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A Markov approach to the generalized Syracuse algorithm
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K. R. Marruews and A, M. Warrs (Brisbane, Australia)

1. Introduction. Let d, my, ..., m,_; be positive integers; R is a complete
set of residues mod d; ;e R is defined for i =0, ..., d—~1 by r, = im;{mod ).
Then T: Z — Z is defined by

myx—r

d

In this paper we extend some of the comjectures and results of our
recent paper [4], which dealt with the special case where ged(m;, d) = 1 for
i=0,...,d—1

We are interested in the distribution among the congruence classes
mod m of the sequence of iterates T*(n), K 2 0, where the sequence is not
eventually periodic. We call such sequences ‘divergent trajectories’, this being
the nomenclature of a forth-coming survey [3] on the 3x--1 problem by J.
Lagarias. Only the case m = d* was discussed in [4].

The Trinvariant subsels of Z (ie. subsets S of Z satisfving T(S) = §,
or equivalently S = T7'(S)) are clearly relevant for if ne$ then T*(m)eS if
K = 1. We are particularly interested in THinvariant sets which are unions of
residue classes mod m.. We call such sets Frinvariant mod m. A non-empty T
invariant set mod m contains a minimal T-nvariant set mod m. The intersec-
tion of Tnvariant sets mod m is also T-invariant mod m, and hence distinct
minimal Tdavariant sels mod m are disjoint. )

Let B{f, m) = {xeZ] x=j(mod m)}. In Section 2 we observe that
T (B(j, m) is a union of congruence classes mod md. If pu(m) is the
number of congruence classes mod md contained in T~ '(B(j, m))mB(k, m)
and g, (m) = pp(m)/d, then Q(m)=[g,(m)] is a Markov matrix whose
ergodic sets are in 1-1 correspondence with the minimal Tinvariant sets
mod m, the correspondence being

§ = {B(iy, m), ..., Blip, M)} S = B(i, m)u ... B, m).

IF ged{m;, dy =1 for i =0, ..., d—1, or if ged{(rm;, d%) = ged(m;, d) for o = 1,
i=0,...,d~1 and d|m (we call this condition C), then we can show that if

{1.1) T(x) = if  x=i(mod d).
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P (m) is the number of congruence classes mod md® contained in
T™¥(B(j, m))~ B(k, m), then

(1.2 Lrxju{m)] = [ij (m)]~.

Corresponding to conjecture (iv) of our paper [4], we have

Conecture 4. If condition C holds, a divergent trajectory cventually
enters & minimal Tinvariant set S mod m. U B{j, m) =S the limiting
frequency

1 .
(1.3) lim v card {K < N| T*(n)g B(j, m)}

N—w

- exists and equals pg (B(j, m)), the B(j, m}-component of the stationary vector
of Q(m) which corresponds to the ergodic set §'.
A standard theorem of Markov theory ([2], p. 78) gives an inter-
pretation of ug. (B(j, m)), namely
1 card (T %(B(j, m)nS)
. AB(, m) = lim — el .
(14) #s(B(, m) = lim — % Gl S)

Now N K<€y

where card . (S) denotes the number of congruence classes mod md® con-
tained in S, a union of congruence classes mod mdX. It appears that not Jjust
the Cesaro limit but the Limit itself exists, but we are unable to prove this,
except in the case where ged(m, m) =1 for i =0, I, ...d—1.

If condition C does mot hold, the limiting frequencies still appear to
exist, but the simple interpretation in terms of stationary vectors may not
-hold.

Corresponding to conjectures (i) and (ii) of our paper [4], we have the
following more general conjectures.

Coniecture 1. Let condition C hold and let § be a minimal T-invariant
set mod d. Then if

. ng B}
(1.5) 11 (’") <1,
B, dyes" d

all trajectories starting in S will eventually be periodic.
Conecrure 2. If

" g CBG,a))
(1.6) IT (-'») >1,
Bi,d)es’ d

almost all trajectories starting in S will be divergent,

Lemma 2 of [4] remains valid and corresponding to Theorem | of [4]
we have ‘
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Tueorem 1.1. Suppose that the sequence (T*(n))g»o lies in S (a minimal
T-invariant set mod d) and is unbounded. Also suppose that for B(i, d)e§',

1
lim N card {K < N| TX(n)eB(i, d)) = ug (B(i, af)).
N
Then

" ag Bl ’
(1.7 (a) H (j) =1,
Bli,dieS' N\

] i ‘ m, ug L8041
lim T8V = [T ([~ .

K=o Bifd)es’ N d

(1.8) (b)

In Section 3 we give some limited results on the ergodic sets of Q(m).
In Section 4 we give some numerical examples.

2. The asymptotic behaviour of T~*(B(j, m)).
Lemma 2.1 T™Y(B(j, m)) is a disjoint union (possibly empty) of congru-
ence classes mod md, the number of classes being

d-1
(2.1) 3

i=9
ged (my, i — M

ged(m;, m),  where

Proof. The first of the assertion follows from the equation

@) T(B (x, md)) = B(’"‘” ):i“ o, m)

where | = x(mod d), 0<i<d~1.
To prove the second part of the assertion, we have to solve the
congruences

METh = j(mod m)

x=i(modd) and y
for i=0,...,d=1, where 0 < x < md—1.
Let x == i-+dy. Then we have to solve

BT < jamod ), o
[<

This congruence is soluble if and only if ged (my, m)[j —M;, in which case
there are ged(m;, m) solations for y mod m and hence for x mod md. _
CoroLrary 22, If ged{m;, m) =1 for i =0, ..., d—1, then T™*(B(j, m))
is q disjoint union of d congruence classes mod md. .
The next lemma is the Chinese remainder theorem.

m;y = j—M;(mod m).



32 K. R. Matthews and A, M, Watts

lem(m, d). Then the congruences

= k{mod m)

LEMMA 2.3. Let D=ged(m, d), L=
(2.3) x=i(mod d) and x

are soluble if and only if i=k(mod D) and the solution is unique mod L.
LemMa 2.4, Ler min and py(n, m) be the number of congruence classes
mod nd contained in T~ '(B(j, m)n B(k, m). Then py(n, m} is given by the
Jollowing formula:
Let S, p consist of the integers i=k(mod D), 0<i<d—1. Also let
x; denote the solution of (23) satisfying 0 < x < 1. Finally let M,
=(mx;—r)fd if ieS p. Then

' nd
pi(n, my= ¥ ged|m, n,— |,
A mn
where the dash denotes summation over those | such that
z d( ., -
D gc m, 1, )li
Proof. We have
“YB(, ) "Bk, m)

={xeZ| T(x)=j(mod n) and x= k(mod m)}.

Hence for each i =0, ..., d~1, we have to solve the congruences

x = i{mod d}, Ti—;)f—-—-—ri =j(mod n), x=k(mod m).

d
Write x = x;+ Ly, ieS, ;. Then we have to solve

ﬂ‘—(_%IL)—EEj(modn), or %T?Jf =j~M,(mod n).

This congruence is soluble if and only if ged ( %m, n)l Jj—M,, in which case

the solution for y is unique mod n/ged (Tgﬁ, n). Now

l
(24) ggd (méﬂ n) =5 bud (m,, f, ?:1)
Hence, in the case of solubility, the solution for x is unique mod
Ln LDn nd

gcd( D n) m ged (mn n, %‘:) god (m‘., n, ’;’f:)

nd .
Hence there are ged (m,-, n, __) solutions for- x mod nd.
m ;.
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Lemma 2.5, 38 2 0 such tha
{2.5) ged (my, d*) = ged(m;, ") if

Jori=0, . d-1(If ged(m, dy=1 jor i=0,....d—1, we can rake f=
LemMma 2.6, With B as in Lemma 2.5, if §; = ged (my, d"), then

ged{m, d*d)) =8, i az=p,

o=,

provided that d | |d.

Proof. Let 4; = ged(m;, d®d,), where o 2

dld*,  so

f. Then
ol d,.
Hence

old; as  &lmy.

Also did*d; so 4|d**E. Also 4|m;. Hence Ajged(m;, d**1) = §,.
Lemma 2.7

(2.6) pu{md®, m) = po (md®, m) if
Also if B =1 in Lemma 2.5 and d'm, then
2.1 Pu(md®, m) = pu(md®~ Y my i wzf-1.

In particular, if f=0 or f=1 und dim, then

o= f

(2.8) Py, (md®, m)
Proof By lLemma 24,

=pp(m) i «z0

pjk. (md“, m) - Z’ ng(m,-? md", da'-l 1)’

i®Sk,n
where the summation is over those i satisfying

bn:l ng (min mdmi d&“" IHIW M

However
ged (m;, md*, d* "") = ged (my, d*-god (m, d)),

and by Lemma 2.6, with d, = D = ged (m, d), the right- hdnd side is constant
il oz§p

If dim, then ged(m;, md* d**') =ged(m;, d*'Y). Also if p=1,
ged (my, d*1) is constant if « 2 f—1,

Lemma 2.8. Let =0 or =1 and dlm. Then if py,(m) is the number of
K(B(j, m) ~ B(k, m), we have

)] = £pjk (m)] K

& = Acta Arithmetica XLV.[
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where pu (m) = py; (m) is the number of congruence classes mod md contained
in T~YB(j, m)) ~ Bk, m).
Proof.
m-- 1 .
T RNBG myABk, m) = | T®TN(BG, m)n T (BU, m) Bk, m)

=0

_ me 1 {T—L(T—K(BU, m)nB(l, m))} N Bk, m).
1%0

#

Now TX(B(j, m)) ~ B(l, m) is a disjoint union of pg,(m) congruence classes
mod md®, each contained in B(l, m). I B(L,md¥) is such a class, then
T-1(B(L, md%)) " B(k,m) is a disjoint union of py(md*, m) congruence
classes mod md* ™. However by Lemma 2.7,

Prx (md®, m) = pyy(m, m) = py(m, m) = py(m)

if condition C holds.

m=1

Hence T~ (B(j, m)) ~ B{k, m) is a disjoint union of Y  py;(m) py{m)
1=0

congruence classes mod md**!, and

m-—1

(2.10) Pr+ 1M = 120 Prp (m) py (m).
This gives (2.9).

LEmMMA 2.9. Let
@1 Q) = [ (m)] = [—”—"Z@]

Then Q(m} is a non-negative matrix, each of whose column sums equals 1.

Proof.
Bik, m)y=Z nB(k, m} = T~ (Z)n B(k, m)
m— 1
= (J T HB(, m)n Bk, m).
j=0
. m- 3 -
Hence B(k, m) is a disjoint union of 3 p;(m) congruence classes mod md.
. =0
However

da-1
Bk, m) = |J B(k+im, md),
=0
a. disjoint union of d congruence classes mod md. Hence

m—-1
’ Z Pk (m) = d,
Jj=0
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which is equivalent to
m—1
2 gulm) = 1.
i=0

3. Ergodic sets of Q(m). Let Z,, = {B(0, m), ..., B(m—1, m)}. Then the
following definition of closed set of Q(m)} is standard for Markov matrices
such as Q(m). (See [2], p. 43)

A subset of 8" of Z,, is closed if

(3.1) Bk, myeS" and B, migS = gy (m) =0,

A minimal closed set is called an ergodic set of Q(m).

Lemma 3.1, Let S be a union of congruence classes mod m and let
S Z,, be defined by

' = (B(, m)| B(, m< ).

Then the mapping S — 8 is a 1-1 correspondence berween the Tiinpariant sets
mod m and the closed sets of Q{m), in which minimal Tinvarian: sets mod m
correspond to ergodic sets of Q(m).

Proof. Let §" be closed. Also let B(k, m) & S. Then if B(j, m) = Z—5,
B(j, m¢S'. Hence T ' (B(j, m) nB(k, m) = @ and so T"*(Z~S8)n Bk, m)
= (. Hence B(k, m) € T™*(S) and S < T~ '(§). The argument is reversible.

The second part of the lemma follows from the equivalence

S1 = Sz <$S’l = S&-

Lemma 3.2, If ged(my, m) =1 for i =0, ..., d—1, then Q(m) is doubly
stochastic, i.e.

(3.2) ' Y ogu=1.

Remark. There are hence no transient classes (see [2], p. 49) of Q(m)
and Z is a disjoint union of minimal Tinvariant sets mod m. Moreover the
stationary vector of @ (m) which corresponds to an ergodic set 8’ of Q{(m) has
its non-zero components equal to 1/n, where n = card 5.

Proof.

w1

T7UBG, my= U T~Y(B(, m) Bk, m).

k=0
L m—1
Hence T7!'(B(j, m)) is a disjoint union of ¥ pu(m) congruence classes
k=0

mod md. However from Corollary 2.1, the number of congruence classes
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equals o if ged(m, m)=1 for i =0,...,d—1. Hence

m—1

z pi(m) =d
k=0

and this 18 equivalent to (3.2).

Lemma 3.3, If mim;, where ged(m;, d) = 1, then @(m) has one ergodic ser.
Moreover if gedim, &) =1 for i =0, ..., d—1, then the matrix corresponding
to this ergodic set in the normal form of Q(m) is primitive.

Prooi‘. Let M,-=mfl*r", where mjm, and ped(m;, d) =1, Also let

d

x =amd+bd+1i. Then

my; (amd + bd +- §)—
d

m—1, 35 such that

T(x) = fi = amin; +m; b+ M; = M;(mod m).

But if 0 <J<
amd+ bd +i = j(mod m).

Hence T™'(B(M;, m)) " B(j, m) 3¢ () and 50 gy,;(m) > 0. Thus alt elements in
the row corresponding to M; are non-zero and we see that Q(m) has only
one ergodic set.

For the second part, assume ged(m, d) = 1 for i=0,...,d—1. Let us
write Qr(m) instead of the less precise Q(m}. Also let 4 be the matrix
corresponding to the ergedic set of @, (m) in the normal form of O (m).

Then if 4 i1s not primitive, 3¢t > 1 such that 4" has r ergodic sets,
Ho:vever from (2.9)

Qe (m) = (Qr (m)).

Hence Q,,(m) has ¢ ergodic sets.
However T is a transformation with d' branches and associated moduli
LCTRRR where 0 <, ..., i, €d—L1. Each of these moduli s relatively
prime to d'. Hence by the part of Lemma 3.2 just proved, Q,,(m) has one
ergodic set, contradicting an earlier statement.

CororLary 34. Let m|my, where ged(m;, d) =1 for i =0, ..., d—1. Then
Q(m") has just one ergodic set for all k = 1, Moreover, the matrix correspond-
ing to this ergodic set in the normaol form of Q(m%), is primitive,

Proof. Let ged(m, d) =1 for i =0, ..., d— 1. Then it is easy to verily
that for k = 1, the d* “cylinders”

Blis, d) N T~ (Bliy, d)) A

are precisely the d* residue classes mod d*.

AT (B, d), 0<i<d—1,
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Now let m|m;. Then

Bl d) AT~ (B, d) ... T D(B(i, &) = B{, d¥)
for some j, 0 <) < d*. Hence
T"j) =i(mod d) for all h, O<h<k-1.
But if 0! <d*
T4 ed®) = TE() +my g, . Mlyg-1,,C

where the indices are taken mod d.
In particular
TH(j+cd®) = T* )+ mbc
for all ceZ.
We can now apply Lemma 3.3, with T replaced by T d by &, m

by m, mm, o Mgy 0 <! <d' Then if mm, m*|m and we deduce that
QT,‘(m) has pmcxsely one ergodic set.

However, as

(33) 0,4 (m) = [0 (b,
it follows that Q(m*} has precisely one ergodic set.
The proof of the accond part of the theorem is the same as that of the
second part of Lemma 3.3, with m and T replaced by m* and T* respectively.
Lemma 3.5, Ler ged(my, m)=1 for i=0,...,d—1 and suppose that to
an ergodic set S oj Q(m)} rhere corresponds a permd:c matrix A in the normal

Jorm of Qim), i

0 0 ...0 B,

B0 ...0 0
(34) A=|0 B, ..0 01,

00 B_,0
where By, ..., B, are of sizes n, xmj Ny %My, ooy By XYy, Fespectively,
(3.5) A =diag[A4,, ..., 4], |
where
(36) 4, =B,B,_;..B,, Ay=BB,...By, ..., A, =B,_,B,-,...B,
and
(3.7) A ooy A, are primitive,

Then By, By, ..., B, are each square and of the same size.
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Proof Let §,..., 5, be the sets of residue classes mod m which
" correspond to the columns of By, ... '
after Lemma 3.2, Q{m) has no transient classes if ged(m;, m)=1 for
i=0,..., d—1. Hence

T 1S =8 =8, u...vS§,.
Now from (3.4)
T 'Sy n{S;u...uS-) =D,
SO
(38) T '(8,) € 8.
Similarly
(3.9) T18) =8, ..., TYS)=S,.,.

Next by (3.3), (3.3), (3.6), it follows that Si, ..., S; correspond 1o the columns

of 4y,..., 4 in @ (m) and that §, ..., $, are T'-invariant. Thus
(3.10) S, = TS,

But from (3.9) we deduce that

(3.11) T S) = T8,

and so from (3.8), (3.10), (3.11) we have

(3.12 S =T71(8)).

Similarly ’

(3.13) Sy =TSy, ...,

S,_, =T \(S).
However, from Corcllary 2.2, '
(3.14) card,, 7~
Hence from (3.12) and (3.14),
card, S, = d card,, S, = d card,, §,

and card,S, =card, $;. Similarly card, S, = card,,S;, ..., card, 5., =
card,, S,. It follows that 4,,..., A have the same size and consequently
By, ..., B, are each square and of the same size.
CoroLLary 3.6. If ged(m, m} =1 for i=0,...,d
T-invariant set mod m, then if B(j, m) = S,

card (T~ (B(j, m) S}

(§1) =d card,S,.

w1 and 8 is a minimal

. . i = v’ B -: ! s
(3.15) lim T e (B, m)
the B (j, m)-component of stationary vector of Q(m) which corresponds to §'.

. B,, respectively. Then as remarked
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Proof. By standard Markov theory, we need only discuss the case
where A, the matrix corresponding to S in Q(m), is periodic with period
t > 1. We use the notation of Lemma 3.5.

Let L,..., L, be the statiopary vectors of the primitive matrices
Ays ..o, A Also let n be the size of each A, and let J be the n-dimensional
row vectm all of Wwhose components are equal to 1. Then standard theory
gives

L,J 0 .0 0 .. 0 LJ
lim A¥ = 0 LJ ... 0 lim AN+ = Lod oo 0 0
Norog e e e ’ Neo b o e e e e e e e e ’

0 0 ..LJ 0 . L_,J 0
ect.

Hence f 0k e—1

T

1/nt "
lim A””"[ : ]=E[L:,
oo Lint f L,

the stationary vector of A.

Hence
1/nt (TLs™
(3.16) Lim AKI: : Jexists and equals ?[ : J
Koo 1/nt L
Now
card (T X(B(j, M) §
17y e (T (BU m)nS)
card _x(S}
card  (T~X(B(j, m)) ~ B(k, m))
Blk,m) = S d*nt

| Hence (3.15) follows from (3.16) and (3.17), together with the fact that the

element of A% in the B(j, m)— B(k, m) position is equal to

card, x(T~*(B(j, m)) ~ B(k, m))
dx ’

from (2.9).

4. Some examples.

1.
(%2 if 2)x,
T )”{(5x+1)/2 it~ 2]x—1.
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There appears to be one ergodic set for each m = 2, though we cannot
prove this in general. n =7 appears to give the first divergent trajectory.
2
x/2 il 2x,
(5x—3)/2 if  2/x~1.

There appears to be one ergodic set if 3fm, two crgodic sets if 3|m.
3. '

T(x) = {

x/3 it 3x,
T(x) = { (2x—2)/3 ir - 3lx—1,
(13x~2y/3 if  3[x~2.

As expected, all trajectories appear 1o end up in cycles; there appear to
be six cycles only. As a curiosity, the trajectory starting with n = 338 takes
7161 iterations to reach the cycle beginning with 2; also the maximum value
of T¥(338) is T*"*%(338), a number with 73 digits.

4,
x/3—1 if  3x,
T(x)={(x+5)/3 if  3lx—1,
10x—5 if  3x-2
Here
L
od=|ti0}
1 % 0

which is primitive.
S'=Z, is the only ergodic set and the stationary vector of Q(3) is

[5.4 31" Also
, L
dﬁ m, llS‘(B(t,lI))_ N i 10 L 1
Wig)  =6JG)GE) <

so we expect all trajectories to eventually cycle, There appear to be five
cycles.

5.
3x/2 i 4,
(x+1)/2 if  4x—1
T(x) = ’
=%241 i 4x—2

(Tx+1)/2  if  4lx~3.

icm
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Here
1010 7300
0404 . 1100
4) = . which has normal form
9@=1 43040 0044
0304 0034

The stationary vectors corresponding to 89
Sy = {B(1, 4), B(3, 4)} are both equal to [3, §]"

B0, 4), B(2, 4} and

Alse
) 1 1
a1 '_”»‘,tllg'l(ﬂ(l.d)) (3.2(1 5 1
i =(=] -] <1,
I ( ) \2) .2)
Bii, eS|
whereas
1 1
d=1  fp sy BlLD) (1)3;(7)5 |
e =[|<]) (=] =>1.
i];[() (‘1 ) 2] \2
Biidyes,

Hence we expect all trajectories starting with an even integer to eventually
cycle, while most trajectories starting with an odd integer should be

divergent.
6.
3x/2+1 i 4x,
=12 if  4x-1,
=9 1n i 4x—2,
L (Tx—=1y2  if 4jx—3.
Here
0303 00343
1 L (K] 11
Q{4) = ?) (; (i) g which has normal form 44 f) Z
4040 1400

Hence Q(4) is periodic with period 2 and has only one ergodic set, Z4. The
stationary vector is [4, 4, 4,3] and we expect most trajectories to be
divergent as :

1 1 1 1

A=l wgABG,d) NG AVE /1NE £7NE
T ey T TN
=0 \d 2/ %2/ \2/) \2
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7. (Conway [1}, p. 121)

2. if 4ix,
_)Bx+lys i 4x—1,
T =930 i 4x-2,

BGx—1)/4 i 4x-3.

(This transformation is 1-1.)

EEC R e

Q4 =

PR ¥ e Y XN
<
B pi P i

3
L1
1.
11
'
and is primitive, The stationary vector is [4, 4, }. 4] and 8’ = Z, is the only
ergodic set. Also ‘

=1 f \e(BEd) g 7 3 i 3 3 3 i
11 (?) = (5) @ (a) (‘a) >
Bli,dyes" . .

Hence we expect most trajectories to be unbounded.

In conclusion, we wish to thank R. N. Buttsworth and G. Leigh for
some useful comments,
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Algebraic numbers near the umit circle
by

C. W. Lrovyp-Smith (Belconnen, Australia)

1. Introduction. Let o be an algebraic number of degree n = 2 over the
rationals, with conjugates o = oy, oy, ..., o, In this paper we investigate
conditions on & which imply that & has one or more conjugates on the unit
circle. Our conditions will be expressed in terms of the following two
functions:

(L.1) [o] = max |a,
15j<n

(12) Afe) = [T max {1, |oj}.

. I=t

Also we require the notion of denominator of an algebraic number.

DerFINmmIoN 1, Let P(x) = gx"+a,_ x"" }+...+a,;x+ao be the primitive
minimal polynomial of o over the rationals, where ¢ > 0. Then we say that g
is the denominator of o (cf. Blanksby [3]).

It is clear that ¢ has denpminator 1 if and only if « is an algebraic
integer. )

It is easy to see that there exist positive functions @(n, ) and W (n, q)
such that for all algebraic numbers o of degree n and denominator g,

1) either [¢]< 1 or

(1.3) [a] = 1+ /e (n, @),
2) either A(@) =1 or
(1.4) Al) = L+, ).
There arises the problem of finding the best possible functions ¢ and

satisfying (1.3) and (1.4) respectively. There has been much recent work on
this problem in the case ¢ =1 but very little in the general case.



