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“as in the proof of Lemma 4.8 in [1] (so that, the basic intervals m, s are

defined with 1 < g € P19 Ja—afq| < (gQ)" ). Let the A’s be as in Lemma
‘10.1 {and the js be defined correspondingly). As already established in [1]
(by using Weyl’s inequality),

(11.1) f(a)<P“‘”“6)“°. it oem.
Write
1+~
(11.2) rs(Ny= [ fH@ {f@fi(@) ... fyla)} e{— No) do.

Q"l

With ag defined by (10.2), we see that (from Lemma 10.1) the contribution to

rs (N) from m is
(11.3) < P4(1“1/16+5[))(PP1 L Ps)sz.sﬁg-l—(jo {S P"SN({;D(P“')(PPI o PH)Z

since Sag +(4/16} > 5.

For the treatment of wi, and the transition to the singular series, we
make the obvious modifications in [2]. Davenport uses 7 fifth powers in the
singular series. (This can however, be simplified by using a larger number of
fifth powers.) In place of estimating (f7 —~g"), and its integral over m, we
estimate (f°f;—g®gy) and its integral by starting with

S8 fa—g%gs = (¢ —g°) s +9° (fs—gs),
and using (4.30), (431), (432) in [1]. (Note that wy, s are defined with
g< P'? in [2], and, this hardly makes any difference) 1t would then

follow (as in [2]) from (11.3), that rs(N)3 P(P, ... Py)?, proving that
G(5) < 22,
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1. Introduction. There are a number of famous problems which appear
to be questions about the distribution of powers of integers. For example,
Catalan’s conjecture that § and 9 are the only powers which differ by 1, and
even Fermat’s last theorem, have implications of this sort. Many such
questions, including Catalan’s conjecture, can now be resolved in principle by
mvoking lower bounds for linear forms in the logarithms of algebraic
numbers. (This technique and its applications, which include many powerful
results on Diophantine equations and inequalities, are surveyed in {5].) The
main point of this paper is a lower bound for simultaneous linear forms in
logarithms with some interesting applications to powers and integers which
are almost powers.

Consider first the problem of estimating the number of perfect powers in
a short interval. J. Turk [7] has shown that the interval [N, N+ N2} can
contain at most c(log N)/? powers, for some positive constant ¢. This is the
appropriate interval to examine because any longer interval [N, N+
+ NWD*TE] with ¢ > 0, trivially contains $ N*(1+0(1)) squares. This question
is aiso discussed ‘in [6], where it arises in the context of exporential
Diophantine equations. An appendix to [6] explains how to use linear forms
in logarithms, continued fractions and some brute force computation to find
all 21 solutions of the inequality |p”-¢*| < p*? in positive integers a and b
and primes p and g with p < g < 20. Probably, the number of prime powers
in any interval [N, N+ N'/?] is bounded. The computations in [6] give just
one example, namely 112, 5% and 27, of three prime powers in such an
interval. In this direction, we shall prove:

TueorEM 1. The interval [N, N+ NY*] with N > 16, say, contains at
most '

' exp(40(loglog N log log log N)*/%)

perfect powers.

Similar questions can be posed about numbers which are almost- powers,
or have various other assigned muliiplicative structures. Such numbers still
tend to be sparse. We give the following definition, from a number of
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plaustble alternatives, to illustrate the results that can be obtained. Given
8 > 0, let P; denote the set of numbers of the shape z = mx® with @, m and x
integers, a2 2 and m < exp(a* ™9, : :

Tugorem 2. The interval [N, N+NY?] with N = 16, say, contains at
most

expexp(808~ ' (loglog N log loglog N)'/2)

elements of Pj.
Finally, we consider the Diophantine equation

lo be solved in integers @ b, x and y with @ > b > 2 and y > x > 1, The only
known solutions appear to be

31_2-‘%1_5*—1
T 217 51
and
2191 903t
Sl = = %

Makowski and Schinzel [4] have obtained a number of results showing
that the equation has no other solutions when one or more of the variables
is restricted. The equation has also appeared, marking a certain exceptional
case, in work of Bateman and Stemmler [2] on Waring's problem in number
fields. Probably the equation has only finitely many solutions, but in any
case, the number of solutions for a given N should be bounded. However, we
can only prove that there are relatively few solutions.

THEOREM 3. Suppose s> 0. For q given integer N, the equation
N'=(x"=1/x~1) has at most e(log N)YD*¢ solutions in integers a and x
with a> 2 and x > 1. (The positive constant ¢ depends only on ¢)

2. Lincar forms in logarithms. At the present time, the strongest results
on the problems discussed in Section I have been obtained by exploiting
lower bounds for linear forms in the logarithms of algebraic nutbers. The
-theorems of Section .1 are applications of a new theorem of this type.
We shall consider the linear forms

Ai = Bio+By loga, + ... + Binlog o,

where the o's and £ denote algebraic numbers. We assume that the «’s are
non-zero and multiplicatively independent, that the matrix (Bi;) formed by
the £% has rank ¢, and that the logartthms have their principal values.

I<gigy,

icm
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Further, we suppose that the height of « ;7 Is at most A; (> 4), the height of ;
1s at most B(= 4), and that the field K generated by the o’s and f's over the
rationals has degree at most 4. We set

Q=1logAd; ... logA4,.

With this notation, we prove:

THECREM 4.
max |4 > exp(~C(Q2log Q)" log(BQ)), where C = (16nd)>°%,
1=€igy

In case t = 1, the theorem gives a lower bound for a single linear form
which is essentially the principal result proved by A. Baker in [17. Here, it is
unnecessary to assume that the o’s are multiplicatively independent. This
assumption, or something similar, is needed in our theorem to guarantee that
the linear forms are independent. Our proof follows, as closely as possible,
the work of Baker in [17] and we shail be content to give only an outline of
the argument. No particular significance should be attached to the constant
200 appearing in C and the related constants in Theorems 1 to 3. The value
of C given here has been chosen for historical reasons.

A result in the same spirit as Theorem 4 was obtained by Ramachandra
(J. Austral. Math. Soc. 10 (1969), pp. 197-203) at an early stage of the
development of the theory of linear forms in logarithms. By adapting
Ramachandra’s comments on his result to the present context, we may
perbaps view Theorem 4 as support for the belief that the quantity
=log A, ...logA, in the current lower bounds for linear forms should be
replaced by logd; + ... +logA,.

3. Proof of Theorem 4. To begin, we assume that the linear forms have
the special shape

A; = Bio+ By logoy + ... + B loga,~loga,,;, (1<i<y)

with s+t = n (2 3), that the s and §'s are elements of a field K with degree
at most d (> 8), that the numbers f,;, ..., §,; have a common denominator
not exceeding B for cach fixed j, and that

max A <exp(—C(QlogQ)*"log (B

1&g
with Q' =logd, ...logd, and C=(nd)*™ We proceed to show that
i’%, ..., a," genecrate an extension of K of degree less than g¢" for soms
prime g.

We define

L=(kQlog?)", h=L_,+1 = [log(BL)],
Ly =[k"Lflog4;] (0<j<n,
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where & = 1/(3n), k = (nd)**" and A, = Q. We introduce the function
®izq, - .r Z5)

= Z P (A (zo+ Ay h))aoﬂe?(p((isnﬁm'l" A fodzo) P,
()

where the p(4) = p(A—,. ..., 4,) are integers to be determined later,
A(x; ) s (x-H1) oo (x+R)/RL
yi== At de Byt o+ 4B (L)<
and the sum is taken over all integral wvectors A=(d.,,..., A,) with

0<% < Ly (—1<j < n). Further, for any non-negative integers mo, ..., My,
we denote by f(z) the function

—m m{ O\" d \"s
fiz)=(logay) "t ... {logay) ‘('{-)};)0(5;;) Dizg, ooy 2),

evaluated at zo = ... =z, = z, and we denote by g(z) the function obtained
from f(z) by substituting e« ; for

m;ﬁq lBIO ﬁll o affa‘ (1 g i g t).
Thus

9(2) Zp Wik D)l Lol T e,
(A

where

Jgt+1

Vi 9 = (d+as+1ﬂm+ +A,,ﬁto)m°<d{z+x_1;h))

We can choose the integers p(4), not all zero and with absolute values at
most ¥ so that g{f) = 0 for all integers ! with 1 € 1< hk™?* and all non-
negative integers my, ..., m, with my—+ ... +m, < L. Indeed, these requirements
amount to a number of linear equations for the unknowns p{i) and we can
obtain a non-trivial solution by a version of Siegel's lemma such as that
given by Waldschmidt [8], Lemma L.3.1. The estimates are made as in
Lemma 7 of [1]. We derive various inequalities involving the functions f(2)
and g(z) as in Lemma 8 of [1]. For any non-negative integers my, ..., m,
with mg+ ... +m, € L, we have

|f (@) < exp {12L(h+ndk™*z])}.

Next, let [ and g be positive mtcgerq with 1< hk'? and g < k% Our
assumptions imply that

llogay,;—loge, | <(BQ™ (1<i<y),
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for suitable determinations of thé logog,;, 350 we have
U (gt —~gifg) < (BQ)~ 2,
Furthermorte, if g(//g) + 0, then
L/ U/g) > exp | ~24Ldq" (h+ndk™* 1)} .

These inequalities allow ws to perform an inductive extrapolation and
interpolation argument as in Lemmas 9 and 10 of [17]. From this, we obtain
g(l/q) =0 for all integers I and ¢ with 1 <I<hg, 1 < g <k and (I, g) = 1

and for all non- negative integers mo, ..., m; with mo+ ... +m, < L/6.
Let ¢ be any prime with 6 <g<k® and suppose that the field
KM, ..., 0,/ Is an extension of K of degree ¢". The main inductive

argument c)f Section 6 of [1] yields the following proposition. For each non-
negative integer J with ¢’ <kQ'log®, there are integers pY'(A)

=p" (A1, ..., 4, not all zero and with absolute values at most %4, such
that ¢*”() = 0 for all integers I with 1 <!< hg', (I, g} = 1, and all non-
negative integers my, ..., m; with me+ ... +m, < g7 L, where

g (z) == Z P (A (4 z)ocl'z e T T,
the sum is taken over all integral vectors A = (4. A0 with 0 4; < B
('— 1 “‘SJ S ”)1

‘L(‘Dl = ‘I_;..Wl, ( Vo L() ﬂf) < q—J L_’, (1 s‘] < n),

and

WA 2) = Aoy hoy Aed's s ,.QJ‘Z/q’)

We can suppose that we have established this propos:tzon for J=N
satisfying Ly.; < ¢" (1 <i<1t). Otherwise,

Qlog ¥ <(Qlog Q) log A,,; for some i
and
|4} < exp(—CL2 log A, log Q' log (BS)),

and already oi/, ..., a!/, «li% do not generate an extension of K of degree.¢°**
by the basic co nclumc) n ol [1] Section 7, in contradiction to our assumpuons The
equations g™ () = 0 now take the form

N N N
B,

I R M A L L A S i =0,
AF0 Ae =0 . Ao =0

valid, in particular, for all integers | with 1 <1< hg®, (I, ¢) =1, and for all

non-negative integers mg, ..., m, with m, < %q ” Land m; < I (1 £j<s)

Since the Vandermonde detcrmmdnt of order ™41 with y° in the

A+ 1th row and (m,+1)-th column is non-zero, the sum in parentheses
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above is equal to zero. Repeated application of this argument gives the
equations

Loy Ly

YO MO =0 @< <E, 04, <L)

do1=D0 dg=0

for the same values of | and mgy. Thus the function
L.y Lo
exp ((hos Brot - +abedzt L L PV@AG g B
A.1=0 kg=0

has at least (g™ —hg" (g VL) > h(lg+1) zeros counted with
multiplicities. On the other hand, the polynomial given by the double sum
above has degree at most h(Lo+1) and it follows, as in {1], Section 7, that
the p™(J) are all 0, contrary to construction. This shows that a{/, ..., o/
cannot generate an extension of K of degree ¢" and completes the first part
of the proof.

Next, we assert that if 4> 8, say, and we replace multiplicative
independence of a,, ..., %, by the assumption that aj’, ..., o,/ generate an
extension of K of degree ¢", then the theorem holds with C = (nd)**". To
achieve a set of linear forms of the special shape considered eaclier in this
section, we pick a non-singular txt submatrix of the given matrix of
coefficients (8;;) and multiply the vector of linear forms by the inverse of this
matrix. The determinant of this matrix has absolute value at least (rdB)™ 2",
since it is an algebraic number in K whose conjugates have absolute values

at most {(ndB)" and its denominator is at most B". Thus we obtain a set
of linear forms of the required special shape in which the coefficients have
heights at most (ndB)“"l"z; for each conjugate has absolute value at most
(ndB)*"™ ‘and the denominator is at most B*". If every choice for the ¢!
non-singular -submatrix used above necessarily contains the column {f8;,), we
can assume that one of the new linear forms is A, (say) = b0 and then
4] > (ndB)“a” " Otherwise, the proposition praved in the first part of this
section gives the lower bound
max |4 > exp{—(nd)**"(Qlog )" log ((ndB)s"z"‘z Q)

15igt
> exp(—(nd)3?"(Q log )" log (B£2))

for the new linear forms. Since this procedure could have increased the
maxxmal absolute value of the original linear forms by a factor of at most
' (ndB br 'is we have verified the theorem, under the present assumptions, with
CC = (nd)P,

We now use the prehmmary proposition just proved to establish the
theorem. To fix the notation, we arrange the o’s so that 4, < 4, € ... € 4,.
We can assume d > 8 and that K contains €™ with g = 7, provided that we
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prove the theorem with C = (2nd)*°°". We can further assume that B >
and Q= nd, provided that we obtain a reduced value for C, say C
= (2nd)' 75",

It is convenient to allow a slightly more general situation in which a, is
a root of unity, «,, ..., o, are multiplicatively independent and the matrix
formed by the coefficients f§;; with the column (f;;) omitted has rank 1. We
recover the theorem by taking the fi;; to be zero, provided that we obtain a
reduced value of C, say C = (nd)!°"™. In fact, we shall take o, = ¢™*", where
k is the largest integer for which «, is in K; then a!/ generates an extension
of K of degree g. Let m be an integer with 1 < m < n such that a4, does
not generate an cxtension of X(xi#, ..., ah/9) of degree g. By Kummer
theory, as in Lemma 4 of [1],

Lt Fm
U1 =0y oo By P

for some 7 in X and some integers ry, ..., 1, with 0 <r; <q. We construct,
as far as possible, a sequence y; =7, y3, y3, ... of elements of X such that

r 4
=t a ey (1=1,2,..0,
where the r); are iniegers with 0 r;; < q. From these equations

) i
- __ it St , 2
Cmbr =% - %y Vi

where the s;; are integers with 0 <5 < ', and hence
fogo,., =5 loga, +sloga,+ ... +s,loge,+¢'logy,

where the logarithms have their principal values and 5, is an integer. As in
[1], the height of v, is at most (2d4)*™, where A = max 4;, and s; has
absolute value at most 10nd°¢'log A.

Let H = ((nd)®log A)". We distinguish two cases accordmg as the above
construction terminates for some ! with g' < H, or does not. In the latter
case, let ! be the least integer with ¢'> H. From the construction,
Gy, ..., Oyeq and y, are multiplicatively dependent. The results of [3] enable
us to find a second relation of multiplicative dependence, say

2 gtme
oy P "’1

in which b5, ..., b,4, and b are integers, not all zero, with absolute values
at most H. In fact, B 0 because we have assumed oy, ..., sy
maultiplicatively independent. On eliminating y, between these two relations,
we obtain a further relation

by
1 m+1
TR ——1

in which the b} are integers and b,y =g 'bl,+1 b is non-zero, However,

" this is impossible because a, ..., #,+; are multiplicatively independent.
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Consequently, the construction must terminate for some [ with ¢' £ H. We
now replace loga,, ., in the linear forms by logy, to get a set of linear forms
whose coefficients have heights at most B'?™. In addition, y, has height at
most (2dA,, . 1) < A%'4> and y}" generates an extension of K(xif, ..., all
of degree ¢. After at most » such substitutions, we can ensure we have a set
of o’s such that «{/?, ..., a1 generate an extension of X of degree ¢", and the
new f's will have heights at most B*""", We can apply the lower bound for
max|A] proved earlier to this new situation and, on writing the estimate in
terms of the original Ay, ..., A, and B, we see that the value of C, namely
(nd)®*", is increased by a factor of at most (2nd)®". This completes the proof.

4. Applications
Proof of Theorem 1. We suppose N = 20 and set

|1 loglogN 2
=110 logloglogN '
Suppose we have n powers xi', ..., x;" in the interval [N, N+N'?] and
that each of the a's exceeds

M = exp(20(loglog N loglog log N)'#)log log N
We choose the notation so that a; €a, < ... €«,. We now consider two
cases according as x, ..., x, are multiplicatively independent, or not.

If x,, ..., x, are multiplicatively independent, we can apply Theorem 4
to the n—1 linear forms

A =g logx,—a,logx, (1<ign—-1).
Since

4] = [log{x{'/xe") < log((N+ N'2)N) < N~ 172,
the lower bound in the theorem gives the inequality

. FlogN < (1629 (Qlog Q)Y Vlog(a, ),

where Q=
1

logx;. Here logx; <2logN/a; and a, <2logN, so we

Jj&n

I/

obtain

J=1

M < 1T a; < (1612 log N (log log NY* < (log N)? (log log NY".

contrary to the definition of M.

Suppose, on the other hand, that x,,...,x, are multiplicatively
dependent. To fix the notation, suppose x,,...,x, form a maximal
multiplicatively independent set. Then x,, ..., Xn+1 are multiplicatively

icm
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dependent and, as in [3], there must be a relation
bilogx,+ ... +by,4; 10X, =0,

where by, ..., b, are integers not all zero and satisfy

m+1

b <(2my™ ] logx;.
ji=1

J

In fact, b, is necessarily non-zero and we can apply Theorem 4 to the m
linear forms

m

A=, (a 0y — w1 byfbmy 1} log X,

=1

(t1<i

A

m) 3

where 8; is 1 if i =/ and 0 otherwise. Apgain,
Al = |, 10gX; ~ apy 1 log X, | < N712,
so we obtain
FlogN < (16m)*°°™(Qlog Q)Y log(2a,, 4 ; logx,,. ; (2m)™ Q%

with @ = [] log xj, and in the same way as before, this leads to

l1&jEm

M™ < [1 a5 < (16m)*°%(loglog NY",
i=1
again contrary to the choice. of M. :

Now'let x;', x3%,... be all the powers in the interval [N, N + N,
Clearly, there is at most one ath power in this interval for each a, so we can
suppose the a's are distinct primes. From the previous work, there are at
most n powers with exponents exceeding M. So the total number of powers
in the interval is at most n+n(M), and this establishes Theorem 1.

Proof of Theorem 2. Suppose N = 20 and set

[ 1 loglogN \U2
P logloglogN ’

Suppose we have n elements z,, ..., z, of P, in the interval [N, N+ N2
and that, when each z; is written as Z; = my x; as in the definition of Py, cach
a; exceeds

M = exp(4056™" (loglog N logloglog N)/*) log log N.

We choose the notation so that a; < a, < ... < a,.
Suppose first that x,, ..., x, are multiplicatively independent and
consider the n—1 linear forms

Ay = log(m/m;)+a;log x;—ay logx;  (2<i<n).
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If the 2n— ! numbers my/m, and x; are multiplicatively dependent, then there
is a linear relation between their logarithms having integer coefficients with
absolnte values at most (4nlog N)*" say. We use these relations to eliminate
as many of the log(m;/m,) as possible from the linear forms A;. After at most
n steps, the A; become linear forms in the remaining log (m;/m,) z;nd the logx;
with rational coefficients whose heights are at most (8nlog Ny**". The linear
forms . stili have rank n-1, and as before, the lower bound in Theorem 4
gives the inequality
$log N < (16(2n—1))"""™"™ (@ log) /"~ Vlog (8nlog N2 Q),
where
Q= [] logmlogx,.
IENEY ]

Here logx; < 2logN/a; and logm; < a}™%, so

Mt <] a < (32m*°%* log N {log log N)" < (log N)? (log log NY",
Jj=1
contrary to the definition of M. .

I x4, ..., x, are multiplicatively dependent, we can modify the argument
as in the proof of Theorem 1 to obtain the same conclusion. Consequently,
with at most n exceptions, the elements z = mx* of P; in the interval [N, N+
+N'7] have a < M and, consequently, m < exp{M’~?. Since there can be
at most one such z = mx* with a given a and m in the interval, we obtain the
estimate asserted in the theorem. '

Proof of Theorem 3, Suppose N = 20 and set

Y 1( loglogN \!/?
[ 20\logloglogN '

We suppose, slightly more generally than required for the theorem, that we
have n solutions of the inequalities

N -1g~) S N+NY2 (1<ign),

where the xs are integers greater than 1 and the 4's are integers greater than
M = (log Ny +e,
Consider the linear forms
1
—aglogx, +ay logx,

A; =log ;cj:l

2<ign.

Then |4} <2N "2 and we can apply Theorem 4 in the same way as before.
. For example, if the x’s are multiplicatively independent, we obtain the

icm
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inequality
logN < (16(2n—1))* """ (2 [og @) #n=1 og ((8nlogNy>"* 22),
with 2= [] logx;, as in the proof of Theorem 2, and this leads to

JENES ]
M < [T a? <(32n*°°* (log Ny** ! (log log NY",
=1 :

giving a contradiction whenever N is sufficiently large.
Now, once « is fixed, there is at most one choice for the integer x for
which

N < (x*~1)f(x—1) < N+ N2,

Consequently, the above inequalities have at most (logN)V2** solutions
with x > 1 and a > 2, whenever N is sufficiently large.
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