 0<i<olg)— 1%,
On the other hand, by Lemma 2
v

~C£L@$;osms

Then we have the following:
CoroLLARY 2. (g—1) units {bKZ(CI), F#1, 1 iy < @lgy)} constitute a
maximal system of the independent units in K, and generate &y in Theorem 2,
Replacing 6x, (C#) in Corollary 2 by ,(CF) (Remark 1), we have the
similar formula as follows: .
CoroLLARY 2. (g—1) units {BKZ(C}?); 7+ 1,1 <y < plgy} generate a
subgroup @y of finite index in Ey, for which the following index formula holds:

wlgy
(Eg: @) = ““"(24 “1\/ o H ( ) \/52|P

b &ak)

and L_emma 6 (in § 3), we have

0@~ 1 sy

Herein my is the least natural number such that my # H5 = 0 (mod h).

Corollary 2’ is essentially equal to the formula of Scheriz ([8], Satz 3.3
under the restriction that. K « N;). Namely {x(Cy jir)-—1 1<i; < olyy!

(%) {1, &3, ...>>x means the subgroup of E, generated by s, and units &, &3, ...
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constitute an integral basis of the principal ideal (Cgf-"
absolute norm is equal to P, f(l) (see Satz 1.7 in [8]).

Now we are going to deduce the more refined index formulas from
Theorems 1 and 2. Namely, using Lemma 1, we shall construct three large
unit groups &%, &%, &F* such that &x = &% and &y < &F = £5*.

First we note that 2 is the 24h-th power in'Eg, with the exception of
the case where g; = 2. Indeed if g; is odd, then it is always possible to
choose Cy as a square of some class in R(f;) and hence by Lemma 1, &; is in
EZ4". 1f gy is even but not equal to 2, then there exists a prime divisor p of

1) in Z [Cgi], whose

ds such that gz/p = even. Then by using the following equality
S By (Cp) oy (CF)
by (€7 )

and Lemma 1, we may conclude that & is contained in E“"

1
5,(C3)

In the case where gy = 2, we have
' dx4(Cy?
P —_ X
L e
and hence by Lemma 1
‘ny=1,2 or 3.

Here ny = 3 occurs in the only case where X # Q(,/—3) and K; = X(\/~3),

and ny = 2 occurs in the only case where Z # Q(,/—4) and Ky = Z{(,/ —49).
Moreover it always holds that [] ny = wg/w. Hence for each ¥, we may

Ei € E“" with

dg=2
choose a unit #; in E,(f such that
(2.2) = for gy #2.
. 7—' =A43*  for g;=2.

Remark 2. Units #; in the equation (2.2} can be explicitly given by
using the values of the Dedekind eta-function (see the proof of Proposition 1
in [6]). Of course Ny (fiz)e sy for any & (£ 7).

We define. &% by

’K = Mg 1—[ (g}*: thre
T*l

¥ = GROR
‘? Mg Mz

Then we have the following:

ProposiTion 1. (Ex: &%) =M’{‘%—f—, where

M¥=_/g-2 "z
! g zI;[u/IDI

icm
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CoroLLARY 3. In Proposition 1, if K/Z is a cyclic extension, then
ng(sz
MY =
ZI;II {Dxl
Corovriary 4. In Proposition 1, if K/Z is a cyclic extension of degree p’
with a prime number p, then

M¥ = p(p"" Oip= 1y

Proof. When K/X is a cyclic extension, it always holds that

\/ g~ 2 l’I P 1) /lDXi/g¢(yz)_1

(Hasse [4]). Hence Corollaries 3 and 4 follow.

Remark 3. Proposition 1 can be used for the numerical determination
of hg/h and a system of the fundamental units in K. For this subject the
similar methods to those used in the paper of G. Gras and M.-N, Gras ([3])
can be applied (see also [5]).

Next we have

8] Sye1 S5
Wog's 0<I< @lgd =10k, = Koo 877 L85 © 5 2<i<

Moreover since

S (CH o g2 -2
[ ks \Lx & ¥ 8- 1)
g =25 and & © =&, (CHT T,
5Kf(ci) £
we have §]
o~ 1) S'J
R I R

with some units ny,; (=2, 3, ..., plgy) in EKz' Herein ny is the least positive
rational integer such that ni(lxi(c,?)ml)2 =0 (mod 24) (by Lemma 1).
Namely n; is one of 1, 2, 3 and 6. Furthermore, '

with some unit #;, in Ey, (by Remark 1). For the simplicity we write

h
D=
A5l

We define a subgroup &% of Ex by

&t =u [1 €5 where  &F= ngs 1 <i<elg)dxy

r#1
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Then we have the following

h
ProrostTioN 2. (Egx:8F) = M;f, where
— P, (1)/1D4
w - . ¥
Mt =—¢" * [] a—F—.
Wk g#1 g;(gi’

Especially when (g, #) = 1 then # $; must be divisible by h, and when
g; = odd in addition, then & is the 24h-th power of a unit in Eg,. {Note that

{4(a})/4(0))} is contained in NF* ({11, p. 41). Therefore we have the
following
PropositioN 3. Assume that ¢ is odd and (g, W) = 1. Then for each

Z  sp=n3* with some unit ny in  Eg, and (g—1) units

{n;"z; 7#1,0<i;< plgy—1) generate a subgroup EF* of E, for which the
Jollowing index formula holds:
P, (1)/IDy

h =
Ei ) =502 T
X#1 gz
CoroLLARY 5. If K/Z is a cyclic extension in addition to the conditions of
Proposition 3, then

h
(Ex: €%%) :'hﬁ-

3. Proof of Theorem 2. The purpose in this section is to prove the
formula (2.1). For this purpose we shall provide several lemmas in advance.
The following lemma is a well-’known fact in the group theory.

LeMMa 3. Let x: A— A* be a homomorphism defined on an abelian group
A and let A, be its kernel. Let B be a subgroup of A with finite index and B,
= Ao n B. Then

(A: B) = (A*: B*)(Ao: By).

Now let #: Ex— R* be the usual homomorphism from Eg to the g-
dimensional Euclidian space R? defined by

2@ =(..., log l¢&*, .. )seq

Then the kernel of % is ug and the image #(Ey) of Ey is a lattice in RY,
which can be seen as a Z [G]-module.

LemMma 4. (&) = @ Z(&;) (dir. sum), and for each §, Z(@i) is a
1#1 ‘
lattice of free rank @{gs). :

for any & in Eg.

Proof. let u be any element in E(t?f‘z}n y ,S?((?';,) and we let
F#1,7

icm
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= 3(5}2) =y P (E:{’_), where i3 and ¢y are suitable elements in Z[Gy] and
i
Z [Gy] respectively. Then

=0 [] &
1.2
Taking action of ge; on the both sides oEf the above éc;;euatiogl g\eve sei et}:at &7
is in py,, ie. u=0. Because BT=gfT=¢and Gr=8" % =gV i=1
(by (1.1)). The second assertion is evident by Theorem 1.
LemMa 5. Z(dpn %y(ﬂ;) ={0].
W

Proof. Let u be any element in 51’(7:90%3’(/{;) and we let

with some ¢ inn ug.

u= E(E}f) = % _‘f(a:‘;‘ﬁ), where t; and fy are suitable elements in Z[G;] and

Z[Gy] respectively. Then

2=0]]¢f

V7

with some g in pg.

By taking the relative norm Ny, of both sides, we have
lag
(5I )g € Uy n Ego.
4 Tozn ¥

Therefore &7 must be in fg, and u = 0.

LEvMMa 6. For any two W, ¥ such that § % 7.
N (&) < I—I 85,
Kz(KW X ey |
Proof. From the definition &; = NnyJ"f(afi(Cf))‘ and hence

Nxf/xg(ﬁz) = NNIJ/K,F animm(éf@(ci))'
Then in the case where f; = fj, then assertion is trivial. For the case where
Jz # fy, we can apply the results of Lemma 3 in [6]. |
Proof of (2.1). By Lemma 3, (Bxid) = (»E(’(#J'K):Y((‘_:"K)). Now let
%1 szg ... be the arrangement, by the ordering < in Section 1. Then

(£ (80 2(E) = (T L(82); 2(3:)0 T £(63)

(£ ()@ ‘};2 P(85): LB )DL (8)® .-§3 ZL(8z)

- Pl L (3D Y, L(4)

. 1#1(-;'?;: (dp: £ %ﬁ )

=TI (& £(E@ (L& T, @R}
gl vER
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icm
and each ¥-factor of the above last product can be calcutated as follows:
Let x: # (85— £ (45" be a homomorphism defined by
Ly =LETh  forein &y

Using the notations of Lemma 3, we let
A=2(&) and B=2L(5)T{Z (&)Y Li&n).
ES
Of course (4 :B) is finite. Since P, (S & = 0, we have
. 4373 .
A= 2L T 0 < 9lgg=1Dx,).
As can be easily seen, (£ (87 ) L(85)) = {0}. Hence
Er
) A
B = #(5 T 0<i< plgd—10x,)
Now let f{X) be a polynomial in Z[X] such that deg(f) < p(g;), and we
assume that séﬁfﬁf z is contained in pg.. Then é(gf)gzgz is a priori

. ) 5§

1 .
m g Since {e;": 0<ig @(gy)—1} forms a system of independent units in
Ky, f(X) must be constantly equal to 0. Hence

3
Ao = 125" f(N)e P (N Z[X]}.
Furthermore, by Lemma 2 and Lemma 6, we have

Ao = L(8Yn T (65 =B,
VS 4

and hence_ By = Ay. Therefore we have
(4:B) = (4*: B¥)
(Z [ggf} :x ('Ff) Z [ng—])

wlay)
k4

il

=
Dyl

Thus our proof has' been accomplished.
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