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1. Intrednction. The method of exponent pairs (henceforth abbreviated to
mep) was introduced by van der Corput [2] for estimating certain one-
dimensional exponential sums. We write, as is customary, e(x) for exp(2nix).
The sums in question have the form

e(f ().

X<x<X+Y

where Y < X and f(x) behaves rather like a power of x (not a positive
integer power). We shall introduce notation below to make explicit the
similarity required between f(x) and the power of x (for one- and several-
dimensional functions f(x)). .

As is well known, such exponential sums are of greal importance in
analytic number theory. Let us suppose that f(x) is similar to FX7™*x" then,
in the refined form given by E. Phillips, the m.e.p. leads to an estimate of the
form | ¥ e(f(x) < F*X', where (k. D) is an exponent pair (e.p). (We

X€x<X+Y
have modified Phillips’ definition slightly for the purpose of this paper; in his
definition f' = F.) It is trivial to see that (0, 1) is an e.p. All other ep. are
produced by two processes A and B. Process A4 is essentially an application
of Cauchy—Schwarz inequality, and process B is essentially the combination
of the Poisson summation formula with the method of stationary phase.
Rankin [6] proved that inf (2k-1) = 0.829021356... (in fact, (2k+10) cor-
e, D) &E
responds Lo k-1 in his cle)ﬁnition), where E denotes the set of all ep.
obtained by the onc dimensional m.e.p. Consequently the one dimensional
m.ep., when applied to the problem of bounding (4-+ir), cannot give a
better result than £ (3+ir) <t for 0 = 0.16451067... As Rankin observed, this
is inferior to what may be proved by using two dimensional exponential
sums. Srinivasan [7] developed a m.ep. for the estimation of many dimen-

sional exponential sums ¥ e{f(x)) where De &, f € # (see Section 2), but he

xeD

fails to take full advantage of the Cauchy--Schwarz inequality, and so it leads
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to weaker results than one would like. The m.e.p. gives the same estimate for
all fe#, Dei:

S=|Y e(f() €« FOXT.. X~

XeF

The vector A = (4, ..., 4,) is called an exponent (n+ 1)-tuple, or we write A E,
(note that the above definition differs from the corresponding definitions in
[5]-[7]). As in the one dimensional case, m.e.p. consists ol repeated appli-
cations of processes Ae ./ and Be 4, defined respectively by Lemmas 2 and
1 (in [5]-{7] Lemma 2 is used with k = 1 only). After applying processes A
and B several times and estimating the last sum trivially, we obtain an
exponent pair (which depends on the number of times we apply each of
processes 4 and B).

The transformation B is applied whenever F <€A = H(f (%) <1
and the remainder R = N'*¢_/F*"' 4, N=2 in Lemma 1 is smaller than the
principal sum. If we could ignore the error term, then, denoting by §(F; X)
the best estimate of the exponential sum |y e(f(x))| which can be obtained

xel
by mep. for fe F(F, X, 4), we could in such a case write Lemma 1 in the
following form:

(1}  S(FX) << X, ... X, F¥IS(F.F/X,, ..
for any ke[l, n].

£y~ 1/3

2] F/Xka Xk"l"ls LR Xn)

If we estimate the last sum trivially, then we get
(2) S(F: X) <<= NIFMXy . X)) = N|H (f ()|

which gives a non-trivial estimate for S(F; X) if |H,(f (x}) is small. If

|Hk (f(x))] is not small, one applies a transformation A sufficiently many

times to make it small. Lemma 2 reduces the estimation of § to the

estimation of another exponential sum, I3 e(g(x, W), where ¢(x, h)
X,

= h‘lfv:L (x)+ ... +hnufx,"
we have

Hi(g(x, W)| < [H,(f () o, 0 =h/X (| + ... +Ih/X,],

It we ‘take m=.1 (or Ade.wy), then g(x, h)e F(Fhy /X X, A+ h/X1):
also, _atte.r applying Lemma 1 to the last sum we gel a new sum wilth a
function, . say, o(x, ;) Ssuch that for hje[H,,2H,], ocFFH/X,;
X, Hy, d+H/X)). So, we can write transformation A for Ae o7, as follows:
3 ISCF; X)* << N*/g+Ng™' max $(FH/X,; X, H)

lsH%g

X h
(x)+g, (x, ), where_ g1 (x, B) is usually small so that

where

- =N¥g+NqTUS(Fg/Xy; X, g) :
for any g < X,. If m> 1, then g(x, h) ¢ #. Also, while applying Lemma 2
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with m > 1 allows us to reduce the values of |H,(g(x, h))| much faster than if
we take m = 1 and in a generic case |H,{g(x, )| = |H, (f ()| &', it can be too
small at some points of %, and we cannot use Lemma 1. Suppose, however,
that 7, = F, /g~ f, #p © # are such that for all fe 74, Ae /o, BE 4y
the inequality (1) holds and suppose that we can ignore the points at which
Hi{g(x, W) is very small so that the proceses A can be wrilten as

(4) S(FLX)? « N*Q™'+NQ 'S(Fg, X, Q).
Whel’ﬂ. Q:ql./Xl:"-“':qm/Xm':‘\m/Q/Nmn Q=QI"'Qm= Nm=X1"'Xm=

1 < m<min, o) < n One can show that the conjecture that both (1) and
(4) are true is equivalent to one conjecture;

S(F; X, ..., X,) €S(F; Xy)...8(F; X,).

In particular, (1) and (4) hold if we take «/y = o/, Ao = #, Fo = F. Using
(1) and (3) , one can develop an improvement of the me.p. of [7] for A& /.
One can, however, obtain a better estimate by using our Theorems 1-3:

Turorem 1. Let ky, k, be positive integers with 1 <k, k, <3, and let
a, B be real numbers such that «, f # integers, a+f #ky, a+ B #k +1,
(x—ky =12 +Bla—k) # 0, x+B#k+1+1jk,. Let 4 be small and let
f(x,y) be a real C* function in

D« l(x, y) XS,xéQX,'ngQZY}

such that
Slx, ) FX2Y™Ix*yl, X2 Y, XY =N.
Then

S=| Y elf(x M) << N/

(x,y)ed
where Q, is the largest number satisfying the following fnequalities:

(3)

Q < min (N
3k Kq+6Kg 2ky =2 F4—’ 6.’(2)II(GK1K2— 2Ky ‘"3K2+2)}
’

(N
where K, = 2"1, K, = 2k2; also for ky =3,

4/NAT < Q, < min {(F2 N3 (NS F-AM3; (N9 P uisty,

fOT‘ kl = 2,
. NA._Z < Q1 < min {(FN—I)ZIS; (NIF—I)QIZQ};

for ky =1,0;, € min{/_l_l; N7

2k1K1+4K1 "'klkz— Zkl"k2~4—F2k2+4"4K1)1/(4K1K2“ZKz—szl ~ 3Ky +hkyt+2),

¥
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Note that the restrictions 1 < k,, k; <3 and (x—k, — 124 flo—ky) # 0

can be removed and are introduced to simplify the proof. Also, it seems that

using the idea of the proof of the theorem one can develop the method of

exponent pairs for double and possibly multiple sums. Note that O (N can
be replaced with O (log* N). Using Theorem I, one can similarly to [4} show
that {(34-ir) << 139898 4 (R) < R13%/*%% und many other constants can
be improved. h

Tusorem 2. Let o, B, y be real numbers, a1, a4Bry 2,
affyla—~1)(B—1y—1)# 0, 4 < &y, and let J(x, p,2) be a real C* function
such that f(x, p, 2y ~ FX™*Y P Z77 x*p¥ 27 throughour '

Deilx, p,2) X<x<2X, Y<y<2Y, 252522,
XzY=2Z XYZ=N.
Then

S

It

| ¥ e(f(x, p, 2)

(x.y.2)e?

& N[FN-—I +Z—~—1+N-—l/4+il/F3X4N—5+E;‘FGAB XGN“S 4+
S AYTRZT R F TRy A Zm s | 8T YR g2 et

TueoreM 3. Let oy, ...,a, be real numbers such that 0y uetty, % 0
oc14r~1...+oc,,);é 2, oy oy tog 2 % ko # L for oany (i)
=9 ,...,hj‘. Ler ”;4,A£60, F?X%, XIBXZE--.ZX", X].XZ""XH

=N, and let f(x) be a real C* ; ,
<2X,i=1,... 31} ed Junction such that for xeD <= (x| X, < x,

H

)~ X7 X3t
Then - :

§=|3 e(f (X)) < N*F[(F g7 x5 FPNTEHUEe
xeD

+X3—11 F3X;1X51+X;1X;16/F15/Xf+

+ X7 4 47X, T2 log? N

Theoremg 1--3 are applied in the case when using (3) once we reduce the
value Qf H{ j' (x)) so that (2) gives a non-trivial estimate of S(F; X). If the
determmanf: is still “large”, then one can apply (3) several tim(::s énd the
cor_reSpond1ng_T]'Eleorem 1, 2 or 3-after that. We can improve the above theorems -
u‘ndler the restriction that we apply the transformations A and B < K times. Then
similarly to [4] one can show that there exists a polynomial P, dependiné on K
only, such that for all f'&  with P(x) 0 one can use (1) and (4) < K times,
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Unfortunately, it is difficult to find P explicitly. We think however (see Section 4)
that (1) and (4) hold for all f€.7 and all m. Assuming this, one can develop a
general m.e.p.

TueoreM 4. Let me[l, 1), (Ags A1s-.os A€ E,. Then (g, Xy, ...y 40)
cE,, where Jog=lothitthm—m2, L=1-4 ((=1,..,m =21
(f=m+1,...,0).

TueoreM 5. Let 4; =0 (G =0,...,n), me[l, n], BFz0(=1,....m),
Ao+ iA¥ m Ao+ AT+ Ak 2 m (o, A, on A AT L AR EE e Then (Zy,
iy ees e E,, where To = Ao mi2(do+1A50, &, = (4, + 2F = D mf2(Jo -+ |A¥) +
+1/2 for j=1, ., m L == 0m2(A+IA*)+1 for j=m+1, ..., n

While these theorems are conditional upon the truth of (1) and (4) for all
f .7, they allow to estimate the upper bound of the estimates one can hope to
obtain by using the general m.e.p.

Using the conditional Theorems 5 and 6, one can write a program so that a
computer can find various possible exponent pairs {the algorithm is due to Enrico
Bombieri). Indeed, we start with e.p. (0} 1, ..., 1) and apply Theorem 4, then we
apply Theorem 5 several times, etc.

Ending the process at any time, we obtain an exponent pair. Another
algorithm allows to estimate the limits of the m.e.p. Suppose, we know the sizes of
F, X,..... X, depending on some parameter T We apply (1) with some k such
that X?...X2 % F* If such k do not exist, then we take Q = N*T~* and if
0 = N, then it is impossible to prove that S(F; X) < ™ by m.e.p. Otherwise
we apply (4), etc. Using the algorithm, we discovered that one cannot show
that {(L+if) << t°1°18 by using the me.p. only. Under the condition that
Theorems 5 and 6 are true, we found that

6966 | 99727 99727 K
1179301117930° 117930 )~ %

(47728 {1

257513

E , d 1 't < r47728[274910’
374910 )E ooand LG+

where 47728/274910 = 0.16183920. For comparison, the best published un-
conditional result is ¢(§+if) << 35216, [4], where 35/216 = 0.162037...;
Theorem 1 of this paper implies a little better constant: { (34 it} << (13%5%8,
where '139/858 = 0.162004 ... Similar calculations can be done for other
problems. .

The author would like to express his gratitude to Professor Enrico
Bombieri for generously sharing his ideas.

2. Notation. Throughout the paper we suppose that all considered
domains D, Dy, ... belong to the set ¥ = ¥(x) of all subdomains of
x| X, <x <2X;, i=1,..,n} such that the boundary of each of them
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consists of < C algebraic curves of degrees
s b)oete. Xy, ..., X, are sufficiently large numbers such that X, 2> X,
z..2X,X,..X,=N;X,..X,.=N,.

S (x) < g(x) means that f(x) = O(g(x)).

f(x) <<= g(x) means that f(x) <€ N°g(x).

J{(x) = g(x) means that f(x} €g(x) €f(x)

SCﬂ x=(x1, ey x"), '=(tlv P

flx} == g(x) means that f(x)—g(x) = o(g(x).
£ )__‘i*;iif_(_)
axi ... oxn

flx) ~ v 9{(x) means that f*{x) =
it makes sense

F = F(F; X; 4) is the set of all sufficiently many times differentiable

g' () +0(4g' (x)) for all x and i for which

real functions f(x) in D such that f(x) 7FX1"“1 XS where
oy k... oy, # integer for any i, ..., i) = {1,...,n), X; << F.

R(Py(xy, ooy Xg)s ooy Pefxy, ..., X)) — the resultant of polynomials
Py, .., P,

H;(f(x)) — the determinant of the jth principal minor of the Hessian.

H(7(3) = H(/ ().

C,C,, ... — appropriate constants.

(mf !(yli" =ym: mE Ly vy
D(Byy, Byyy ooy

e(f) = exp(2nif).
3. Transformation B. Transformation B is a combination of Poisson
summation formula (or some variation) with the method of stationary phase:
Lemwma 1. Ler f(x) be a real C*® function such that for all x &/ we have:
(i) for all integral o, €[ —c, c] the functions Y11 o, f "{x) do not change

i I€e

)J yj _"fx ('x): I'_]- m; xe{“ﬂf
Bnls an)_ 1xf XED B_pl <x <BZ?J = 15 ey n}'-

sign, where i ={i,, ..., i), ;= (iua .
(i) |f () <FXm'1. X Jor some F.

(i) [Hy(f ()] (40~ for some ke[1, n] and some Ak (X X)Px
x FUS=*"k Then there exist real numbers By; such that for D, = D, (B
o Buts Bra)y Dy = Dy(k; f), Dy =D{By3, By, ..

Elgne. W) </4) %

Xy e Xphelly

T3 in!)a iﬂ

11 Bl.?.!
o Bus, Bhe) we have

e X)) O (NG +

L’(fi (m, X1,

+O (N 7
<lwl AL ‘f2+N“h/F* VAN T NS NXT A
+Xirr - Xy (F/ X5+ 1) (F/X, +1) /4y,

N

where m=(my,...,m), fi(m, %y, ..., %,) =Py ooy Ppo Xy (s oees Xp)—
—:qol My~ =@My Py, Poy, @ are  the - solutions of the system
j:tj(q_)!s s Proy Xk gy eey xn) =mj (]ml: 2: sy k)'
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Proof. We suppose that k = n, the general case can be proved similarly.
Using the Poisson summation formula, we write

S= % fe(f(x)—m x)dx+O(N),

Mp .okt B

where the last sum is over an n-dimensional rectangle containing D{n; f).
Denoting

@(x) = @, (%) = FL(f {x)~m-x)

and
g0 = [ 2p (X1 =y181, .. X — ¥ 8) Uy,
RR
where 8, = X, F" VA, N 2, U(y) = Uy (yy)...U; (), %p(x) is the charac-

teristic function of D,

el 0Tl iy <,

o= {; R
1
c= [P0y,

we obtain: i
§=Y [g(x)e(Fe(x)dx+O(N) +Z(x» x)—g (%)) e(f(x)

"R n

=Y [g(x)e(Fo(x)dx+O (N /F* VAN O (N

" Ru
Denoting

gy (X} =g(Xyxy, -
we obtain:

(6) S=NY [a(xe(Fp, (x)dx+O (N e JFETANG?).

E I . .
Now we use (3.17) of [1] to find an asymptotic expansion for the last
integral:

"3 ann)= ffol(x):q?(xlxla“'a ann):

I(Fy= {9 (x)e(Fcpl(x))dx'
Ry

= F~"2|H (g, (x%)"* e(n/8 ~Ind H (x4 4 Feop, (x%).
0 {060+ T (k)L [(~i2F SHH (5 By D)
k=1

x(ﬂl (x)e(Fh(x)))]\ <0F +9(F€01( O)) P (F, xo)
where P, (F, x°) is defined by (3.30), (3.27), (3.28), (3.22) of [1] (the expression
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for P (F; x°) is too long; since it will be shown to be small later, we do not
include it here); x® = (x¥, ..., x%) is a stationary point of ¢, (x);

CH™'(x%) Dy, D) x B(x) = Zh s ()3

hi; is the (i, j) entry of the inverse matrix for the Hessian H(x) of ¢, (x) at
x=x";Ind H(x) is the number of negative eigenvalues of H({x);

h(x) = @y (x)~ =3 2 (@ () (5 — XY g — 7).

For |i| < 4nfeq = 2K we have

Al
__m(q (XY e(Fhix))
... X,

= < P s x| 5T i,

x=x0
also, if for all xeD
[H{f(x))] =6F"N"* with

d=F N4yt po P
then

13 —s5g

B;<1/6 < F

so that each term in (7) is piecewise monotone as a function of each variable
and bounded by an absolute constant; as in the proof of (3.40) of [1], one
can show that

Po(F, X% < (F~U3)~K-1 g oo o pen

Using this together with (6) and (7) and applying Abel’s summation formula,

we obtain
S« NST2FW2 Y offy (m)| + N1 P14, N2,

meds

where fi(m) = Fo, (x°) =f (x(m))—m-x(m) and x(m) is the solution of the
system Ff(x) =m, where F is the gradient vector.

This lemma is in applications better than Lemma [ of [3], because the
remainder contains only one 4y, while the remainder in Lemma [ of [3]
contains 4,, ..., A;. However, the error term is too large in some cases and

_needs to be improved. If

o
f (X) xl ree -'\:rlna

where

A=FX{".. X,

n

then

_f',(m Bm1 o

us
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where
ey + oo, 1)

B=(1—ay— ... ~%)(ei" .00 A) :
B =oflo + ... +x,~1)  (f=1,...,8),
L FIX, =M, (=10, film=F
So, if feF(F; X, 4), then f; e F(F; M, 4), and Lemma 1 implies that
S(F: X) < N F ¥2S(FiF/X,, ..o F/X 1, Xpnqs ooy X )+ NFI2,
While this inequality differs from (1) by a summand NF~'? in the appli-

cations this term is usually smaller than the principal term.
It may also be possible to improve it. Indeed, the error term comes from

the estimate for R =} g1 (x)e(f (), where gy(x) = xp{x)—g(x), g:(x} # 0

in a domain with the volume < \/:4,,F"* < g, (x) < L. In the case where
D is such that it can be divided into < C subdomains in each of which

1 1. an

i‘ . Mm—————(gl(xl-i_rla'-'a

.. X+ 1)) dt
2 oy w1l

does not change sign (this is true if D is a parallelpiped; using some devices,
one can very often reduce the problem of estimating § to such case), then we
can apply Abel's summation formula, and obtain

R«!Ze

xelg

), where  |Dol < AF,

and it is possible to estimate it non-trivially. Because the last sum is of the
same type as S but over a much smaller dc;mam it is natural to expect
R <&, S. In such case we get (1). If A, > NEF />~*0~k (this does not happen
if fe #), then one needs to estimate the sum differently. One expects that it is

possible to find a subsum | ¥ e(/(x)) such that H, lm( f(x)} is not

x,-l.....xi

......

m
small. Applying Lemma 1 to the above subsum, we can find a nontrivial

estimate of §.
4. Transformation A.
LeEmMma 2. Let [(x) be a real function;

1. A .
fits =] S (f G eh) .

, 4. be positive numbers such that

= /X = VOIN,, where Q=gy... Gy Nu=X;...X
D, = l(x, b xeD, (x+heD, h#0, k| <g}:

Dz Y 1; q/X; <|D/N.
xeD .

Ler gy, ...
g /X, =...
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Then
ISP =13 ef f <DPQ- 1“HDlQ oy

xeh (x.hyeb

e{fi (h, ).

In applications the terms in the above sum with some of h; = 0 are
easier to estimate so that we will ignore them in the future.

While we do not know how to prove our conjecture (4) at this moment,
we can try to “justify” it. If we apply Lemma 2 k times, we obtain

IS <D QT 4D L0 Y (i, B,
{x.heDy
where
o= (RO, B, R =y b ) A0, [ < gy,
QIj "Qmj,szj:QZJ‘1 (j=13“-: k):
Dy o= {(x, ) (x+H"+ . +hNeD for j=0,..., k!,
1 1 ’
& .
fl(x, h) = J... Jm(f()c‘f‘fl h(l}+ R h(k)))df @FQI vy = FSZ.)

where o

g; = X, + ...+ ¥

J

We divide D, into O(N%) subdomains of the type:
Dy = {(x, | H; <h;<(1+&) Hy, X << (Lreot X,

H,(fy(x, ) = A7t = 6FLN™% (x, e D,).

I 6 » F57'7, then we use Lemma 1: otherwise in a generic case, |D,

<5NHHU and there is a j such that (f1 (x, b)) =

use Lemma I with n=1. In both cases We obtain

Sy=| Y elfilx, ) < NF;u2sm12) e(fs (m, W)+

(xmhyely (n,h)eDy

_|_(N1+a F; 172 + N1+a F; 1/3 X;z/:ﬁ)n HU’
i

F,X7?% and we can

where Dy = D;(n, fo), |Dy| < 5NH Hy;. So,

|S|2k Nsz 2k~1 Nszl 2k max max & 1/2F-n12JZ f3(m» h))l

Hyj (5>F“ /3 m,h

Nl HEFZ 1/2+N1+3F; 173 X:Z/B‘
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The remainder in the above inequality is usually smaller than the first term,
and it can also be improved. If we can ignore the remainder, then

gk—1

1512¢ < N2 g +N*0'"" " max max 672 F; M2\ e(fs(m, B).

Hij ,5>]C 1/3 Lk

We can apply this to the last sum, etc. We can see that the maximum is
attained when ¢ = 1 and that we get similar inequalities as if {taking k = 1)
we had f, (x, e # (Fg; X, H) with H =(H,, ..., H,), H; < q;, 0 = H /X +
+...+H,/X,. This gives some justification to our conjecture that

IS(F; X)|? << N*Q7 - NO™! max S{(Fg; X, H).
UJ'S.QJ-
Because the entries of any exponent n-tuple are non-negative, the maximum
is attained at H; =q;, and the last inequality is the same as (4).

5. Estimates. In this section we will prove Theorems 1 and 3 and,
assuming (1) and (4), Theorems 4 and 5. To prove Theorem 1, we need the
following results:

Lemma A. Let f(x,y) be a real C™ function such that for any c,
f;,-yl-—c has O(N%) solutions; |f“|<lJFX YYoF for some IzTHtmd all
(. M)e? = {(x, y) | X <x<2X, YSy<2Y) (fulaMits FPT0x-2
ffxzfz (fx_v l—- MZ N XY Then

| Y e/ (x, ) << @My + Y /M, +F S MyX.

(x,y)e2
Lemmva B. Let [(x, y) be a real C* function such that |f,) =aM ™' X2,
|F 2,0l = bM 1Y% for some M and all (x, y)e < [(x,))] X < x<2X,
Y<y<g2Y}; Ke=2¥ k=2 Then
LY e(f(x, y)) << min {9 (aM T X TR 2 gt AR y 2K () 4
{x. Ve
| L T K NHE (M fa) 2K || (bM T Y
+| Q.El - {2{K) leK (k'— 2) + | 9-[1 ~(2k{K} N&/K (M/b)lfx } .
Lemma A is obtained by applying Lemma 1 to the sum over x and
using van der Corput’s estimate to the sum over y after that. Lemma B can

be proved by induction on k and applying Lemma 2 with m =1 (for &k = .2,
Lemma B follows from van der Corput’s estimate).

2)1/(1(—2)_'_

We denote K = 2", K, =24 F, mF\/Q“ "NTMUI Y < NP and ky
= 1, then we use Lemma B w1th k=2and k=3 cmd get;

S e N - mll'l (F'T N—8)1/14+F~1/2; (F7 N—12)1I4Z+N-1,'7 +F-—_1.,l4:

2k~ 2
22 and ¥

which proves Theorem 1 in the considered case. If ky

3 — Actp Arithmetica 1. 43, z. 2
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2y +1 2-5Ky/2

<N F~2Q , then we apply Lemma 2 (k, —1) times with n=1
and ¢, as in (5) and, using Theorem 1 of [3] {which, after some cbvious
changes connected with application of Lemma 1 of this paper can be stated
as follows:

S<<<€ F2N3 - N5/6 4 19/‘4}7 N Y 4)1
we obtain:
(S/NYP2 < QTR NTLQLIRZT |5 o fy(x, )
h xyp

1(}'2/1;2 ox-2 X2‘2“1N3+N5/6+
N®) < Q[ %,

QTR N"
+ 1\9/A4F2 Q{C-Z X'—

3ky -2

In the above we have written fy(x, y) for the integral
11 a"l—f
(- '
4]

s (Xt At
b 'ﬂrl...ﬁrklvl(‘f( 1t

+hk1 -1 Tkl_ 1 y})dl‘
The obtained estimates prove Theorem 1 in the considered cases. Now we
assume N7 < ¥ < /N and Y1ty NPT pa 2Kt g ky = 2, and
apply Lemma 2 with n =2 and @, as in (3).

We obtain;

(S/NY Q7' +N"107 3 X elfi (x, )i,

il] hy x.y
where

oy

" d

6t(f(x+h1 t, y+hyn)dt.

filx y) =
0

For a lixed (hy, hy) with hy h, # 0 (otherwise the sum is casier to estimate
and the estimate is smaller) we divide the domain D into subdomains with

doay [|C300+Cyy 01,4} € 2 ay,
Soby S|C120+Coyay4] € 23,8y, _
081 S (C300+4C21641)(Cra8+ Coz 041) —(Cay 04+ Cp 0113 € 282 ¢4,
aL\j
where 8 = y/x, oy, = hyfhy, 8y = y/x+ioy|, C, = N (’Jyj( Vlezy=1, and

. one domain which contains all remaining (O(ﬁ), say) points. We assume
that a subdomain D, corresponding to the largest subsum, is defined by the
above inequalities, and consider the following distinct cases (in each case we
assume that the conditions of all previous cases are not satisfied):

icm
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L ¢y € Q7' Then we have
[Dy| < /N+NC'] < N/Q,, and
1 ¢, Q'[N P2y R
1

We take @, =[N'1"IF-20x/y) T R
(k,—1) times with n =1:

SN € QR (NTTOT Z

S, < N/L/O,.

and apply Lemma 2

2 .=Kq/4
1:’ 11‘_|_

. -K
+HNTLQ; zwlf}"’” Nt T el ).
It hoxy
R1I4
where h—(h“ hy, .. hk1+1) sl € Qay oy T 4] S . Here |Dy|
% Ney + o, /N < Ney: also since Cs0 Coy ,ﬁCle“, max jay; byl 2 6. To
estimate the last sum, we use Lemma A and get:

{

(/N €07 2 4K iR e, 08T AN TR XY

(K32 K2

A1I2 l[erl Ky-2 ""kJ(X/‘Y ] 1/4+ Y—l (?Q;

II. ¢y > Q;:"l[:[\ﬂ"l_| 2 Z(X/Y kp—1 1/(1}11 3)
If k; = 1, then we continue as in 7) below. Otherwise we apply Lemma 2
wnth n=2and Q= Q%:

(S/NY* < QU*+ N1 Qr BZ!Z fa (x, ),

I
“arla
0

0

where
Flx+h t+hsty, v+hot) +hto)dry dr,.

Denoting

ory = hofhy+hufhy, 0y =Hohyfhy by, 80 = (/x| ha/I )0/ +[ha/hs)),

we divide D, into subdomains with
dpag |Cao P+ Cay 01204 Cap02a| = 1P (0} <
81hy K [Cap 0+ Cra 030+ Coy 033l = [P (0)] €20, by,
Stey € [P {0 Py (0)~(Cyy 0P Cpy 01504 Cr30520% =|Pp (D) < 28%c,

28, a,,

and one domain which contains O(,,/N) integral points. We Suppose that the
domadin D,, defined by the above inequalities, corrésponds to the largest
subsum, and consider the following distinct cases:
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A Cy € min f(Nz Y4F-2Q1—11)1,’4; (Nz X4F—2 Q;ll)Q,’ZO} if kl =72 and

¢y €min ((N*F720727 X6320, (yor#)i8) o k=3,
For a fixed (x,y, hy, b)) we dmde D, into subdomains with P (6)
2 ad}"; in such subdomain 0 = 0, (k) + O (c,/a); also, finding the resultant
R(0) of Po{6) and P;(6) as functions of h,/h,, we get |R(O) < (a+cy)d,

where R(0) is divisible by 6* so that 6 = o (hy/hy)+0(8/a+c,); also, Ba/hy
= p(haothy, 0)-+0(/cs), and we obtain

N71Q Y |94 << max min {¢,/a; tate, (\/c2+Q‘1)}-
h @
<3407 min {1 19/c2Q1} = 0.

Also, sincze Pi{0) and P,(#) do not have common divisors, and, fer
0=k —1*+Ba—k)#0, P,(8), Py(0) and Py(0) do not have common

divisors, we get max {a,; by} > 1 and, if a, is small, then N~tg; 3Z}Q/Z|
I

=FX"™M JOTN7Z we

Zc,.

Applying Lemma B with k=%, and M!
obtain:

(S/N)* < Q2+ (F2 QI N~

+Q1-2/K1 ¥ 2K Ik, _2I+Q1—4/K1 Xz;Kle/z(N;_szl 4 F-2gp )1/1:1

+cy VYT 0o, (F203 N2 x4 yma) UK - “<or

B. o, <(N*X y2ime ng 3K1)18/(15K1 22)

As in A, Q7 3ZfD ] <€ Ng and, if a, <1, Qf3Z|D2! < Nc,; applying
Lemma 2 (k;—2) tlmes with n =1 and appropriate Q we obtain:

() = (N1 g; PINLITACS 10}

hox,yp

Ky
<<<Q 1 Q K1f8+gl\.1,’4 1 I Kl,‘ﬂl-)’d Z}'Z _f4 x y),
o Xy

2X—2k1)1/(2K1-4)+

where

"

- 2kq ~ -
Qa = (N*F~2 Qs %1~ 400158 -2,

X
23 Q21/3
R I
- 1
K1) ;.(1L1 ;,](‘1) ,=1

1 1

gt
falx, y) = J fm(fa(x+h&“rl+...-i-hfji)_zrkl_z,y))dt.

0
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Now we apply Lemma 1 and get
E)M €0 M g T IR 0] 02 P e NTEX TR X e+

(K114 —3)2 ¢, — ~Ky/2
“+ca 1 y! <€ Ql v
2h1—4)18/(15K1—22)

C. e, (N*F20; 1 x
If ky = 2, we continue as in 7) below. If k; = 3, we apply Lemma 2 once
more with n =2 and @ =0} and get

(S/NY? < Qi*+N72Q7* Y (¥ e(fs (x, v,

B oxy
where
Ss(x, )
1 1 1
& .
=jjjar ot, ot (fethity Hhytythsta, yohoty +hyty+hety))dt
S Uy 1 2 3
We denote

@ (0) = C:‘+3,j93'|'ci+2,j+1 8461 +Cii1,54200+Cp03 03,
where oy, 65, 03 are the elementary symmetric functions of hy/hy, hy/hs,
heths;

©1(0) = @20(0) @g2 (9)*(‘.011 (9))22 H (YYXJf"[th/hZJ—!- 1)

i=1

For a fixed h=(hy, ..., hg) we divide the domain D, into one sub-
domain containing O(\,/I_\f) integral points and domains defined by inequal-
ities of the type

Sa03 < |00 <2853, 02b3 <o (0} €28, b3, 3¢5 <y (B)] < 2¢; 63,

We suppose that a D5, corresponding to the largest subsum, is defined by the
above inequalities, and consider the following cases:

1) #0*N+0Q8Y 2 <y <NSQTYF 2 g, < /N F~ 207 <b,, or
4/Q4/N «ca <N5 l’iF 2, as >\/N'3 ZQQ

Using Lemma A, we obtam

(S/NP® < Q7 *+ N~ ‘QNZI): (fs (=, W)

Xy

W-{-min{(balf g{N~? _1"2+(-Y\/c_3)'”2;
(ag F./ IN_a)“l"z—f-(X\/a)"l""} <05*
2) JNFTIQ] €y < NTQTFTY o oo (FPQINTY)TH0,

<= Q7+
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Applying Lemma 1, we obtain
NT1QTT TS e(fs b, »)| << F QT3 N3 +(Fey JOINT) 712 <07 %,
h oxy

3) max (as, by, ¢5] <

PFT20Y, o3 3 JOUN,
max {a;, b3} > (¢} +c3/0%) \/NWE}“"TQ,E

o . -
We denote y; = max {as, bs, \/¢3}, y2 = min {aa, bs, \/c__;,} if y, is small,
then, since in &, we have

max ”q’z,o('g)]a lpo,2 (O, 1@y, (0)” <7, 0,

wedenoteu = ¢,/0, v = 0,/0% w = 0,/6° and solving the above system for u, v, w,
we obtain that o, =d,0+ 0, 0), 65 = d, 2 +0(y, %), 03 =d; 0> +0(y, I°);

hathy = dyhsfhy + O3, 0, hefhs = ds ha/hy +0(y, 0),
NTRQTTY DS <2y +QT )+ Q7Y Q7731 < (1 +0r )y +21 )
h h

Applying Lemma A, we obtain
N~ Q”ZIZ (fslx, ) << NTPQTTY Y /FPQIN st
h xy

—1;'4 max {aglfz; b; 1[ZI - Y—lc;]./?. & Q;&L

+QI7th[(F2QIN'

4) JOYUN <y < /N F7204,
max {az; by} < (3 +c Q73 /N F207.
Acting similarly to 3), one can show that if max {as, ba, ¢3} <€ 1, then

3
o5 (fale ) > F X7
and, using Lemma B with k =3, we obtain

(SINP® << QT*+ N1 Q7T Y Y (F, X~ 3)H6 4 X~ ”"'Q”Z(Z YNY" 4

v Py
HEDOTE (T N
< QT H(FPQIN" )””(N3F "‘Q”):‘-%X”l" P Q7
HED Y (03 + Q7 ) (05 + Q7Y < 07 %
5) ¢3 € JOYN, max{a;, byt < JSNIF 208, :
If max {as, by} <(E+es0?) JNPFT2QY then N7 Q7Y |Ds| € Q7%
. h

Y1+ QT+

icm
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and (S/N)® < Q7 * Otherwise we use Lemma B with & = 2to gel (if, say, by > g3,
which is the worst case): B

NI R [E elfstx. )
<Q CANTIQTT Y (Y S bs YN JF b)) <07

hoxy

6)03> N3F2 ’15,(‘.3</4N-:—1
oy <€ /I‘\‘ﬂ <b1~,(1 <Q1V‘2+ /_—N—
Dividing D, into subdomains where |((p1

N™1Q77 Y 1Dy
P

<< max (min {ey/a; (\/4:_37:—;- QY min {3 +Q7 "

[

Y = a-(y/x)°, we obtain

1f8+Q~1/21})
< /07 G, T+ 02 (C, 00,
and il a3 » \/ N 5?:7@?, then we apply Lemma B with k=2 to get

NT1Q77 S e(fs (x, )| << &/FTQIN * N1 Q7 ZIDerQ

R
<Q1"4+i/F2Q] N [QF 32 +(QF N~ 1)#ter 4
F(NQRE)™ 118 4 (FI6 0440 NTLIGIIE] ¢ T4,

=a(yx) andifa > $/F2QITN"S Y%,
get

then |D;| <€ Neafa and, as above, we

(S/NY® << Qy +\/F2Q7 N-IY * N~'|Ds € Q7%

If a < \/FZQ N-5Y~%, then, as in 3), one can show that
SN (S tes +at0r Y (Jaytes+Q7 +a) and Dyl € /az IDy).
If a3 » (ey+a?+Q7 ™) \/NGP”Q‘I’, then as above we obtain
(S/N)P < Q7 *+Q7 T(F? Q]’Nﬂﬂ%)””*ZhZI <0/
otherwise use Lemma B to get

(S/N) < Q¢+ Y/ FTQINTIY* N™1077Y Y1

£,y

<Qr+YFIOIN T A (YNF 201 QTN T Y
X(WEW:Z-}-Q;l) <07t
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7} ¢z » N°Q[ " F~ 2 We define
D, 00/} = ~far Pialf) =y @oalf) = —fas M(f) =f;2f;,2_(j;cy)2;

@upas(f) = LH( 271 [—;%(@i,,-(f) (HOP ™) fy+

2 N
S CNGICT Z)J;z]
and

Piep i (f) = [H(N]H* 27 1{5(1(@ )M ) =

vy

—%(aﬁf,j(f) (H ()P~ 22)f,

for i4+j22; @a0), ..., @,+4(0) are the polynomials obtained %rom
Pry+2.0(f065, M), -, Popy+2(F(x, ¥) respectively by replacing Sy With

@;;(8) (they all arc polynomials of degree k,(3k,+1) in 0 and of degreé
(3ky+ 1) in oy, 0,5, 03);

Brp+s = [(Pk2+4 (Pk2+2“(9’7k2+3)2]/(‘§91)2a
Brgts = (Cuyra Pry+1— Piyt3 (Pk2+2)/((171)2

are both polynomials of degree k, (6k,—2) in § and 6k, ~2 in oy, 0,, a4; for
m=0,1,...,k and [=0,1,..., ky~m+2,

qrfl,m(g) = Z €01+j+2(9) Hm-jaj,m;
i=0

Ojm 1S the jth elementary symmetric function of ay = hyfhyy, ..., %,
=ham1/Pam=1.13
9:’_;'1-1-1 x[Tjkz—jwj-ukz—j—(q"ﬂkz—j)z:l (G=0,1,..., k3);
=[¥ kg —Ji— IIPJ+3k2 —j- 1—g/j+1k2-_1 1'pj-4«2k2 -j=1]
(=0,...,k—1).

We divide the domain D; into O(N%) subdomains and take a subdomain Dy,
corresponding to the largest subsum, where, say,

482" < loy0) < 24,372 (=2, ., kyt 4,
40T < oy 00 < 24, 5)™ T (= kS, ey +6),
We take the largest @, such that
0, < mm {max{ 2k2+2N—k2-—2)lj{2K2-l)_

Bhot2 . 3ky—d 13Ky —3) Kyyi(Gkg—2)y,
(FY2T 2 N3V (v g ) J;
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0, < N2k1+5 4Qz 5K for ey = 1;
Qz < NSkl F- 10Q5 11Ky for kz — 2:
Q2 & max.l(Fi'g N—25)1/30; (Fils N—77)1[114} for kz =3,

1-3kq 1/2(3k2+ 1)

If min {dy,+s; d,+ 6} <Q , OF min{ds, ..., dy,+a} <€Q, , then
it is easy to see that 0} ZID | < Q5 12, and we can estimate the sum

in (8) below trivially to get the needed estimate. Now we assume that

1
g = min (@2 @R gl g e 05
and use Lemma 1 to get ,
(8) (/N <Ql"1”+F;Qi""%/a@\ia(g(u )

where the domain of summation over (u, v} and g(u, v) are as in Lemma 1,

K12|21\<Qi “FINT? cklZlD;L | « FIN"lae, = N,.

So, if &* Cry <051, then
(/N < QP+ F L NTHQ7Y? < 0y
k 1
Now we assume that a®q, > Q3" I k22 and (X/Y)?
> 03 L NQY NG 27 (where Ng=Fi/N), then we apply
Lemma 2 (k,— 1) times with n =1 and then continue as helow to prove the

-1/3
needed estimate. Also, if X/Y » @, +NQ 22 No , then we apply Lemma 2

once with n ——1 and then continue as below. Now we assume that X/Y
< min {Q,; NoX2NgkT 3y !, and consider the following distinct cases:

~Kyj2

Ky~ 2K Ky p6+3ky~ 6Ky
3(Kg+ky— Df(3kay— 1} 6K3—ky =6 2Ky~ 32Ky 2F
(B_) dk2+5 <N Ql

We apply Lemma 2 with n=1 f, times:

PANET "1(>:IZ (u, o))"

0

<NK2Q”K2’2+NK2 1 Kzle Klzlz 91(” ”)I

K1) B4

where
1 1 :
o Byt o+t By, dt
= |... u, v+t 1.k
g1 (4, v) j jari.. 5tk2(g( 1t kg Tky
] ]

1 . .
. h(l) m(h‘lle ey hl,ké); hljl ZJ (} = 15 ey kZ):
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/K4 2k +2 2k 13K5-2)

N2y “fdyy+5) ;

—2 3k -1 L/3tky 1
NT2Y (dk2+4dk2+5) ach;] 2 ):}

Q; = min {(F} ¥~2""2; max [(F;
3k -1

[Fi
Now we use Lemma A:
K Ky = Kof2 o - ~ky~ P
(Z9) % << N12Q3 7 ”|“N11<2Q§‘ fy'NET l/\,ﬂik2+5+
Ka~1, ka3 ppon o—kf m1=Kz o (g
NN Y T 0 TR L ) e N T Y (R, o)
<(F} \/cklf‘;w*l)"'z,
$0 that (S/N < QK“2
(b) 82t 3= DKz +kg = 1K <kaz-l-ﬁ—ﬁi(fokz-—ZkzklN(ﬂ(_—,_"b-ﬂkz.

Similarly to (a) we obtain:

(S/N)T < @i 12,
éc) the conditions of (a), (b) are not satisfied. We apply Lemma 2 with
-K
IS = 0 I el . o)
ENTQTY N Q7 Y Y elgy (u, v)),
ALY w0
where

1
ad
gl(u, U)= Eg{u+huf,v+hzlt)dl‘.

. 0
We divide the domain D, into subdomains where

kg +1

a,8; 2 51 1 € W/o ) < 2”4**)”2“51.1,
3kq +

bedy 2 'S 1,1 S o (0) < 26, 3k2+151.1,
3

482 5 Wry,2 (O < 20485276,

=
=3
bk +2 ’
PUN < WL O)) € 2648527052, (=1, 2).

(4_; 2

m

Here we denote 8, ,, = H (y/x+|hzj 1/hzj 1.1 We asswme that the domain

.
é

9)  max{ay, c4) P dyy s Cfls

max {a,, b, 6 Gl : :
194, 4_[9>dk2+6ck1 and 64_1+a4b4+ﬂ2>df2+5‘3!?1'

icm
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We counsider the following distinct cases.
Locgy €dyyas/Qa OF €z €dy,+6/Qa.
In either case we have

- -1/2
Q51 Y 1Ds| < Q5 121Dl
K
2K 2 K 2 . 1+Ka/2 - 1-Ka/2 -2
1f C41>br—a 2 "'vkz min {Q; PONF{R Q) ¥T(NF; 7)”3} then,
using (9), one can ‘%hDW that either
- 2K 8 6K # _‘2 43
aly Q5 TRl a et mindls 0y FRNYH

or cq4q » bX/Y and b,;>d,\2+5,c,‘1 Applying Lemma 2 (k;—1)
with n=1 and appropriate Q to minimize the obtained expression and,

2- 21\2

) times

denoting
1 1
_Lz‘l h )d
= ... | w, vrha t+ .+ -2 dt,
go(u, ) j J’af; s 1(@‘1( 3ty eyt 1,1 fig 1
0o 0

we use Lemma A to get
|SIIK2 (Ng \/Ckl/Q2
5[5 elga ) << (No\/c;?/é? VT
o +agy, (e @ NQ T2 FYTHR YT 4
Fmin {(FF27 00,07 Y TN T
HF X 00feas s
Frate g 0> 2Ky Y2722 =8 21y
+F Y7y Qz/cm}‘]
€(No /a0 2+ N 62 = Ro

If ¢s y < b, then we use Lemma B with k = 2 and, arguing as above, we
obtain the same result.

K 1 (2~ Ko}/ A1 Kg/2
2R TR

3

2, min{¢q,1; Ca, 2} = dk2+5/Q2 and

. _ o o 1/2) J3IKg— 2I(BK2—8)
min{as/di, + a3 byfdyy+2: Caftlyy 33 (Ca.2/diy+ 6} <0

or
Cq.1- € édk2+5a

where

2~-1 43K ko B[3K - katl aomi 33Kz
FKTE 4 g N2 IRRR Er 20 NGTUNTTQ: TR
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As in 1 we can show that

22 |Ds| < ( 1/\/Q¥+mm {aafdy, 44

K1)

./ . .
baldiy+2; Cafdiy s 35 \SCat/diy 53 N Ca2f iy 5 1) 1Dy
and

9.2 < Ny2(Q, "% 46404 97 2y
+NK2 1[3+NKZCK2/2 KZM(Q Nk2+2F;2k2—25dk2+5 ,QKZ"Z)UZ <R

3. The inequalities of 2 are not satisfied. If k, = I, then, as in 2, we
obtain

18,2 < Ro+Fio, N™HQ, NP FTHY2 < R,.

If ky 2 2, then we apply Lemma 2 with n =2 and Q = 02 once more:
(10) Sil* < NTQT 2+ NT Q32 /55 T [T e(ga (u, ),

h‘: 1) np
where
1

d
g3 (u’ U) = J.Eg(gl (u+h31 ts U+kd-1 E’))dt

0
93 =min {1; ¢, 1y + 55 ca, PYL P a4/dk2+4= b3 /dk2+2’ 04/dk2+3;

We divide the domain D; into subdomains and take one of them, Dy,
corresponding to the largest subsum, where, say,

5'52 2-*—151 2 = llnb(} 2(6)' == 2(;!5 53k2+151’2,
bs 6327 813 < Wian (0)) < 26563210 5,
3k2+151 , < f‘/’l,z(g [ < 2c5 31;2-1-1(51 .

3%

Wb (6)f < 2¢5,8527 152,

Cs

6k 2y
€538, 2

(=1, 2.
Here :
max {as; bs} > g5, max las; ¢s) » eq,1,

and, denoting
0, = miﬂ{\/cﬁ.l/c4,1 s N/ Cs,2/Ca2 5 Usfay; bsfby; csfeg; 1},
we get
Q27 Y. |Dgl €8, |Dy.

K1

So, if 656, a* ck <Q2 , then, estimating the sum in (10) trivially, we get
EARERS R,.
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N 1 i istinct
Now we assume that &35, a* CEI s (2% and consider the following disti

cases: .
(a) 6, <05 I

C5,1
' - - =2 UK =4
2K»-2 Kp 25(31/2)(1{2 )5 12)(Kg—

2 CHIL-X)Y =d,
> a2k n Q3% NF{ % (NF 3!} X/

= =2 and g (uau)=93(uav+h5,l)_
then we denote gu(u, v) = ga(u, v) if I, 4 (u ‘

—ga(u, v) if k; =43 and apply Lemma 2 (k;—2) times with n=1 and
appropriate @ first and Lemma A after that:

- Kil4 q-
19,1 < Ro+(FPacy /N) (8,6, Q71+

+(FRac, /NY T 85T HR ST 023 0 Y S g (s, 0))

1) wo

¥ - Knf2=2 2ky— 4 4
< Ro+(F2ac, /N2, (071 + /030" YO F

2:»2 p)

+
+(Fhac,/N)*2 71852 ST min (P X ofes 0)+
FY PR N s g3 g R Y TR o p Y e )

+\/F2k2+8 6Q Q

- ¢ A - K3—1/3
< R0+[(ackl)xzmz/3 _5§2/4 113 522/4 2/3 a; 13Y-(F2/Ny2 < Ry.

2- kz,’Z 4= Zkzb...21

If ¢s, <d, then we use the inequality

+ 1
4,y € mAX{as; ¢s) K Max {as: /asbs+es )
and, applying Lemma B, obtain
X
[$,]7% <= Ry.

- Zk Z o —4 4-2’(28”&2
(b) 07! €8y < (@524 N *EN (et} 0 M FL 2 TQANTAYT )

=f or ky =2 and &, » Q3"
Similarly to (a) we get

15,1%2 <€ Ro.
(c) ky =3, 545 f. We apply Lemma 2 with appropriate Q and n=2

Kp~- 15(;2" 2

(1) (842 <Ny /0, /@2 2 +(FF ac /N)
| 82702301 T IS ¢ (g5 (u, o))+ N1+ (35 B4)

wi) uw

Ky/d

0,
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where

(u, v) JE‘—I (g3(u+hs (1, v+he, 0)dt.
1]

We again divide the domain Dg into subdomains and take one of them, D,
corresponding to the largest subsum, where, say,

.31.-2+1

1.3 < Qo3 (O) < 244 01,3

h(, 3k2+1 15.{([)73(0”\{..27(,2’3&24—1();1,,

03" 18, 3 <y (O] < 2060371 6y 5,
Cosda? B < WL O) < 2 c(,,,csf””” 2, G=1,2.

Here max {ag; bg} > ¢5.2, mMaxiag; ce] > ¢5; and maxlas; \/Ez;bs-i-cm}
$ ¢g;. We consider all possible distinct cases.

(d} co,1 » NF{*{ac, )" * 8367 [Q7 ¥ +(NFT%)**]7! =¢. Applying Lemma
A to the sum in (11) and choosing Q to minimize the obtained expression, we
get

IS,¥ < Ro+ N] N 0328, min {8/a2 86, 0% ag *(NF 22 cgq + YFT Y St s
$/65 020 bg F(NF{ 2P ¢y + XF1 % ooy )-

If s, » gX/Y, then, because max {as; bg} > ¢5, > 8368,a'%, the above ex-
pression is € Ro; if ¢, <gX/Ybut ag » a*?836§ ci, \/¢s,1, then we get the

same result; otherwise we use inequality max {aq; </ag+¢g! » ¢5; 10 prove
that

1S,|® <==< Ry.

{e) ¢4 €y Applying Lemma B with k, = 2, we choose ( to minimize
the obtained expression and obtain:

S,1F << Ry+ N} 8363 \/LGI/LSI (X* Q3 N3 Fyiyss
€ Ro+ N3, (No 03 *+ N)-(X* Q3 N FT )15 < Ry,

This completes the proof of Theorem 1.

Theorem 2 can be proved similarly to Theorem -2 in [3]. The only
change is in showing that {D,| < \/c; N. This can be done by proving that
H(g(x)) ~ Pi#y, 0,, 65), where 0, =h;/x; and P is a homogencous poly-
nomial of degree 3 such that P(0) = Py = Py, = Py, = Pﬁ% = P(,% = Pe_a% =0
has no non-zero solutions.
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To prove Theorem 3, we apply Lemma 2 with m =3 and g =q:4,4s,
to be defined later:

w1 a2 43
(12) SN < +@N Tt Y Y T | T e+
=1 [h3l=1 [h3]=1 xely b
where
1
;
glx) = J —(%;(j'(xl hy b, Xy Ryt XgFhat, Xy, o x))dt
0

and \Ei is small compared with the estimate we obtain for the first sum. Let

Ix

It = (hy, hy. hy) be fixed, o = |hy/X, [+1ha/ X o+ 1R/ Xl (), = hy/x;0, Fi = Fo.
Then

H (g () = [(P, (0) )"*3'P2(0)+O(A)]'F'{N‘2,

where P, (0) = oy 0; +0g Op+as f5, P (0) = PT—2(0,+0,+04) P 4(o, 07+
o, 03 4+ 03 03 + 20,0, + 20,05 + 20,05) P, +(oc1 + oty + a3 —2)0, 0,0, Also,
denoting by ¢, (x) the function obtained from g(x} by fixing all of x
except of X, ..., x,i, we obtain

H(gy,23(x) = (P2 (0)+0(4 WFHX X, X3)7 %
Hg; (x) = (P, (O)—=20;+O(A) F, X7*  (i=1,2,3);
Hgi, () 2 Dot~ Doy — D{Py — 20, (Py — 20) ~ st 2, (P, — 0;—0)" +
+OMIFIX X)) 2
= (PO +OFi(X,X)™? (O<i<j=1,23)
We divide D, into < N* subdomains: One of them has < NF{'/? points.
Fach of the remaining subdomains is of the type
ay [Py (0)] € ay (1+¢80),
ty K| Py ()] < ay (1 -+eo),
Uz SIPUO=20) € g p(T48o)  (i=1.2,3),
y AP O < gyl (O<i<j=1,2 3).
We suppose that the domain D, defined by the above inequalities, cor-
responds to the largest subsum, and consider all possible cases.

1. o, 2 6. a3 = 6. Then H(g(x)» FINT2 and applying Lemma 1,
we obtain

Si=|7% e

e(g ()| <<< FY*+ NF{ 2,
xeby .
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2. a; € §y. In this case

|Dyl <(d+a)) N, maxi{a,, a;} = &, ma:x(ai.j(ai+2 +2i42)) = €.

i
If @y 2 F5™ '3, then we use Lemma 1 with k = 1 three times (changing
the order of summation, if necessary):

Sy << X, F712Y (Y e(fy (m. x))| + NF7 172

<< NFT P24 X, X007 T [T e(fz0m, )

ml,mz X

< NFTWR4 X X, X Fifay+(d+min fay, ay})- X, ... X, F32
If a, is small, then we can use Lemma 1 with & = 2 and get
§ s X X, X, F(d+a)+ NFT V2
Comparing two last estimates, we get
S X Xy X, FiA+NF7 244X, X, Fi?+ X, X,... X, F}3.

. Fane
3. ay =&y, a3 <. In this case |D,| <(d+./a,) N (see comments to
Theorem 2),

max o = &.
3€iKS

lDzl < (ﬂ +m‘dxai,j) N:
i

If, say, a; 3 = max a,; = F{" 7, then a, 2 ¢, (or a; > &) and, applying
twice Lemma 1 with k = 1, we get

S, < X, F72Y ] %

n xl,xa,...,x"

< (VA+Va) FX Xy X b NISF 4+ X, X Xy Xy s

e(fy tm, x))|+ N/ /F,

also, using Lemma 1 with m = 1, we get

S; < (A+dag) X, X3 Xy X, JF 1+ NS,

If ay 2 FP°™ " then we apply Lemma 1 twice with k = 1 and once with &
=n—2 and obtain:

S, =< X, FT'2 Y| ¥

n II .$3,<..,x"

<< X, Xy FTV2 Y Y

ml,m2 x1,x4,...,x"

FN/CF X X, X, Xy,
S P4 P Xy X XS+ Xy Xy Xy X/ Sz 5+ N/ SFy

e(fy (m, X))+ N/ JFy

e(fy (m, x))+
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Comparing all three estimates, we obtain
S, << P24 N/ J/F,+ NFYO X5 L Y N (X, X3) 71+
+F36 N(X5Xs) '+ NA JF JX3+NF, JA (X, X5) P =R,
so, in all three cases we get
S, <<= Ry+ANF}?*X, X, X; = R;.
Substituting this into (12), we choose g to minimize the resulting expression:
(S/N)? << g7t +{gN) ™ %’ Ry << g~ P NTU[(F 3/q(X, X, Xg) 1)/ 2

FN X Xy Xsq PP 4 NXT TP (X, X, X5) 7+
FN(X, X3) P (X, X, X)) P HNAXT VY P g(X X, X))t +
FNX, X T HIVFS S (X, X, X)) +
FN A (X X) PR g(X, X, X)) +
+NA /PP q(X; X, X5)"?]

<<(F3nN-6(X1 X2 X3}—n)1,'(n+ﬁ)+
+ XU XX e X X2 FS XY +
X AT X A X X PR AT
FNTUIEED L Yo JAX

This proves Theorem 3.

Now we assume that (1) and (4) are true and prove Theorems 4 and 5.
First we notice that using m.e.p. one can never obtain a better estimate than
S < \/ﬁ . This can be proved by induction en the total number of times we
apply (1) and (4). If we apply (1) once, we get § € F™"* X,y ... X,, where
F™? > X,...X,. (Note that the condition F = X, is not essential; we can
remove it and substitute (1) with

S <N F ™2S(F, F/X, +1, ..., F/ X +1, Xpers ..o Xob
One can however do it better: If F < g9 X, then

S=| L § o)

xz,...,x,, X1 =X

¥

E [ etron

Iz,...,x"

<€

.
3 Je(f(x)-mxl)dxl

X eendy

=1
“*-mz'—jl.mn_,l

X,
€S Koy o X))

4 — Acta Arithmetica t. 45,z 2
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If we apply (4) once, we get 5% < N*/q+(N/g)S(Fg; X, q). where N%q» N.
Suppose, our statement is always true if we apply (1} and (4) k times. If we
apply (1) and (4) (k+1) times, and if we start with (4), we can never get a
better estimate than § < \/N (the same reasoning as above). If we start with
applying (1), then we get

S €N F™2S(F; FiX (s .oor FiXp Xosts -r X,

and we apply (1) and (4) k times to the last sum. So, we can never obga}in a
better estimate than S < Ny F-™2(F/X ... F/Xp Xpeq... X )2 = /N. To
prove Theorem 4, we suppose that (Ags .., Ad€E,. Using (1), we obtain:

SN F ™™ -S(F; FjX 1, ooy F/ Xy Xpits - oor Xo)

€N F ™2 8(F, F/Xy, ..., F/X,, Xpity --» X0)
- Fk—m/2+].1+<.v+lmxi"-).1 . ..X,Lml"'Xiﬂ.l ...Xﬁ",

ie, (1, ..., 2)€E,. Theorem 5 can be proved similarly by using (4):

$? & N*q+Ng ' S(F-T/q/N,; X, q)

€ N2 g+ Ng~ L (F-IaIN YO X7 X gt gl

11+21 ]‘m+}'mX m+1

= N*/q+FONX] 'Xi"q“l-(q/N,,,)““H}“F“’"'_

Choosing 4 which minimizes the obtained expression we prove Theorem 5.

6. Final remarks. While Theorems 1-3 can be applied to a wide class of
function €57, they may not give a “good” result in some cases. The general
strategy in using mep. is the following. Knowing the estimate of an
exponential sum one wants to obtain, he needs to apply the algorithm (based
on (1) and (4) described in the introduction to determine whether it is
possible and (if it is possible) a sequence of operations of 4 and B one needs
to apply in order to obtain the result. The last step is to prove the result
usmg the ideas contained in the proof of Theorem 1. For a specific function
it'can be done much simpler than in the general case.
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