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P

by
Kunnet S, Winliams®, Kennern Haroy** (Ottawa, Ont., Canada)
and Cl-uuSTIAN Fripsen*** (Fredericton, N. B., Canada)

1. Imtroduction. Let m be a positive squarefree integer which is either of
the form

(1.1) m=p py...p. = 1(modd4} (rz=l)

or of the form

(1.2) m=2p;p,...p=2(mod8) (rz0),

where py, ..., p, are primes congruent to 1 modulo 4. Let (4, B, C) be a
triple of positive integers such that

(1.3) A% = m(B*4C?).

(The form of m guarantees that there are infinitely many such triples
(4, B, €).) From (1.3) we see that the greatest commaon divisor of B and C

must divide A and so can be divided out of the equation (1.3). Hence we may
assume that

(1.4) {4, B)= (4, C)= (B, C) = 1.
Let p be an odd prime, not dividing ABC, which is such that

(;):"I G=1,...1, if msl{modd),

(z)m(p’)ml G=1,...r) if m=2(mod8),
p) \p
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so that for both m = 1(mod4) and m = 2(mod 8) we have

5)--

Hence there exists an integer w such that w? = m(mod p). Further, by the Jaw
of quadratic reciprocity (LQR), we have from (1.5)

14 , p
. - | == 1 = l., fiag )
(1.7 (P:) ( r

The Dirichlet symbols ( ) (if m= 1(mod4)) and ( ) (if m = 2(mod 8)

w2

of quartic residuacity are defined by

(18) (ﬁﬁl) H ( )

and for i=1, ..., r

4
(G,

kst if p is a quartic residue (mod p),
—1, if pis a quadratic residue but a quartic nonresidue (mod p;).

The purpose of this paper is to determine the value of the Legendre

+B
symbol (ﬁ—B-—\[—) where \/— == +w(mod p). The value of (-——ltw\éﬁ)
P

independent of the choice of +w for \/n—q as
(A+Bﬁ)(A—Bﬁ) __,(AzntZ) _ (mcl‘) _
P p p p '
-g0 that

(L10) (’4+i\/’7’)=(*‘1”’f’ﬁ).

| . A+B./m\ o .
The evaluation of (~—i—5\—/~:-) is carried oul in a completely elementary

way, requiring nothing more than the manipulation of Jacobi symbols by
means of Jacobi’s law of quadratic reciprocity, although the method ol proof
is complicated by the necessity of keeping track of the exact powers of 2
dividing the integers involved. Our theorem provides a unifying result in the
theory of rational quartic reciprocity laws as a number of such laws are
either special cases of our theorem or can easily be deduced from it. In
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particular Scholz’s reciprocity law [10] is a special case of our theorem, as
are Emma Lehmer’s criterion for quartic residuacity ([7], p. 24) and Burde’s
biquadratic reciprocity law {[4]; p. 183). Scholz proved his reciprocity law by
means of class field theory. Later authors have given more elementary proofs
of it ({51, [9), [12]). Emma Lehmer proved her criterion by studying the -
rationality of the roots of the period equation of degree 4 considered as a
congruence modulo a prime. Burde proved his reciprocity law by means of a
study of laltice points. More elementary proofs have been given of Burde’s
law in [9], [13]. There are many other rational reciprocity results which are
also special cases or simple consequences of our theorem (see for example
(1, (2], (31 [6), [8], [11])

After a aumber of lemmas we prove the following Theorem in Section 2.

TusorEM. Let m be a positive squarefree integer of the form (1.1) or (1.2).
Let A, B, C be positive integers sotisfying (1.3} and (1 4), then if m = 1(mod 4)

we have
(%*MB\ZW) o= (1) V=118 (%)B (P_) ,
P P/ Ny

and if m = 2(mod &) we have

(— 1) 178 (mr;z_) if  p=1(mod8),

| (i)
P (1)t m- wa( p/i)’ if p57(mod8).

We note that the identity

24 +B . /m)(A+C.J/m) = (A+B/m+C./m)?

gives

R

Hence, when m = 1(mod 4), in which case B and C are of opposite parity, we
may interchange B and ¢ so that B is odd, and o prove the theorem in this
case it suffices to show thal

() (),

Throughoul the rest of the paper it will be assumed that B is odd when
m = 1(mod 4).

We now show that Scholz’s reciprocity law is a- special case of our
theorem. :
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Corortary 1 (Scholz, [10]). Let p= L(mod4) and ¢ = t(mod4) be
distinct primes such that G) = (i) =1, Let &, (resp. &,) denote the funda-

mental unit (> 1) of the quadratic field Q(\ﬂ;) (resp. Q(\ﬁf)). Then we have

B6-6)-)

Proof. In view of the symmetry in p and ¢, it suffices to prove the first
equality. We set
1= 1, if
Co3, if

Then there are positive integers T and U such that

q = 1{mod§),
g = 5({mod §}.

g =T+U./q, T=0(mod2), U=Il(mod?2),
and
T?qU? = —1.

Taking m=g¢q, A=qU, B=T C=1 in the theorem, we obtain

(- (1),
()EE)-(2),

(-9
P q4/a\P/4
as required.

Next we show that Lehmer’s criterion is a special case of our theorem.
Cororrary 2 (Lehmer, [7]). Ler r =a®+b*=dn+1 (a and b are posi-
tive integers with a odd and b even) be a prime, and let ¢ be an odd prime not

dividing ab such that (ﬂ) = 1. Then we have
2

(Q) = (g—:w—tﬂ), where  r= 2% a*(mod g).
rJa q

- that is

or

icm
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Proof. Taking ps=g, m=v, A=r, B=a, C=>, in the théorem we

obtain
(Ett&ix_ﬁ) m(__l)m_w(g) |
4

q x

(g{) _ ((—« 1"(2A% a* + 2/1(12)) _ ((— 1)" 241 + 1))
r/a ] q
as required.

We remark that Lehmers criterion ([7], p. 24) included the case ¢|ab.
This possibility is not covered by our theorem as we exclude p| ABC from-
the outset, but is easily treated by the methods employed in this paper,

Finally we show that Burde’s reciprocity law also follows from our
theorem.

CorowLary 3 (Burde, [4]). Let p = 1{mod4d) and ¢ = 1{mod 4) be distincr
primes such rhat (Z) = (i) = 1. Define positive integers a, b, ¢, d by

so that

p= [12+b2, a=l (mocl 2,

¢ = 1(mod2),

b = O(mod 2),

g =t d?, d = 0(mod 2).

(2),(2), = (4220),
d/a\P/a p

Proof. By the law of quadratic reciprocity we have

-0

Then

Also from the congruence

Qe (el -~ by (d - \ftj} = (ad —bhc+a \/é)z {(mod p)

we deduce that

(f.!ﬂr~_¢rz) -()() (eﬂ:ﬁs) - e (21200)
. P PINP P 4

Applying the theorem with m=g¢q, A=gq, B=d, C=¢, we obtain

(i) ().
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that is . - Table i
P\ (g ' ( d-+ \/& - p{mod8) | m(mod$) congruences for e, f, &
(5)4 (5)4 4 p ) i i e=1(mod?2), f = O(modd), k = 1(mod 2}

or

~ This completes the proof. e=f=1(mod2}, k=0(mod4)

We close this section by noting that from {1.3) we have m| A%, and so, as

m is squarefree, we have m| 4, say, 1 2 e=1(mod2), f=0(mod?2), k=1(mod?2)
(1.12) A = ma. i 5 ¢ = 1(mod2), f = 0lmodd), k=1(mod2)
Tﬁen, from (1.3) and (1.4), we obtain e=/f=1(mod2}, m 2{mod 4}

| (1.13) ma? = B*4- %, 3 1 e=f=l(med?2), k=0(modd)
and e = 2modd), £ = k = 1(nod )
(1.14) (a, B) = (a, C)=(B, C) =(m, B) = (m, C) = 1. 3 2 this case cannot oceur

. . . =f= d2), k =2(mod4
' 2. Proof of theorem. In this section we shall prove a number ol technical 3 : =/ = lmad3, or (mod

results leading to Lemmas 9 and 10.from which the theorem follows. e = 0(modd), f =k = 1(mod2)
LeMMA 1. Let m be a positive squarefree inreger of the form (1.1) or (1.2). '
Let p be an odd prime satisfying {1.5). Then there exist positive integers e, [, k

5 1 e= =1(mod2), k= 0(mod4)
ar

such that ‘ : ¢=1{mod2), J = 2(mod4), k= 1(mod2)
(1 - klP = szmfz, I 5 . 2 this case cannot eccur
22 (ef)=(f k)=, k)= ={f, p)=(e, m) = (k, m) = 5 5 e=f=1(mod2), k= 2(mod4)
‘ or
Proof. The condition (1.5) guarantces that m is a quadratic residue e=1(mod2), f = 2(mod4d), k= 1{mod2)
(modp) and that p is a quadratic residue (modm). Hence, by Legendre's N
~ theorem, the equation (2.1) is solvable in non-negative integers e, 1, 'k, which 7 1 e=[=1{mod2), k = 0{mod 4)

or

are not all zero. Clearly none of e, f, k can be zero so they are in fact all e =0(mod4), f =k = 1(mod 2y

positive. If r is a prime dividing both ¢ and f then ?| k*p and so r{k. Thus r

is a common factor of e, / and k which can be cancelled throughout the ! 2 ¢e=/=k=1lmdy

equation (2.1). Hence we may assume without loss of generality that (e, 1) ‘ 7 3 e=f=1, k=2(mod4)

= 1. It 15 then casy to check that, as m is squarcfree and p ¥ m, we have (2.2). : or
LemMa 2. With the notation of Lemma | we have the congruences Jor e, e = 2modd), /= k= H(mod 2

1. &k given in Table 1

Proof. The congruences for ¢, f and k follow easily “hy cons'idering (2.1)

modulo 8.
Prool. If p=m{mod4) cll]d ¢, f, k is a solution of (2.1) and (2.2) wnh
Lemma 3. With the notation of Lemma 1, the solution e, f, ko of (2.1) and , _
(2.2) can be chosen to satisfy | f=1(mod?) and k = 0(mod2) then &, f', k deﬁncd by

=0(mod2), k=1(mod2), if p=3(mod4), m = 1(mod4).
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icm

is a solution in positive integers of (2.1) with
fr=0(mod2), Kk'=1(mod2).

Dividing each of ¢, /7, k' by their G.C.ID. we obtain the required solution.

If p=3(mod4), m = 1(mod 4) let ¢, f, k be a solution in positive integers
of (2.1) and (2.2) with e = 1(mod?2), k= 0(mod2). Let X, Y be the smallest
solution in positive integers of X*>— p¥? = 1. Then it is well known and easily
verified that

X=0(mod2), Y=I1(mod?2).

Replacing ¢, f, k by € = eX+pkY, f' =/, k' = kX +eY, we obtain a solution
in positive integers of (2.1) with ¢’ = 0(inod 2), &' = 1(mod 2). Dividing each
of &, f', k' by their G.C.D. we obtain the required solution.

In view of Lemmas 2 and 3 and the choice B = 1(mod 2) it suffices to
consider the following cases.

Table 2
Case | p(mod8) |m{mod 8)| congruences for 4, B, C congruences for e, f, &
I 3 1 JA=B=1(mod2), ¢= 1 {mod2), f = 0(mod4),
C = O(mod4) ko= 1{mod 2)
I i 2 A =2(mod4), ¢z L{mod2), f = 0(mod 2),
B=C==1(mod2) k::l(mndZ)
il 1 3 A= B=1{mod?2), em Limod 2), /= 0dmod 4),
C = 2(mod4) k= 1{mod 2)
v 3 1 A=B=|(mod?2), e 2(modd), [ =k = {(mod2)
C = O{mod 4)
v 3 5 A= B=1(mod2), e = 0(modd), [ =k = {mod2)
C =2(mod4)
VI 5 1 A =B = 1(mod2), ez 1{mod?), { = 2(mod 4),
C = 0(mod4) k= 1{mod 2)
VI 5 g A=B=1(mod32), e=1{mod2), /' = 2(mod 4),
C = 2(mod 4) k= 1(mod 2)
VIII 7 1 A=B=1(mod?2), e=0(mod4), [ =Fk = 1(mod2)
C = Mmaod 4)
IX 7 2 A =2(mod4), ez f @k =l {mod?)
B=C s 1l{mod2y
X 7 5 A=B=1{(mod3), ¢s= 2(mod ), [k o= L{mod 2)
C = Z(mod4)

The following simple observations will be important in what follows:

(2.3) azB=k=1(mod2),
(2.4) Af+Be = 1{mod 2),

' O(mod2), in case IX
25 Bf = ’ '
@3) ae+ B {L(mod 2), otherwise.
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It is convenient at this point to introduce the following notation: if n is a
positive inleger the largest odd divisor of n is denoted by n*. In particular we
set

(2.6) e=2e¢* £20, &*=1(mod2),
(27 [=20% (20, f*=1(mod),
(2.8) m = 2m*, l,u =0or 1, m*=1(mod4).
We pote that
(2.9) e=0, i p=1{modd),
(2.109 {=0, if p=3(mod4),

0, if m=1(mod4,
(211 ‘“z{ 1, if m=2(mod8).

LeMmma 4. With rhe notation of Lemma 1 and Table 2, we have

v _I.(P.¢H1H2 2 N\E 2’.“ P
(2.12) (p) = ("g‘f) (;}F) (ﬁ) (%:)4

and

: . Ji B _:1 (rr".l)IZ(g)C
(2.13) (p)m(.f*) .

Prool We have

(;) - (2) (ei ) (by (2.6}
- (%) ('“ )(p m(ei) (by LQR)
-(z)" " GJ (%) (by (2.2)
-() O s 21)
-(F)CE) by 022
»
( 1)“” Wz(f,j( )(’f) (by (2.8)
TG e

6 ~ Actn Arithmelion XLV.3
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il

] ;k*i
ke 1;—4 ey
‘“'-——,/. e
-1 = =
+ - s
‘E = 5
P /""‘\

g ‘:-"..

S =2

% *

T

Sl %
S
/"“\

as

()-(F)-5

This completes the proof of (2.12).
Next we have

5-316)
TG
6

NP2 S
*(f*) ;)

which completes the proof of (2.13).

) _ (.‘:’;.

2

k

(by (2.6))
(by (1.1), (1.2))

(by (2.1))

(by LQR)

(by (2.8))

):1.

(by (2.7)
(by LQR)
(by (2.2)

(by (2.1))

icm
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Lemma 5. With the notation of Lemma 1 and Tuble 2, we have

(2.14) | (f;) = (-g

T

. ko A
()-Cr-

o

Prool. 'We Have

This completes the proof of (2.14).
Next we have

~ This' completes the proof of (2.15).

P
m*

;)4 _

(by LOR).

(by (2.8))
(by (114)

(by (1.13))

(by LQR)

(by (2.8)
toy (2.2))

(by (2.1))
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Finally we have

- (@) by (2.1
4

(i (%), oo
i m= Ja

This completes the proof of (2.16).
LEMMA 6. With the notation of Lemma 1 and Table 2, we have

Af+BeN _ (2P
) \Bk) \m* ),

Proof. This follows immediately from Lemma 5 as

Af+Be\ _ (maf+Bey\ (Be ,,(B Ea
()= () = ()= (%) )

Lemma 7. With the notation of Lemma 1 and Table 2, we have

(2.17) (Af+ Be, ae+ Bf) = I,
where 1 is an odd positive integer such that
(2.18) (I, maBefp) = 1.

Proof. We first recall from (2.4) that Af+ Be is odd. Therefore (Af+ Be,
ae+ Bf) is odd. Suppose ¢ is an odd prime such that

g*" " | (Af+ Be, ae--Bf }.
From
(2.19)  (Af+BeY=mae+Bf ¥ = (B> —ma?) (e*—mf?) = —C* 2 p,

we have ¢*"*?|C*k*p, so ¢*""!|Ck. Hence either ¢*"'|C or ¢"*}|k.

Suppose first that ¢""*|C. It is easy to check that (g, aBmp) = L.
Further as (e, f) =1 and ¢*"*!|ae+ Bf we have (g, ¢f) = 1. Then eliminating
B from the congruences

Be = ~maf (mod g***Y),  Bf = ~ae(mod g™
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we obtain a{e* —mf'*) = 0(modg?**"), so that k*p = O(modg*™*?), giving
gk

Suppose now that ¢** 'k, It is easy to check that (g, efm) = 1. Further
as (¢, By =1 and ¢*"*'|ac+ Bf we have (g, aB) = 1. Then eliminating f from
the congruences .

maf = — Be(mod g**"™Y), Bf = —ae(mod ¢!y,
we obtain e(ma®—B% = 0(mod g**™1), so that C? = 0(modg¢***?), giving
" (g, p =1 '

Hence in both cases we have ¢"*1 | C, ¢"*' |k, and (¢, aBmefp) = 1, Then
from ma*~B* = C? = O(mod ¢*** %) and e —mf? =k*p = O(mod ¢*"* %), we
obtain on eliminating m

az L’Z — sz‘Z e O(mod 6]2h+ 2),
so that

(ae+ Bf){ae— Bf) = O(mod g**~3).

Further we have

az mz-f'lh BZ 82 = mfz(Bz + CZ)_BZ ez (modq2h+2)
= —B*L* p(mod q2h+2)
O(modq2h+ 2)’

i

so Lhat
{(amf -+ Be){amf — Be) = 0(mod g>"*?).

As (¢, uBmef) =1 g cannot divide both of ae+Bf, ae—Bf nor both of
amf+ Be, amf— Be. Since ¢ divides amf+ Be and ae+ Bf we must have

g* 2 lamf+ Be, g*"** ae+ Bf.

This contradicts the definition of A. Thus every odd prime divisor of

(Af+ Be, ae Bf) must divide (Af+ Be, ae+ Bf) to an even power, so that
as (Af+ Be, av+ Bf') is odd we have

(Af+ Be, ae+Bf) = 2,

where ! is an odd positive integer. It is easy to check that (!, maBefp) = 1. We
just show that (I, p) = 1. For suppose p|[ then we have p| Af+ Be, giving

mC2? = mC?f*—B? (¢ —mf ) (mod p)
= A*f*— B¢ (mod p)
= 0{meod p},
which is impossible as ptm, pfC, pkf.



268 K. S Williams, K. Hardy and Ch, Friesen

This completes the proof of Lemma 7.
Lemma 8. With the notation of Lemmas 1, 7 and Tuble 2 we set

(2.20) Af+Be=1t, ae+Bf =y,
s0 that t and u are positive integers such that

@20 (t, ) = 1

and

O(mod2), in case IX,
229 (=1(mod2), u {(mo ). in cas

1{mod2), otherwise.

Then there exists a positive integer v such that

(2.23) Ck =%,

(2.24) 2 —mu? = —pp2,

Moreover setting

(2.25) u=2"0%y*=1(mod2), &=,

so that 8 =0 except in case IX, we have

(226 ' (ﬁﬁf_‘i) (:__l)tpmfz (..}w)y (p)
_ p t Bkt ) \m* J,

and

(2.27) "ae+Bj_‘ - 1\l+iy2
. b ) — ‘

Proof. Appealing to (2.19) and (2.20) we obtﬁin
(2.28) o e —mu?) = —C2K?p.

As pis an odd prime, which is coprime with /, we have | Ck, so that there
is a positive 1nteger ] sua,h that Ck = v, which is (2.23), Then from (2.29) we

obtain t*—mu? = —pv?, which is (2.24). As (¢, u) = 1 and m is squareflree, it is
gasy to venfy that ‘ ,
(2.29) (€ 0) =(t, p) = (u, 0) = (¢, m) == (v, m) = (u, p) = 1.
- Next we have
Af+Be\ [Pt o
() wen
,
= (;) C o (by (2.18)

—1\t= 12 o ‘
=(~r) (?) by 1OR)

icm
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-GS0
-G
( .‘

-~

G
)

This completes the proof of (2.26),
Also we have

(5%)-(5)

I
cRES)
‘\.../q:
/_—_\

QL
* Sy
S——
’:i
=
SN
E*E»c

( 1)"’ ””(mu mrz)
u*
(p+1)/2 ‘
G
-1 {p-+ 132 '
m(___) .

This completes the proof of (2.27).

269
(by (2299
(by (224)
oy 220)
(by (28)

(by LQR)

(by (218))

(by (2.20)

(by Lemma 6).

(by (2.20)

~ (by (218), (2.25))

(by LQR)
(by (2.29))

(by (2.24))
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icm

LEMMA 9. With the notation of Lemmas 1, 7, 8 and Table 2, we have

o (S O

and

A+B./m\ [ —1\R 00 e/ N/
e () () G .

Proof. Equation (2.30) follows [rom the equation

(55

by appealing to (2.13) and (2.26).
Equation (2.31) follows from the equation

(_e‘ A+B./m _ fae+Bf
p) ( p ) - ( P )
by appealing to (2.12} and (2.27). '
Lemma 10. With the notation of Lemmas 1,7, 8 and Tuble 2, in case 11 we

have
7 {p-1)/8
(*B'z;) =D

2
== )etm-1y8
(ke) (1) :

Proof. In case 1T we havé

() aia)Gts)r) o
Bet) \Bel’t) \Be(Af+Be)) AB@,"4-"}§'2';33)"(Mé;}fl‘i“)’“(“” ‘

and _
2~ -
2 ; ¢

= (___ l)mfzfﬂ p- 18 (___ l)J'IZVHnM _l)/H,

2 2 2 -
(a5 (@ ) (3 =

and in case IX we have

50

as required,

On the evaluation of the Legendre, symbol 271

In case IX, similarly to above, we have

(!;2) = (._.. l)(p--» 1-+mp2y8 = (___ 1)(;;-\-1»:;— 1)/8
-

as required.

Proof of theorem. The theorem now follows by a case by case
examination from (2.30) of Lemma 9 when p = 1{mod4) and from (2.31) of
Lemma 9 when p = 3(mod 4) logether with Lemma 10 in Cases 1 and IX.

3. Tables. A DEC Professional 350 minicomputer was programmed to

L (A+B ' ,
calculate A, B, C, ¢, f, k. ( FP\/N) ("1;;) , ete. for a variety of values of
4

m (< 200) and primes p (< 150). Tables of these values were used effectively
in checking results and in formulating the correct form of the theorem. For
the convenience of the reader a short Hst of these values is given below.

Table 3

m A I ¢ (/i-l—/B.\/m) (= 1} Dim= 118 (?j)ﬂ (ﬂ)
P P P/a

5 23 2 11 9 1 —1 i -1
5 G5 2 29 11 -1 ' -1 1 1
13 65 | 18 17 ~1 1 1 -1
13 65 6 17 23 1 - -} 1 -1
17 17 { 4 13 - 1 1 -1 1
17 17 4 i 13 1 1 1 1
29 29 2 5 7 —1 -1 1 1
29 29 5 2 7 -1 -1 1 1
kY 37 i 6 7 -1 -1 1 I
T 376 1 7 -1 —1 1 1
41 LA | 4 5 23 l 1 1 1
41 41 5 4 23 1 ' - 1 1
33 53 2 7 1} 1 -1 1 -1
53 53 1 2 11 -1 -1 -1 —1
61 61 5 [0 13 -1 1 -1 1
6l 6l 6 5 13 1 1 { 1
63 [ 1 8 29 1 1 -1 -1
65 65 4 7 29 e | i 1 -1
73 73 3 8 19 1 1 w1 -1
73 73 8 3 19 -1 1 1 -1
83 85 % 9 19 -1 -1 1 1
85 85 6 7 v - -1 —1 1 1
89 8 . 5 8 11 - 1 -] 1
49 89 8 5 11 1 1 1 1
97 97 4 9 11 ~1 1 1 -1
97 97 9 4 11 1 1 —1 -1
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10
10
26
20
34
34
58
74
74
82
82

- [
2

(3]
(41

[5]
[6]
[7]
[8]
[9]
0]
[113
[12]
(1]

K. S. Williams, K. Hardy and Ch. Friesen

A+BJm\ (=)0 =1 (8) p
A B C (_-“};"_'—) {— 1)(h+m - lh'!i! i p=7(8 ("]/2)4
50 9 i3 31 —1 -1 1
50 13 9 31 -1 -1 1
130 11 23 17 -1 f -1
130 17 19 23 -1 [ -1
34 3 5 47 1 L 1
170 3 29 47 [ 1 i
58 3 7 23 1 i 1
58 7 3 23 1 1 1
74 5 7 41 1 -1 -1
74 7 5 41 1 -1 -1
82 1 9 23 1 -1 1
82 9 1 23 1 -1 1
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The divisor problem for arithmetic progressions

by
3. B. Fruspranper® and H. Iwanue®* (Princeton, N. J)

1. Introduction. Let n = 1 and r 2 2 be integers and let d,(n) denote
the number of ordered r-tuples (ny, ..., n,) of positive integers for which
H f’l‘j = H.
L€jsr

For (a, q) = 1 define
DAX, g a) = Y d(n).

n=sX
n = a(modyg)

We are interested here in finding real numbers 6, as large as possible,
such that the following statement holds,
(S) For each ¢ >0 there exists 6 > 0 such that
‘ Xl—ﬁ
D, (X, q,‘ w( ) P.(log X) <, o
provided that ¢ < X bt
Here P,(log X) is 1he residue at s =1 of s ~1 (s, yo) X571, where g is
the principal character of meodulus g.
It was discovered independently by Selberg and by Hooley that Weil’s
estimate for the Kloesterman sum yielded the above statement with 8, = 2/3.

The authors [2] recently proved that one may take 3 = 1/2+1/230. The

result with ¢, = 1/2 seems harder to trace but was known to Linnik. In this -
paper we are able to improve the results 0 = 8/(3r+4) for r 2 5 which are
due to Lawvrik [5].
TuroreM, The statement (S) holds in the followiny cases:
(I) 04 = 9/20,
() r=6 and 0, = mm'S/?:r 5/12},
(I1) g is restricted to cube<frec integers, r = 7, and 6, = min {4/r, 5/12}.

Although the proof of this result involves some fairly deep arguments,
these are for the most part already recorded in the literature and we shall

quote liberally therefrom.

* Supported in part by NSF grant MCS-8108814A02).



