Concerning a conjecture of R. L. Graham

by

JACK LAMOREAUX and ANDREW POLLINGTON (Provo, Utah)

Graham [1] has conjectured that if \(a_1 < \ldots < a_n \) are positive integers then

\[
\max_{1 \leq i,j \leq n} \frac{a_i}{(a_i, a_j)} \geq n.
\]

Many special cases of this result are known (see Wong [3]). Simpson [2] has shown that no counter example can contain a prime in the sequence.

It is the purpose of this note to show

Theorem. If \(a_i < \ldots < a_n \) and \(\frac{a_i}{(a_i, a_j)} < n \) for all \(i, j \) then no \(a_i \) can be a power of a prime.

Proof. Suppose that g.c.d. \((a_1, \ldots, a_n) = 1 \), \(a_k = p^m \) for some prime \(p \), \(1 \leq k \leq n \) and

\[
\frac{a_i}{(a_i, a_j)} < n, \quad 1 \leq i, j \leq n.
\]

Then the numbers \(a_1, \ldots, a_n \) are all of the form

\[
s_{ij} = ip^{m-i+1}, \quad 1 \leq i \leq n-1, \quad 1 \leq j \leq m+1.
\]

Form the \((n-1) \times (m+1)\) matrix \(S = (s_{ij})\).

Our proof will be complete if we can find a matrix \(T \), a permutation of \(S \), so that at most one distinct element from each row of \(T \) can lie in our sequence. Let \(\sigma \) denote the following function defined on \(1, \ldots, n-1 \).

\[
\sigma(i) = \begin{cases}
pi & \text{if } 1 \leq i \leq \left\lfloor \frac{n-1}{p} \right\rfloor \\
\frac{i+1}{p} & \text{where } p^i \| i+1, \text{ if } \left\lfloor \frac{n-1}{p} \right\rfloor < i < n-1 \\
\frac{n-1}{p} + 1 & \text{where } p^i \| \left\lfloor \frac{n-1}{p} \right\rfloor + 1.
\end{cases}
\]
It is easily seen that \(\sigma \) is in fact a permutation of \(\{1, \ldots, n-1\} \). Put \(T_{ij} = (\sigma^{j-1}(i))p^{n-1-i} \); then \(T = (T_{ij}) \) is a permutation of \(S \). Fix \(i \); then at most one number of the form \(T_{ij} \) can be in our sequence.

Put

\[
k_i = \sigma^{i-1}(i).
\]

Lemma. If \(i > j \) then either

\[
k_i p^{n-1-i} = k_j p^{n-1-j}
\]

or

\[
\frac{k_j p^{n-1-j+1}}{(k_j p^{n-1-j+1}, k_i p^{n-1-i+1})} \geq n.
\]

Proof. By the definition of \(\sigma \), we may assume without loss of generality

\[
k_j > \left\lceil \frac{n-1}{p} \right\rceil \quad \text{and} \quad (k_i, p) = 1.
\]

Now

\[
\frac{k_j p^{n-1-j+1}}{(k_j p^{n-1-j+1}, k_i p^{n-1-i+1})} = \frac{k_j p^{n-1-j}}{(k_j p^{n-1-j}, k_i)} = \frac{k_j p^{n-1-j}}{(k_i, k_j)}.\]

We distinguish two cases:

(i) If \(k_r = n-1 \) for some \(j \leq r < i \).

(ii) Not (i).

We estimate \((k_i, k_j)\).

(i) \(k_j = n-r_1 \) where \(1 \leq r_1 \leq r-j+1 \),

\[
k_i = \left\lfloor \frac{n-1}{p} \right\rfloor + s \quad \text{where} \quad 1 \leq s \leq i-r.
\]

Then

\[
(k_i, k_j) \leq (p^{r+1}, k_i, k_j)
\]

\[
= \left(ps + p \left\lceil \frac{n-1}{p} \right\rceil, n-r_1 \right)
\]

\[
= (n+p^{s}-a, n-r_1) \quad \text{some} \quad 1 \leq a \leq p
\]

\[
\leq ps-a+r_1 \leq p(i-r)+(r-j)
\]

\[
\leq p(i-j).
\]

Therefore

\[
\frac{k_j}{(k_i, k_j)} p^{i-j} > \frac{(n-(i-j)) p^{i-j}}{p(i-j)} \geq n-1
\]

since \((R_i, p) = 1\) for all \(p, i-j \) except \(p = i-j = 2 \), by considering the derivative of \((n-x)p^{n-1}/x\). For the case \(p = i-j = 2 \) it is easily verified that

\[
\frac{n_j p^{i-j}}{(k_i, k_j)} \geq n.
\]

(ii) \(k_i = \frac{k_j + s}{p^s} \) where \(1 \leq s \leq i-j \).

Then

\[
(k_i, k_j) \leq (p^s, k_i, k_j) \leq i-j.
\]

Hence

\[
\frac{k_j p^{i-j}}{(k_i, k_j)} \geq k_j p > n-1.
\]

This completes the proof.

References

BRIGHAM YOUNG UNIVERSITY

MATHEMATICS DEPARTMENT

TALMAGE MATH/COMP, BUILDING 292

PROVO, UTAH 84602 U.S.A.

Received on 18.5.1984 (1427)