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On zeros of forms over local fields*
by
Yismaw ALEMU (Addis Abeba, Ethiopia)

1. Introduction. E. Artin conjectured that the field Q, of p-adic numbers
is C; for all p. The first counterexample to the conjecture has been given by
G. Terjanian [7]. Recently G. I. Arkhipov and A. A, Karatsuba [17], [2]

* proved that Q, is C,. By using a p-adic interpolation lemma based on the
Lagrange interpolation formula their argument has been improved by D. J.
Lewis and H. L. Montgomery [6]. Adapting the use of the Newton interpo-
lation formula from [1] W. D. Brownawell ([3] and [4]) independently
obtained a slightly sharper result.

In the present paper we use the methods of [4] and [6] to prove that
also every finite extension of the field of p-adic numbers is C,.

Acknowledgement, T thank Doc. J. Browkin for valuable remarks. I have
alsc profited from Prof. A. Schinzel's constructive comment on the thesis.

Suppose that K is a finite extension of @, with the ramification index e
and the residue class degree f. Let Oy be the ring of integers of K and let =
be a prime element of Oy. Denote ¢’ = ef{p—1). For any positive integer r let
U, be the group of one-units of level r, ie.

U,. = 1_}_7.[? OK'
Denote by v =, the normalized exponential valuation of K, ie v(m)=1.

2. The interpolation lemma. Let x = 1+ yn"e U,, and consider the series

o0

() f)= T anlm)",  apek.

m=0

Assume that
(2 v{oty) > —(mo+0), m=0,1,2,...,

for some 0 < g <r and o. Then the series (1) is convergent in U,

* The substance. of this paper formed part of the author's Ph. D. Thesis, Warsaw
University, 1983,
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Lemma 1. Let f(x) be given by series (1) satisfying (2). For aeU,, put
fx)~fla)

xX—a

fHilx)y=

Then
Ly =Y oy (ya)"
m=0
for some a,, €K satisfying
v(tn ) > —({(m+o+o), m=0,1,2, ..
Proofl. Denote a = 1+cr’. We have then

1 o 5] k-1 N
£ == ¥ alomF~emp) = 3w T omprlen)

X—lp=1 m=

o o0

— Z( Z OCk(CTEr)k—m—l)(yTﬂr)m.

m=0 k=m+1

Therefore we can take

U = i oCk+m+1(‘37'ify)k-
k=0
In view of (2) for k = 0 we have
0t me s (V) > —((k+m+1) o+ o)+kr = ~(m+Dg+o)+k(r~pg)
Therefore
U (0m,1) > —((m-+1)g+0). =
Lemma 2. Let f(x) be given by the series (1) satisfying (2). For
Gy, o, ..., €U, define inductively:
Jo(x) = f(x),
Jieg (%) = J—FE—)-:—J—(«M)' for i=0,1,..,n-1.

Denote by = fi(a;.q) for i=0,1,.., n—1
Then

2
(3) Fx) =bo+b (x—a)+by [[(x—a)+ ...+

i=1

+ by 'ﬁ (x—a)+fu(x) H1 (x—ay).
=1 i=
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Moreover

4) o{f,(1)) > —~(en+0).

Proof. The interpolation formula (3) follows easily by induction from
the definition of f;(x) and b,.

From Lemma 1 by induction it follows that

[’}

Silxy= Z 1y
for some o, ;€K satisfying v(x,,) > —(¢(m+i)+06), m=0,1,2, ..,
ticular, since f,(1) = aq,, we have v(f, (1)) > —(on+o0). =
For x=1+yn"elU, and we Oy we define

In par-

[=7]

© =% (")omr.
Since
(6) u(("’)) > —u(ml) = —¢'{m—s(m) > —e(m—1),

where s{m) is the sum of digits of m when expressed in base p with respect
to the least residue system mod p, the series (5) is convergent for r > ¢

Cororrary. Let wy, ¢,e0g for k=1, 2, ..., N and consider

™ fo9= ¥ ax™,
Then

where xelU,,r > ¢

v(f,(1)) > —e'(n—=1), wheref,(x) is defined in Lemma 2.

Proof. In view of (5) and (6) it is sufficient to put g = ¢, 0 = —¢ in (2)
and the corollary follows from Lemma 2.

Henceforth we assume that r > ¢'. Moreover let m; < m, <
positive integers, and put

o< m, be

(8) a=g" for i=1,2,...,n

where ¢ = 1+an” with some ce K satisfying v(a) = 0.
Lemma 3. (i) o(g™ ~1) = r+v(m),
k

i o([] (@sr—a)) < rk-i—e’(mkﬂwmi) for 1<k <gn—1,

i=1

Proof. Since r > &, we have (cf. [5], p. 275)
v(g™—1) = v(log ") = v(m; log g) = v(m)+v(log g) = r +v(m).

To prove (ii), we observe that in view of (i) for any k

U@ —a) =uv(g "' —g") = U(gmkH 1) = rbv(my g ).
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Consequently

(f[ (@) ~a)) “"T‘k-l-v(ﬂ (M 1 —my))

i=1

Srk+o((me,—m)) <rk+e(my—my). s

3. Systems of congruences.

LeEMma 4. Suppme that f{x) defined by (7) with ¢, =¢; =... =
satisfies

Fl@g)=0mod n™  for i=12,...,n,
where a; are given by (8).
Then, under the notarions of Lemma 2,
(9) v(h)zm—ri—e(m,.,—my) for i=0,1,..,n-1

Moreover

10y v(N) =

min{m, m+-Ay—e'(my—my), ...

-3 n1+ln" 1 "“'E'I(m"'—ml), rn»}_j‘n_—el(n— 1)} 3

where A, = ) v(my) for i=1,2,...,n

i=1
Proof Since by =f(a,) =0 mod =", (9) holds for i = 0. Assume that we
have proved (9) for all i <r< n—1; we shall prove it for i =t. Since, in
view of (3), :
2

3
fla1) = botbi(a 1 —a}+ b, H (@e1—a)+ ... +b H (@ar—
=

j=1

we have
v (br n (ar'lv 17 aj))
=1

2 -
> min {m, U(bl(a1+1 —ay), v(ba [ (s —aph ..oy ( H (s y —
j=1 i=1
_If the minimum is m, we have in view of Lemma 3 (ii):
i
U(b:)?m"”(n(a:-v—l"“j)) m—rr—e' (m, —m),
J-.:

and hence (9) holds in this case for i=1t.
k

If the minimum occurs at v(bk [T (a+,—ap) for some 1 < k <r—1, then

j=1

icm

 (see [5],
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by the inductive assumption and Lemma 3(ii) we have

1

v(b) = ”(bk)'“v( H (ar+1—aj))

J=k+1

Zm—rk—e (M —m)—rt—k)~e(m . —m.,)

=m—rt—e'(my—~m). ;
Consequently (9) holds for i =1, and the proof of (9} is complete by
induction.
To prove (10) we note that N =f (1), since ¢; = ¢, = ... =cy =1 in (7).

Consequently from (3), Corollary to Lemma 2, Lemma 3 and (9} it follows
that

E
I
-
=

cos 0(bamy [T A =ay)), o(£,(0) [T (1 —ay)]

ji=1 i=1

= min (m, m+4,—e'(my—m), m+Ad,—e (my—m,), ...

vt A, —e (m,—my), m+ A, —e (n—1))

and this completes the proof of the lemma. =
For any natural number m set

:

N
(1) Sp(xt= Y x,  where x={(x;,Xs, ..., Xp).
i=1
Let 2=[e]+1, and put ¢ = p?~*(p" —1), where f is the residue class
degree of the extension K/Q,. Then €< ¢. Let t be an integer satisfying
2t <1 +g/e

THeoREM L. In the above notation if the system of congruences

Sem(¥) =0mod n*™,  i=1,2,...,n

with natural numbers my; <m, <.
solution, then

<m, in [M,tM-~1] has a nontrivial

v(N) 2z n(é—e)+e.
Proof. Without loss of generality we can assume that
#0modw for i=1,2,..., N.

Then, by the definition of ¢, xf = | mod =% ie. xteU,for i=1,2,..., N.
The one-unit group of level & U,, considered as an Og-module is cyclic
p. 275). Let g = 1 +an®, with v(a) = 0, be a generator of this group.
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Put

with w; Ok, and let

N
fly=%x"

i=1

With a, =g~ k=1,2,..., n, we have

N LW i W M
fla)=3% (" = 21(9 =
i=1 f=

N
qm,
x * =0 mod nM,
i=1

Since 4; 2 0, my—my <{(r—-D)M—1, g=({t—1)7 and (t—1)M = n we have
gM -+ —e{m. —m) =—-eM—¢e(t—1)M—1)
=(t—-DM@E~e)+e zn(E—e) e,
and similarly
en+i,—e{n—=1)=n(@—e)+e.
Consequently from inequality (10) we obtain the result. =

4. Main result. Let 4 > 1 be a fixed real number and define &, (x), for
x>1, to be the least positive integer r such that the » times iterated
logarithm log" x is less than 1. Furthermore let

Eq{0=1
Aax)= J] log¥x for x>1.
k=1

From the definition it follows that ¢, and A, are non-decreasing
functions.

We need two lemmas.

LEMMA 3. For every A > 1 there exists ¢ = c(A) such that for n> ¢ the
inequalities A" >n and A""?* > A"+ 1 hold.

Proof. Clear. =

LemMa 6. For A > 1 let ¢ = c(A) be the constant of Lemma 5. Put n; > ¢
and define inductively

(12) ne=[A""1+1 for k=23, ...

Then the sequence {n & is strictly increasing. Moreover
gy zk  and  Aym)Znin, . omy.

Proof. From (12) and Lemma 5 it follows that

nk>A"kH1>nk_1 for k=2,3,;..

icm
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Consequently log, m, >m._, and hence by induction

(13) log n, >m_; for 1<i<k.

Therefore

b4 = (k—1)-+ea(n) = k.

Moreover, in view of (13), we have
GA(rlk)—l

k=1
Aalm) = H log m, > H Pgoj B
i=1 i=1
THEOREM 2. Suppose that K is a finite extension of Q, with the ramifi-
cation index e and the residue class degree f, and let O be the ring of integers
of K. For infinitely many d there exists a form F in Oy [xy; X2, ..., x,) of
degree d without a nontrivial zero mod n' with

Cd

> @Xp
A (d)-(3g)

where

A=ptPeemt g =pTlpl -1, E= [—e—l}kl
p—
and C is a positive constanr explicitly given below.
Proof, For A = p!/2¢®~ 1 Jet ¢ =c(A) be the constant of Lemma 5.
Take a positive integer ¢ such that nl:=p‘(pf-1)(p—1\)>c and put
d; = p*(p" —1). Consider the form

LR w22y dy-1 2 4y
Fim =Y x'+n Y xi'+...+= yooxt
=1 i=p 1'=1|1+2*p

Applying the usual argument one shows that
Fy(x) =0 mod n"!

has no nontrivial solution in Oy.
For k> 2 we define inductively a form F, in terms of F_,. Put M

=n,_, the number of variables of F\_,, and let
n, = [AM]+1, where A= plizetr= 1,

In view of Lemma 5 the sequence {m};Z, is strictly increasing.
Define

Fo(d) = Fy1 (0,

where x =(x;, X2, .-, Xn) and u = (uy, Uy, ..., Uy) IS given by
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(14 U (X) = Sypreme 1y (8 Syomr-m(x), m=1,2,..., M,

where §,(x) is defined by (11) with N =n,.

Then u,(x) is a form of degree (3M ~1)q in n, variables. Consequently
Fi(x) is a form of degree dy, = (3M —1)qgd,_,, where d,_, is the degree of
F)_1, in n, variables.

We now show by induction on & that

(13) i Feix) = 0 mod 2% then x = 0 mod .
Since (15} is true for F,_,, it follows that

o(Fr(x)) = o(Foy (1) S dypy - min [0(u (X))} + el )~ 1.
l€mEM
But v(Fy(x)) = d, = 3M ~1)g-d,_, by assumption.
Therefore, for 1 s m< M,

(16} v{u, (%) = (3M ~1)g.
Let .4 be the set of natural numbers me {1, 2, ..., M) satisfying
(17 Sym+m-1, (%) =0 mod =¥,

Since M = 1, from-(14), (16) and (17), we have either m or M+1-—m
belongs to ..#. Therefore card .# = M/2.
From Theorem 1 with ¢ =2 it follows that the system (17) has a
nontrivial selution only if
v(m) 2 (M+2)/2(p—1).

Hence n, > AM*2 But from the definition of n, we have m < AM+ 1. In view
of Lemma 5 we obtain a contradiction. Consequently x = 0 mod x, and (15)
holds for all k.

From the relation d, = (3n,.;~1)gd,.., k=2,3,..., it follows that

Moy <dy <(B3gF " Ydymyn, . om_, for k=23,...
Hence
Ag(d) 2 A(-y)  and  ey(dy) 2 Ea{ny-y).
Consequently, in view of Lemma 6, we have
d, < Cody
nqldy) .
Aald)(3g) hyny...my-3(3q)

T < d]. Moy =< dl lOgA Ry

Hence )
. c .
B > exp ————nfif‘»ﬁ;— with C =.10g A‘. =
hald) (394 &

CoroLLary. If K is a finite extension of Qp then K s C.
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