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wobet 4 > 4 so groB gewdhlt sei, dal (15) fir T > 164 anwendbar ist. Dann
gilt N2 € gT < N. Fiir }N <y < N hat man

1y kg
B> —
e T oy
Die linke Seite von (15} wird damit

>N( hy ) 0(@)3(a),
(@)

und wir erhalten aus (15)

h< [] (1--~j;> log® N.

Pty N}
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The linear sieve, revisited
by

DantL, A, RAWSTHORNE (Wheaton, Md.)

L Introduction. Two of the most famous unsolved number theory
problems are the twin-prime and Goldbach conjectures. These problems, and
others, lend themseives to an application of the linear sieve. Chen’s theorem,
[3], currently the best result known about the Goldbach conjecture, has as
its basis a linear sieve, for example,

The linear sieve functions (defined in Section 3) have been derived in at
least two different ways: by means of a complicated combinatorial identity,
[9]), and by an equally complicated set construction, [7]. It has been said
that these functions are the result of iterating the Selberg upper bound
function an infinitc number of times using the Buchstab identity. However,
this iteration process is internal, and not readily apparent, in the articles
cited,

The purpose of this article is to show that the linear sieve functions are
indeed the resulis of an external iteration of the Selberg upper bound
function.

2. Notation, asswumption, and the Selberg sieve. We follow the notation of
Halberstam-—Richert ([4] and [5]).

Let N be a finite sequence of integers, and let 2, denote the subse-
quence of 2 all of whose elements are divisible by d. We use [ and |¥,| to
denote the number of elements of 2 and 2, respectively.

Let # be a set of primes and define (the empty product being 1)

P =1T] r.

ped
pes

Define the sifting function (2, 2, z) l'or any z to be ¥ (N; P, z)
= |lagW: (a, P(z)) = 1}]; in other words, & (; #, z) is the number of
elements of N remﬂ:ining after we have removed all those with prime factors
less than z that belong to 2.

We need some additional notation-in order to study ¥{¥; £, z). Let
w{d) be a multiplicative function with w(1) =1, w(p) = 0 for p¢ 2, and w(p).
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= 0 for pe#. Thus
o@=[lo@. for udz=0
pld

We let X be a convenient approximation to |}, and define, for all 4,

mu—%iX' for

1d) # 0.

In practice w{d) is chosen to make R, small on average.

In this paper we are studying linear sieves, those in which o (p) is equal
to 1, on average, in the sense that

w(p) log |
wEp<y W
holds, if 2 < w <y, for some constant 4,. We further assume
' ' @ (p)
g K 1-—~—~—
() 0~ <l-o

for some suitable constant A4, > 1.
In order to state our sieve results we need one more important function,

namely
d
7 (Z) = I | (1 —-—-—-—-w (p)) = dl%%z) (d);).(-,)_

p<z p

With these notations and assumptions, we are able to state the Selberg
sieve estimate, namely

M) POLP < XW(): i){““ ((19%%@)}

+ 7 3R,

n'|<£:

where T = log £%/log z, v(d) is the number of distinct prime divisors of d, and
o(u) is the continuous solution of the system

(2) o(u) =n/2e’, for 0O0Ku<?2,

3) (%u-—))r = —-55 cu—2), for wu>2,

The function 1/e(u) is referred to as the Selbery upper bound function.

3. The linear sieve and statement of results. The Selberg sieve estimate is
an upper bound on & (; &, z). By means of the Buchstab identity,
FOU 2,0 =S U 2, wy— Y F(U; P, p),

wEp <z
pe#
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that holds for all w < z, and the fundamental lemma
LW i, 2) = XW(Z){ -I-O(1 *glﬂ-g)}-}-@ > OPERY,

u<¢'
d|P(=)

that holds for z €z, = exp {log &/loglog ¢] and some |@| < 1, we obtain
lower bound sieve estimates from upper, and vice versa. The first few
iterations of this process, starting with the Selberg upper bound, were
investigated by Porter, [10].

In this paper we show that repeated iteration in the manner of Porter
arrives at the following sieve inequalities, where F(u) and f(u) are the so-
called linear sieve functions. ,

TunoreM 1. Let (£2¢) and (25) hold. For t = log £*/log z > 0, and any
&> 0,

YU 2, 2) S XWE)F () {1T+e+o,())}+ 5 3PIRY,
f:ﬁ’?f)
and
SN 2, 2 2 XWEV S D) —e+o, (1)) — 22 YR,
d<é

d|P(z)
where the little-o terms tend to zero as & (or z) goes 1o oo, and the relationship
between F(u) and [(u) is

Fu) = 2¢"u, for  u<?2,
Su)=0, for  u<2,
(MFQ@) =fu—=1), for u>2,
and
(W (W) = Flu—1), for u>2,

where both F (u)

4, The iteration. Let F,{u) denote 1/ (u), and dehne a series of upper
and lower bound functions (indicated by F, and f,, reSpecuvely) in thé
following way,

and f(u) are continuous.

0, for u<gl,

max {0, 1

@ Solw= {

(1/u) T(Fo(r—i)-—l_)dr}, for u> 1, _

and for rz 1 let

6 R =140/ | (s D),

T - Acta Arighmetica XLIV.2
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(6) ﬁﬂm=lumf( (1= 1)=1)dt,
. [ l,* . 0, for u<f,,
(7) ‘f, ('H) = Inax 10’,}(:' (M} ;= fr* (t), for M /):”
and
_ o), for u<o,
@ Folw) = {F;" (), for ux=a,,

where «, is the largest point of intersection of 1/g(u) and F¥(u).
The sequences | f;(w)}, {F.(0)}, o). and {fi,} all decrease, and converge,
to f(u), F(u), a, and B, respectively. The relationships in the limit are

Lo (), for u<a,
Fug= % 14+(1/u) T (I=f@—1)dt, for u>a,
and
0, for  us<xp,
ﬂ“’% =) [ (Fl~D=1dt.  for ws>f,
or, in differential form H
9 F) =1, for u<ga,
(10) " fw=0, for u<§,
(11) (WF{w) =f{u~1), flor u>a,
and
12y (uf W) = Flu—1), for u>f,

where F(u), f(u) are both continuous. Furthermore, by [17] and the iteration
process, F(u) and f(u) have the following properties;

Flu)=1+0(e""?
S =140

A8 W 0K,

as u - o,
and
O<fiy<1<F(w forall u>0.
By using methods similar to Porter [10] or Halberstam- Richert [5],
and keeping track of the big-O terms, we obtain the following sieve
inequalities.

Tueorem 2. Let (,), (@,) hold. For t=log &Ylogz > 0, there are

icm

The linear sicoe, revisired 185

constants A and B, dependent on A, A,, and ljo{(u), such rhat

3+2r
S(W; 2, z) € XW[Z)F,.(‘L’){1+B(A2' ﬂog]lOgg ? )](4_ Z @R |,
a<z2
diP{z)

and

4+ 2p
S P, z)?XW(z){fr{r)—B(Azr“(IOg!(—)—&Q~ )}— T 3R,
d<iZ
d|P(

z}

Clearly, Theorem 2 is a more precise theorem than Theorem 1. The
remainder of this paper will be devoted to proving that the iteration process
forces o = =2, so Theorem 1 will follow as a corollary of Theorem 2.

5. Analysis of the sum and difference functions. Given the limit functions
of the iteration, define the sum and difference functions as follows:

P(w) = F (u)-+f (u),

and
W (u) = F ()~ (1)

By using Laplace transforms, or adjoint operaters like Iwaniec [7], one
derives the equations

(13) 2= Mjl @ (1 —1) h(w) du -+ 5 (5) h(5)
&
and
I
(14} SO~ ¥() = | uP(wdu
d-1

valid for any & 2 max {a, f}, where

“'-‘ l—e™
hiw) = § exp{— [ e dt — Xt p dX.
0 o I
We analyze these equations to find functional relationships between o and f.

In this analysis we make the assumption that « > 0, since « = O implies
that F(u) and f (u) are the linear sieve functions, as is shown by Iwaniec, [7].
Furthermore, since both 1/a(u) and F(u) have the form c/u for u <2, we

further assume that o = 2.

We analyze equations (13) and (14) in each of the four possible conﬁgur-
ations for o and f: ¢ <f—1, f~Ll<a<f, f<a<f+1, and f+1 <.
We do. this' by making suitable choices for & in each of the four cases, and
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using the appropriate formulas for F(u) and f(u). These formulas are: for
o<

(15) Sluy=0, for wu<p,
1/ (w), for u<a,
(16) Fluy = {a/ua(oc), for agu<f+1,

and for f§ < a,

0, for u =,
(17) f m{ (U [(olr—1)dr, for  p<u<artl,

#
(18) F(u) = /o (u),
" By analyzing equation (14) we atrive at the relationship g = B, (a),
where f,(x) is defined as follows:
2, for x<2,

the y that satisfies

for u < u.

(19) B (x) = b1
x(x—De@x= [ (()e(—1)dr, for 2<x,
.V
where
t—1, for x—-1<x1,
Zm:%x—z, for r<<x—1,

and by analyzing equation (13) we get f = ﬁz(d), where f,(x) is defined as
the y that satisfies

x+1
(20) 2—xh(x)fo(x)= | k(r~1)g(ndt,
¥
where .
Ve —1), for ¢t x41,
k(t 1)_{x/(tm])cr(x}, for tr2zx+1,
and ‘
o jh(, for x~1s%1¢,
g(.t)—{h(xwl), for t€x+1.

We will not carry out €ither of these derivations, as they are technical
and not illuminating. In each of the eight cases, the derivation consists
primarily of integration by parts, interchanging orders of integration, rear-
ranging, and using easily derived properties of h(x), where applicable.

| (25)
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We now have two curves, y = f,(x), i = 1, 2, that intersect at the point
(, B). It is easy to show that 2 = $,(2), i = 1, 2, so what we need to show is
that no other intersection can arise through the iteration process.

6. To show o < 8. In this section we show that a; (and hence w) is less
than 8. This will restrict where we look for applicable intersections of f;(x),
i=1,2

We let m(u) = 1—0o(u), and note that m”(u) =0, m™{u) <0, for all
u >0, by (2) and (3). We also obtain the equation
(21) {m@)dt = ~umu)+ [ m(dt,

u w~— 1

and these imply
(22) : m(t) = m(u) e—(l"zf")(l—n),

for all t > u > 2, which we use in the form

23 ($~— 1) < (a(l_u)“ l)e* 2/30-2)

for t > u = 6. By using this inequality as we iterate from 1/o (1) to F, (1), we

obtain
9 1 q
dufu—1) \o(u—2) ’
for u>R.

In order to show that a; <8 we need to show F¥(u) < 1/o(u), for u > 8.
By (24) it suffices to' show that

9 1 m
Quu—1) o(6)

(24) Fru—1<

u—2) <m(u)

holds, for u = 8, since o(u) is an increasing function.
We first find an upper bound on 1/o(6). By the concavity of m(u) we
have -

(26) ‘ } m{)dt < m{u—2)+ m(uw),

u—2

and this, coupled with (21), yields
. 4 _ |
Sy ey -2 s
27) m() < — m(u—2)

for all u > 2. Therefore, m(6) < m(4)/5 < m(2)/15 < 1/15, s0
(28) 1o (6) < 15/14.
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To get an upper bound on m(u—2) we use (21} and (22) to obtain

u

(29 [ min)yde < (u+2)mu).

¥—2

Since m™(t) < 0 for all ¢ > 0, we see that

u . 0 m'

[ m@de= | (m(u)+m’(u)x+---—§(—1ﬂ )dx

u—2 -2
for all u > 2, by looking at the parabola that fits under m(t} and agrees at u.
This, along with (3) and (21), implies
(30)  (u+2mlu)
' 2 8 8

(W) [2—2/u]+m(u—2) [;tlmﬁ—;—(-ﬁﬂij:lﬁm miu—4) Guln3y

for u > 4. By {27) with u replaced by u—2 we obtain

3 > mu—2 ! 24509
(31 m (1) 2 mu—2) DY 6w=2) |
for u> 4.
By using (25), (28), and (31), we see that F{(u) < 1/o (1) for u =38 if
9-15 26 1

.< ——
4-14(u~1) 9 u+1/4
holds for u = 8. Simple algebra shows this to hold, so we now know a < 8.

7. The third function. In the last section we showed that the o generated
.by the iteration process is less than 8. We also know that o = 2, §i = 2 satisfy
Bi(x), i=1, 2. In this section we derive a third function, f;(x), that shows
that the intersections of the curves y = f§;(x), i = 1, 2, are separated, thus
enabling us to trust computer calculations.

We use- equations (19) -and (20) to calculate fi{x) for i=1, 2.
Straightforward, though tedious, calculations show

(32)
aix= 2), for  fix)= x-1,
Ui =4 o0
[ACd} i _ -1
obe=2_ 170 o - )< xm 1]
| e 3[ J(,__])dt= for  fi{x) <x—1,
where

Uplx, y) = — e
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and
M’ for y > x+ 1,
xh(y—1o(x)
UZ(x: Y) = g(y)
_— fi =Y.
TO—LhG) - or x+1zy

We note that U,(x, y) <0 and U,(x, y) > 0 for all x, y > 0.
We now define the function f;(x) for x > 2 to be the y that makes the
integral equation

o(x-2) 1 *1 1
o?(x) x—1 J o‘(r—l)d

¥y

(33)

hold. The importance of the curve y = f,(x) is that the derivatives of §, (x)
and fi,(x) are of opposite signs when both are either above or below f3(x).
In other words, if f3(x) is at all well-behaved, the intersections of 8, (x) and
B, (x) will be separated. :

8. Conclusion. We now calculate y = f;(x), i=1, 2, 3, for 2<x <8
(see figure below). From these graphs and the discussion at the end of the
last section, it is clear that the point (2, 2) is the only intersection of f(x)
and ff,(x) in this region.

.0

Therefore, we have proved what we set out to; namely, that the external
iteration method described here does indeed produce the linear sieve func-
tions previously derived via the combinatorial internal iteration methods of
[7} and [9].
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