The divisor problem for arithmetic progressions

by
J. B. FRIEDLANDER* and H. IWANIEC** (Princeton, N. J.)

1. **Introduction.** Let \(n \geq 1 \) and \(r \geq 2 \) be integers and let \(d_r(n) \) denote the number of ordered \(r \)-tuples \((n_1, \ldots, n_r)\) of positive integers for which

\[
\prod_{1 \leq i < j \leq r} n_i = n.
\]

For \((a, q) = 1\) define

\[
D_r(X, q, a) = \sum_{n \leq X \atop \gcd(n, q) = 1} d_r(n).
\]

We are interested here in finding real numbers \(\theta_r \), as large as possible, such that the following statement holds.

(S) For each \(\epsilon > 0 \) there exists \(\delta > 0 \) such that

\[
D_r(X, q, a) \ll \frac{X}{q^{\delta}} P_r(\log X) X^{\frac{1}{r} - \delta},
\]

provided that \(q < X^{1/r} \).

Here \(P_r(\log X) \) is the residue at \(s = 1 \) of \(s^{-1} L(s, \chi_0) X^{s-1} \), where \(\chi_0 \) is the principal character of modulus \(q \).

It was discovered independently by Selberg and by Hooley that Weil's estimate for the Kloosterman sum yielded the above statement with \(\theta_2 = 2/3 \). The authors [2] recently proved that one may take \(\theta_3 = 1/2 + 1/230 \). The result with \(\theta_4 = 1/2 \) seems harder to trace but was known to Linnik. In this paper we are able to improve the results \(\theta_r = 8/(3r+4) \) for \(r \geq 5 \) which are due to Layvik [5].

Theorem. The statement (S) holds in the following cases:

(1) \(\theta_2 = 9/20 \),

(II) \(r \geq 6 \) and \(\theta_r = \min \{8/3r, 5/12\} \),

(III) \(q \) is restricted to cube-free integers, \(r \geq 7 \), and \(\theta_r = \min \{4/r, 5/12\} \).

Although the proof of this result involves some fairly deep arguments, these are for the most part already recorded in the literature and we shall quote liberally therefrom.

* Supported in part by NSF grant MCS-8108814(A02).
The main ingredients in the proof are the Burgess estimates [1] for character sums and the recent work by several authors [3] on the difference between consecutive primes. Indeed, it is no coincidence that $1-\gamma_2$ and $1-\gamma_3$ have been numbers of significance in this latter area.

2. Lemmata.

Lemma 1 (Burgess [1]). For q a positive integer, let

$$\gamma = \gamma(q) = \begin{cases} \frac{1}{2} & \text{if } q \text{ is cube-free,} \\ \frac{1}{3} & \text{otherwise.} \end{cases}$$

Let $\varepsilon > 0$. There exists $\delta(q) > 0$ such that, for all non-principal characters $\chi \mod q$ and all $L \geq q^{\varepsilon}$, we have

$$\sum_{i \leq L} \chi(i) \ll_{\varepsilon} Lq^{-\delta}.$$

Lemma 2. For $T \geq 2$ we have

$$\sum_{\chi \mod q} |\sum_{n=1}^{T} \chi(n)| \ll qT \log q T.$$

Lemma 2 follows at once from Theorem 10.1 of [6].

Lemma 3.

$$\sum_{\chi \mod q} \left| \sum_{n \leq N} \chi(n) \right|^4 \ll N^2 q \log q.$$

Proof. We may assume that N is half an odd integer and is less than q, whence

$$\sum_{n \leq N} \chi(n) = \frac{1}{2\alpha} \int_{1/2-iT}^{1/2+iT} L(s, \chi) N^s ds + O(NT^{-1} \log N),$$

where $U = 1 + \log^{-1} N$, $T = (qN)^{1/2}$.

Since

$$|L(s, \chi)| \ll (qT)^{(1-n)/2}$$

for $\frac{1}{2} \leq n \leq U$,

we have

$$S = \sum_{n \leq N} \chi(n) \ll N^{1/2} \int_{1/2-iT}^{1/2+iT} |L(s, \chi)| N^s ds + O(N^{1/2}).$$

Hölder's inequality gives

$$S^4 \ll N^{2 \log q} \int_{1/2-iT}^{1/2+iT} |L(s, \chi)|^4 N^s ds + O(N^2).$$

We sum over χ, then apply Lemma 2 and partial summation. This completes the proof.

Lemma 4. Let $L, M, N \geq 1$, $LMN = X$, $(a, q) = 1$, $\varepsilon > 0$, and $\gamma = \gamma(q)$ as in Lemma 1. Assume

1. $q \ll X^{9/20} \varepsilon$,
2. $X^\varepsilon q \ll L$,
3. $M, N \ll X^{1-\varepsilon} q^{-6/5}$.

Let $[\alpha_{mn}]_{m \leq M}$, $[\beta_{mn}]_{n \leq N}$ be sequences of complex numbers with $|\alpha_{mn}| \ll X$, $|\beta_{mn}| \ll X^\varepsilon$, for all m, n. Then, there exists $\delta > 0$ such that

$$\sum_{l \leq L} \sum_{x \mod q} |\sum_{m \leq M} \alpha_{m} \chi(m)| \sum_{n \leq N} \beta_{m} \chi(n) \ll_{\varepsilon} X^{1-\delta}.$$

We omit the proof of Lemma 4 as it is an almost verbatim duplicate of the argument on pages 102–104 of [4], the only difference being that there one dealt with Dirichlet polynomials on $\sigma = 1/2$ rather than $\sigma = 0$ as here. It should be mentioned however that this proof is the heart of the matter. In addition to using Lemmata 1 and 3 it appeals to the large sieve and the Halász–Montgomery–Huxley method. It is perhaps best described as an analogue for arithmetic progressions of the lemma of Heath-Brown used in [3] to estimate the difference of consecutive primes.

3. Proof of the theorem. Let N_1, \ldots, N_r satisfy

$$N_1 \geq N_2 \geq \ldots \geq N_r \geq 1, \quad \prod_{j=1}^{r} N_j = X.$$

Let $\Delta = X^{-\eta}$ where $\eta > 0$ is fixed. Let

$$E(N_1, \ldots, N_r) = \sum_{1 \leq n \leq N_r} \sum_{1 \leq n \leq N_r} \sum_{1 \leq n \leq N_r} \frac{1}{\phi(q)} \sum_{\alpha(a) = \chi(a)} \sum_{\beta(a) = \beta_0(a)} \sum_{\gamma(a) = \gamma_0(a)} \sum_{a \in \phi(r)}.$$

By an elementary argument (see, for example, the first part of the proof of Theorem 5 of [2]), the proof may be reduced to the demonstration that, for an arbitrary box N_1, \ldots, N_r satisfying (4), we have

$$E(N_1, \ldots, N_r) \ll \frac{1}{\phi(q)} X^{1-\delta}.$$

Now,

$$E(N_1, \ldots, N_r) = \frac{1}{\phi(q)} \sum_{\chi \equiv \chi_0} \sum_{\neq \chi_0} \sum_{\neq \chi_0} \sum_{\neq \chi_0} \chi(n_1 \ldots n_r)$$

$$\ll \frac{1}{\phi(q)} \sum_{\chi \equiv \chi_0} |\sum_{\chi_0} \sum_{\neq \chi_0} \sum_{\neq \chi_0} \sum_{\neq \chi_0} \chi(n_1 \ldots n_r)|.$$
\[M = \prod_{j \in \mathcal{M}} N_j, \quad N = \prod_{j \in \mathcal{N}} N_j, \] with \(\alpha_m \) being the number of representations of \(m \) in the form

\[\prod_{j \in \mathcal{M}} \prod_{j \in \mathcal{N}} n_j = m, \quad (1 - a) n_j < n_j \in N_j \]

and \(\beta_n \) defined similarly. Note that

\[\alpha_m \leq d_{r-1}(m), \quad \beta_n \leq d_{r-1}(n). \]

By Lemma 4, it remains to show that, given any \(N_1, \ldots, N_r \), satisfying (4), we have \(N_1 > q^{\frac{1}{2}} x^r \) and there exists a partition \(\mathcal{M}, \mathcal{N} \) for which (3) holds. Since \(N_1 \geq X^{1/r} \) by (4), the first requirement follows easily. Moreover, by choosing \(\mathcal{M} = [2, 3, \ldots, k] \) where \(M = \prod_{j \in \mathcal{M}} N_j \geq X^{1/2} \) with \(k \) maximal, we have \(M \geq X^{1/2} N_1^{-1} \) so \(N \leq X^{1/2} \). Combining this with (3) we get the theorem for \(r \geq 6 \) (as well as the statement with \(\theta_3 = 5/12 \)). The remaining estimate with \(\theta_3 = 9/20 \) requires a little more effort.

Case I: If \(N_2 \leq q^{1/2+\epsilon} \), then \(\mathcal{M} = [2, 3] \), \(\mathcal{N} = [4, 5] \) gives a decomposition with \(M, N \leq N_2^2 \leq q^{1+2\epsilon} \). Since \(q < X^{1/2} \) if \(q < X^{5/11} < X^{1/2-\epsilon} \), (3) holds and Lemma 4 gives the result in this case if \(\delta(\epsilon) \) is sufficiently small.

Case II: If \(N_2 > q^{1/2+\epsilon} \) we abandon Lemma 4 and write

\[E(N_1, \ldots, N_5) \leq \frac{1}{\varphi(q)} \sum_{x \leq X} \left| \sum_{n_1} \chi(n_1) \right| \left| \sum_{n_2} \chi(n_2) \right| \left| \sum_{m \in M} \alpha_m \chi(m) \right| \]

where \(m = n_3 n_4 n_5 \) and \(\alpha_m \) is defined by the same prescription as before. By Hölder's inequality,

\[E(N_1, \ldots, N_5) \leq \frac{1}{\varphi(q)} \left(\sum_{x \leq X} \left| \sum_{n_1} \chi(n_1) \right|^4 \right)^{1/4} \left(\sum_{x \leq X} \left| \sum_{n_2} \chi(n_2) \right|^4 \right)^{1/4} \left(\sum_{x} \left| \sum_{m \in M} \alpha_m \chi(m) \right|^2 \right)^{1/2}, \]

and, for any \(\epsilon > 0 \), this is

\[\leq \epsilon \frac{1}{\varphi(q)} q^{1/2} (M + q)^{1/2} X^{1/2+\epsilon} \]

by Lemma 3 and the large sieve inequality. Since \(q M = q X N_1^{-1} N_2^{-1} < X^{1/2} \) (we may assume \(q > X^{1/2} \)), and since \(q < X^{1/2-\epsilon} \), the result follows.

Remark. The estimate \(\theta_3 = 5/12 \) for \(r \geq 6 \) cannot be improved by this method as can be seen by considering the case \(N_1 = \ldots = N_5 = X^{1/6} \), \(q = X^{3/12} \). Here, for any partition, either \(M \geq X^{1/2} \) or \(N \geq X^{1/2} \) so (3) fails to hold. A similar phenomenon has already been observed by several people in connection with the problem of consecutive primes.

References

INSTITUTE FOR ADVANCED STUDY
Princeton, New Jersey 08540

Received on 24.2.1984 (1405)