-t LYEERWAAIW e i A

(XL19)  [Riy 1 (M) =K}, s (M)S*(M)| <€ Ky o (M)n?T (97 Geti),

Démonstration. On applique la proposition précédente, Avec (X1.5)
t (V.13), il vient

IR (M) — Ki {M)E (M)

; s .
«KI(M)q—ks,’2+i1f4ng—ks+mm—1q,r_;';qx+3ks+(m/2) Z @(H),
Hedr
498 < ks

d’on, avec {(X1.7) et (XI.13),
IR(M)— K, (M)S(M)] < K, (M) [q“’“‘f%mﬂ“"q“*u %q”‘“"‘"‘”’],

(XL16) et (X1.18) se déduisent alors de (IV.1) et {IV.7).

On procéde de méme pour (XL17) et (XI.1%).

Cette démonstration achéve la démonstration du théoréme. 11 suffit de
choisir maintenant h suffisamment grand pour gue 3-(1/4t)—(kth/2) soit
=0, Cest & dire b= (3+2% 22241k Les nombres R, (M) et R¥(M) sont
alors asymptotiquement équivalents aux nombres K;(M)S{M) et
K*(M)E&* (M) qui sont strictement positifs.
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On elliptic units and class number of a certain
dibedral extension of degree 2!

by

HemmMa Havasnr (Kumamoto)

0. Introduction. G. Gras and M.-N. Gras have introduced an effective
method to compute the class number of the real abelian number field,
utilizing cyclotomic units ([2]). K. Nakamula has introduced an effective
method to compute the class number of a certain non-galois number field,
utilizing its elliptic units ([6]). Nakamula also considered more general
problems concerning the class number formulas related to elliptic units, and
pointed out some essential issues ([7]). Our purpose is to establish the
similar algorithms to those in [2] for any abelian extension over an
imaginary quadratic number field, utilizing elliptic units instead of cyclotomic
units. In the present note, as the first step of our purpose, we shall treat the

" following special case.

Let I be an abelian extension of degree ! with an odd prime number !
over an imaginary quadratic number field K such that L is a dihedral
extension of degree 2/ over rational number field Q. For each number field
_, we denote by h._, E_ and p_ the class number of ., the unit group in _
and the torsion part of E_ respectively. Then the index formula of the
following form is well known (cf. [9]):

h
[EL: by "IZ[G]] = M“&:
hx

where G denotes the Galois group of Lover K, Z[G] the group ring of G
over the ring Z of rational integers, # an element of E, explicitly given by
using the values of the Dedekind n-function and M a constant explicitly
given depending on the choice of # (§ 1). Our problem treated here is how to
give an effective algorithm for the numerical determination of [E,: p 1.
In this note we shall show a procedure to solve this problem. Especially we
shall treat more precisely the case where I = 5. The reason why we treat the
case where | = 5 is only that the case where /== 3 has been partially treated
by Nakamula (I of [6]), though his treatment is slightly different from ouxs.

It is also possible and interesting to establish the similar arguments in
the treatment of the arithmetic of the maximal real subfield £2 of L. This
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subject will be treated in another paper. Nakamula's treatment for the case
where [ =3 is surely one in Q.

1. Preliminary results. Let L, @ and K be the same as in Section 0.
Then the Galois group of L over @ is generated by two elements § and T
such that §' = T2 =1 and $T= T§™!. Here we may assume that G = (S}
and T is the complex conjugation, i.e. (T} is the fixed group of @ By a
result of Martinet ([5]),

1-1 pii—1y2
D!J:f vac v

with a natural number f, where Dy (resp. D) denotes the discriminant of Q
(resp. K). Moreover L is contained in the ring class field N; modulo f over K.
Let O, the order in K with a rational conductor fand R{f) the group of the
equivalent classes of the proper Oj-ideals. We denote by o: R{J)
— Gal(N/K) the isomorphism from R(f) to the Galois group of Ny over K
via Artin’s reciprocity law and by U the subgroup of index ! in R(f) which
corresponds to the extension L/K. Now as a representative O,-ideal of each
class T in M(f) we may choose p, =pnO,, where p is a prime Q,-ideal
(prime ideal in the usuval sense) of degree 1 in K such that (p, fDy) = 1. Put
(p)=pnZ and p ~ pp in K. Here $'K = () for some integer o in K. Then,
as is well known,
)12 A(pf)_%hk -12

sf(f).—{p —A(Or) o
gives a unit in N, which is uniquely determined by f independently of the
choice of p,. Here A( ) means the lattice function which is expressed by
means of the Dedekind eta-function as follows:

12 29
- ()

where a = [w,, w,] is a 2-dimensional complex lattice with Z-basis {w,, w,},
Im(w,/w;) > 0. For any class ¥ in R(f) we define a unit e, (f) in E, by

o8 = Ny oy 1) = =143 [ (2 20080 Y
L Nf/L i {nf) A{ﬂf)
Herein {a,} is a system of the complete representative O -ideals of the classes
in U, Then the following lemma is well known,
EemMma 1 ([97) (1) ep(f) =o,(6) i T, == t,mod W and o,(H =1 if Tis
in 1L
(2) For any 1, b in R{f),
e (7 =g, (1™ Ve, (H77).

Remark 1. For any ¥ in R(f), the absolute values (¢, (F)? is the hg-th

icm

Ul gleplic untls and class number ¢f a dikedral extension i

power of a real positive unit in Q. Moreover if T = fimod U for some f; in
R(f), len (BI* is the 24hg-th power in E, ([8]).

Now let I, be a fixed class in R(f)\Ul. Then following the similar
arguments to those of Leopoldt ([4]), we have

(L1) [Ey: e (6] = (24 2.
K

| This formula 94'}) can be found in [9] and elsewhere. From Remark 1,

e (E)1* = n{f))" X for some real positive unit n(f,) in E,. Hereafter as a
generator § of G, we take S =Res o (I7!). Then by Lemma 1 we have

24 B+, (B2
(12 (m(t)")* = %AA

and by a short calculation we have

(i=0,1,..1-1),

Ry (s (B M%) = IR (e (B), .., e, (B1)5)
=R (#LEL (f1)z[G})a

where Ry (..) means the regulator of each subgroup _ in E;. (Especially we
denote R, (E;) by R;.) Therefore from the formula (1.1) we have

h
(1.3) CEw: pun (BT = 1 2=
K

Hereafter our arguments are based on the formula (1.3).

Remark 2. By using the g-expansion formula of the Dedekind
n-function and the relation (1.2), the approximate .values of #n(f,) and its
algebraic conjugates #(f,)* (i=1, 2, ..., I—1) are computable as exactly as
desired (see Appendix). Hence the approximate value of any unit in
puen (1,19 is also computable as exactly as desired.

Remark 3. By a short calculation we see that E;/u,EqEj is an
elementary l-group and [E: p, EgE] = I with 0 < t < (/—1)/2. Furthermore
in the case where L/K is an unramified extension, we have t = 0. (The same
assertion for | = 3 has been proved by Callahan ([1]).) On the other hand, by
making use of the Kuroda—Brauver formula (cf. [3]), we have

h 1
k= S [Ep pEoES G,
hy |

~ Hence [Ey: uyn(t,/4%1] = I'h}, and the l-primary part of [Eg: un(f,)]

must be equal to a square of rational integer.

2. Gras’ theory. In this section we develope briefly the similar argnments
to those in [2], which G. Gras and M.-N. Gras used for the effective
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determinétion of the class number and the fundamental units of real abelian
number field.

Let #: E, - R' be the usual homomorphism from E, to the I
dimensional Euclidean space R. given by

Lie)={..., log fﬁsl| cimotet=1

Then the kernel of & is p, and the image 2 (E.) is a lattice on the hyper
plane P = {(x)eR; Y x, = 0}. Z[G] acts on E, and also on .#(E}). Via this
action Z[G]/(Z S')Z [G] acts transitively on #(E;). As can be easily seen,
Z[GIAY. 82 [G] is isomorphic to the maximal order Z[{,} of the prime
cyclotomic field Q({), where {, = ez’"” Hence #(E;) can be seen as
Z [{]-module with Z-free rank -

Let # be a unit in £, such that w9 forms a subgroup of a finite
index in E,. Then [E;: 9 = [Z(EL): £ (n")]. Moreover since % (E,)
and ¥ (#"1%)) are isomorphic to some fractional ideals in Q((), [E.: pn™%Y]
may be expressed as the absolute norm of some integral ideal in Z[{].

ProposiTioN 1 ([2]). Assume that Z[{;] is a principal ideal ring, then for
a prime number p the following (1), (2) and (3) are equivalent.

(1} [EL: pe 4791 is divisible by p.

(2} [EL: o 0™1€1] is divisible by p™P. Herein r(p) means the order of p
modulo ! for p=1 and r{py=1 for p=1.

(3) There exists a pr:me ideal (n) of Z[{] w:rh the absclute norm p™®
such that 4" is in u ER". Herein IT = PP/, and 0" is due to the action via
isomorphism Z[{]~2Z [G}/(Z SHZ[G].

Remark 4. Also in the case where Z [{] is not principal ideal ring, the
similar assertion to one in Proposition 1 holds However, it is very
complicated.

When we use Proposition 1 for our purpose, we need an explicit
criterion to judge for any ¢ in Z[G] and any natural number n whether #*
belongs to p Ef or not. For example, for real abelian field G. Gras and
M.-N. Gras gave a criterion of this kind by deciding the minimal polynomial of
cyclotomic unit over  from its approximate value. Alse in our situation we
are able to give such criterion by the similar method to that of Gras.

Namely for any ¢ in Z[G], the approximate values of f(1,)* and 5(t,)*
(i=1,2,...,1-1) are computable as exactly as desired (Remark 2). Then
all the coefficients of the minimal polynomial of n(,)* over K are completely
decided, because they are expressed by means of the fundamental symmetric
polynomials of I-variables. Now let 5 = n, be any unit in g (5%, and »,
=n" (i=1,2,...,1-1). For each set of the complex number
(170, 11, +.vs i—y) such that " =n (i=0,1,.., 1-1), compute the ap-
proximate values of

F;=F{no. ni, ...

’ﬂ;—l) (i=1!2a-v':[)=
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where F i(,--.,) means the jth fundamental symmetric polynomial, and
examine whether they simultaneously take the very near values to some
integers in K or not. If o is in Ef, there exists at least a set (F,, F,, ..., F)
of integers in K such that Fi(no,ni,..,n-,)=F (=1,2,..,10.
Conversely if there exists such a set (Fy, F,, ..., F)) of integers in K, we may
conclude that n, is in E} (see Example 1).

Remark 5. With the exception of the cases where K = o/ 1) or
=Q(/~3), p,={+1). In the case of K = Q=1 =141, +i; 2 +1
= 0}, and in the case of K = Q(\;":S), pe= (+1, +o, +¢% 0*+o+1=0}.
We must take care of the treatment in the case where g, % {+11.

In the rest of this section, we shall state about a method to seek for an

upper bound Bd(n) of [E,: p,n”9]. Now £(E,) is a lattice on the hyper
plane P. We denote by Wi, the volume of the fundamental lattice of #(E,).
Put

D={(x)eR:|x{<lfori=1,2,..,1-11,

and D=DnP. Then D is a compact, convex domain with a computable
finite volume ™ and symmetric wr.t. the origin O.

ProposiTioN 2 (Minkowski, cf. [2]). There exists a unit & in E;, such that

. gR, \M6-
log|gl? <0 and |10g|~s 2I“<2( m) (i=12..,1-1).

Now by a short calculation, it is easily confirmed that

1ii—1)
o) s

1it
Since [E;: uyn™91] = R, (n)/R,, we have

(2.1) [EL: un®9 = CoU~ Y Ry(n).

Herein R, () means the regulator Ry (u;#%¢). On the other hand, for the
unit & which satisfies the conditions of Proposition 2, we have

WE2%)? =

and therefore

BP0 (=1, 2, .., 1-1),
D (1% < (2¢°0)0=D,

where D (|&]%) means the discriminant of [§]>. Moreover since for any integer
o in @,

ID(@) 2 Dol =f1"1{Dyf= 12,
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we have an inequality max {}|logd|. }loglz,|%, 4 |log|z,| L} and by the equality (2.1) we have an

upper bound Bd(n) of [Ep: py#™°"], which is noted in the last column of

C> ~1~Iog( f \AB}Z;/z‘), table. In the same manner we attempted to seek for all the possibilities that
! C, < 27%25. With the exception of these possibilities, Bd (1) < 2R (1) always
and equivalently holds (see Table 1T). As an upper bound Bd(y) in the general case, we may
) -1 take as follows: .
2.2 : Ey: pyAel <{ ——} Ry {n). '
2.2 [Bet ™) log{f \/-DE/ZI) rnin%2, ]:W—l T le I/BZ)T}RL(")’ for f\/EDT > 32,
; : , el - 0B /I10x
Herein the finite number of cases that f./|Dyf < 2' must be excepted. Bd(n) the associated value, for 17 cases in Tables L 1L

Remark 6. The above estimation (2.2) is so rough that it is hoped that
more precise one will be realized. At any rate, we must have some supplemen- _
tary estimation for [E.: un@“7] which is available also for the exceptional Table I. Possibilities that C, < 50~ %25

case where f . /1Dy < 2' (see § 3).

2R, (m), otherwise.

01,0205, 03 [DOY| 0 el et | Co> | Dx |he]S| Bl
3. The case where | = 5. In this section we shall cons:dcr more precisely e ' : - "t
the case where 1= 5. - (-2, 2, 1, O 47% | 05764714 | 15764714 | 1.1003633 | 022755 [ —47| 5|1 [373R, ()
From the result of Section 2, we have an inequality CL 0, 1, 3| 1197 | 03881968 | 16345126 | 15760126 | 0.24567 |~119(10| 1 |275R(n)
1, 1, 2, 3| 77| 04418042 | 17914862 | 1.2634457 | 0.29152 | —79| 5|1 [139R.(n)
761 5 4 ( 1,-1, 0, 3)|143*| 03510372 | 15409205 | 1.8487004 | 030724 |—143|10} 1 |114R, (m)
LEp: ™™ < 108 /IDal/32) Ru(n), (-2, 1, 1, —1)| 47| 09087907 | 05764714 | 19087907 | 032323 | —47
og(f v/IDx!/32) (—2, 3,-3, 1)]1032] 03745937 | 13745937 | 19420711 | 0.33187 |-103| 5|1 | 83R.(n)
— . . . (1, =2, - 2| o. : | L 0.3 —-127] 51| 4R
for f\/|Dgl > 32. Now we are going to consider the exceptional case, Let 2 i’ % ; 3 li?,,, g_gg_gggg; g_%ﬁgg é;gg;;é?, 0_39,?32 47 ()
& be a unit in E; which satisfies the conditions in Proposition 2. We denote ——
the minimal polynomial of || over Q by
-0, X4+ 0, X0 X 40X 1, Table II. Possibilities that Cp < 27923
and by z; and z, the two algebraic conjugate roots of |81 which are not Dy, /) he | Cox> ;| Bd() (D, 1) hy | Co> | Bd(y)
complex conjugate to each other. Then : i
—ac . —ae ac : (—319, 1) 10 | 046822 | 21R, () (—479,1) 25 | 0.68056 | SR.(n)
e UgEP <l and e TV'Kiz)P<ge? (i=1,2), (—159, 1) 10 | 052422 | 14R, (n) (344, 1) 10 | 0.69928 SRLE'T;

) (—239, 1) 15 | 053332 | 13R, () (—303, 1) 10 | 0.75210 | 4R, (4
where C, = Rj/*. Hence the four coefficients @;, Q,, Q3 and Q, are (-3439, 1) |30 | 0.62272 7R:(rr) (179, 1) 5| 0.78726 | 3R;(n)
restricted in some finite intervals. Moreover the discriminant D{g|%) of |&]? is (=439, 1) 15 | 0.62754 | TR, (n) | (=7, 1. | 1]079503 | 3R.(n)

a square of rational integer, because it must be of the form D(|&]%) = A?Dg, »1314~ | 5065186 | 6R.(n)
= AY*D? with a rational integer A. For example, if Co < 5073 (with the .
exception of these possibilities, inequality [Ep: pr™] < S0R. () always Now by Remark 3, the S-primary part of [Ez: un(£,)"“]] must be equal
holds), it is necessary that |Q,] < 6, [Q,] < 18, |Qy] < 25 and |@,] < 10. The to a square of rational integer. Bence by Proposition 1 each prime factor p
intege;r systems (Q,, @z, @3, Q4) in Table T are all of those for which F(X) of LE;: pon(5)767) may be restricted as follows:
1= X0 -0 X+ Q. X3~ 03X+ Q, X — 1 satisfy the following two conditions: 1z
(1) The discriminant of F(X) is a square of rational integer. p<Bd(n(t) for ~p=+1(mod3),
(2) Equation F(X)=0 has only one real root § and two pairs of the p<Bd(n(L,)* for p# +1(mod3).
complex roots (z,z) (i=1,2) such that 02221<f <1 and 04714 . :
<P <21214 (i=1,2). Remark 7. According to Remark 1, we put

4 4N
For each of six cases in Table I C, must be greater than leL(I2 =™  and [ (B =BK,
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with real positive units o, § in Q. (Note that a = #(f,).) Then Ry (n(f)) is
given by ’

Ry (n(t)) = 5(a®~3ab+ b2,
where a = loga and b =logp.

ExampLe 1. Let K = Q(,/~7) and L b¥ the cyclic extension of degree 5
over K which is the subfield of the ring class field N,; modulo 11 over K.
Here each class in (11) is represented by one of the following ten 0,,-
ideals

[11e, 1] and

[+t 11] (0<st<10,154,6)

where o = (1+./~7)/2. Two classes in U are represented by [11w, 1] and
[w+5, 11]. We let I, be equal to the class of [w, 11]. Then

n(f,) ~ 38.888287830,

A(E) " ~ —0.225596309 Ti0.237796817,
7 (5 ~ — 0218547605+ 0.437692368.

And the minimal potynomial of #(f;) over Q (also over K} is X% —38X%~
—34X3-21X?~6X~1. We examined that n(f)*"® and 7(t) 9% are
contained in E3, but 5(f,)* 5 is not in Ej. Namely #(f)* % =g} and
n(t)*~9 = &5 with some units e; and ¢; in E,, whose minimal polynomial
over K are respectively

X —(5+110)X* +(65+ 2200)X° (87 — 20) X2+ (16— 11) X — 1,
X3 —4X*+ 13X ~17X2 49X —1.

Therefore the S-part of [E;: £# ()] is 25. Since Bd(n(t;)) = 3R, (n(t,)
= 4]128.65 ..., any other prime factor of [E.: +7n(f;)®"] must be less than
12. For each p of 2, 3 and 7, we examined that #(f;) is not in + E%. For p
= 11, we examined that none of n(f,¥"i (i =1, 2, 3,4) is in E}', where

My =QR+5H)(2+5)(2+8Y, I, =2+8(2+5)(2+8%),
My=(2485)Q2+8H2+5%, M, =Q2+8(2+8)(2+5%).

Therefore we can conclude that [E,: £# (1,4 =25, ie. h, =35, and con-
sequently E, = +g41¢1,

In Table III, Dy are all discriminants of imaginary quadratic number
fields K such that Dy > —~1000 and K has an unramified cyclic extension L
of degree 5. For each of the all cases in Table 11, we examined that
[Ec ()7 =1, ie. hy=hg/5 and Ey = +n(4)4%, In Table XII, we
listed up the class numbers h,, h, and the coefficients of the minimal
polynomial X°—0Q, X*+0,X°~0,X24+0,X—1 of 5(t) over Q for the

icm
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suitably chosen f,. Therein @ means (1+./—Dg)/2, for Dg =1 (mod4) and
/ —Dg/2, for Dy =0{mod4).

' Appendix, For the computation of the approximate values of the elliptic
units, we used the g-expansion formula of the Dedekind eta-function n(z) as
follows:

x @
@)~ =} plmyemm,
m=0

where p(m) denotes the number of partitions of m. This infinite series

converges very fast, when Im(z) is large. For example, if Im(z) > \/5/2, the
error value

I'T(Z)‘ 1. e%z Z P(m) eluimz[
m={

is always less than 1077, Hence the approximate value of each g, (I) can be
computed as exactly as desired. And by using the formula (1.2), the
approximate values of 7(1,) and its all algebraic conjugates a(E)
=1, 2, ...) are computable as exactly as desired, up to a power of the 24h,-th
root of unity. Considering the fact that the coefficients of the minimal
polynomial of 5 (;) over Q are rational integers and are expressible by means
of the fundamental symmetric polynomials on #(t,) and #(t)* (i=1,2,...,1=1),
we are able to completely decide the minimal polynomial of #(f;) and at the
same l_tirm: the true approximate values of n(f;) and its algebraic conjugates
n(t)" by the finite amount of computations. '

ExampLE. Let K =0(./—7) and L is the ring class field over K modulo
7d Tlhen each class in R(7) is represented by one of the following seven O,-
ideals ¢ '

[Tw,1] and  [w+t, 7] (0<1<6,t#3),

, \;llzere o=(1+./-7)/2. Let t, be represented by [w, 7] and § = (I }).
en

(252
n(fl)s = \ﬁ —

RNVt
()

(5 HT)

nt)Pe—t LT/

") =7

()
q(fl)sz = NJANT )
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Herein = indicates the equation, with disregard at most of the multiple of
the 24-th roots of unity. Hence by the finite amount of computations it can
be confirmed that the minimal polynomial of #(f,) over @ is X7 —7X 6
_7X5-7X*—1 and at the same time

n(t,) ~ 7.98626081,
n(E)5* ! ~ 042166812+ 034605432,
7 () 52~ —0.54678212 Fi 049621329,
n(t)5 5% ~ — 036801640 F10.79775336.

For computing three tables (Table I, II and III), the author used the
electronic computer NEAC MS-50 installed in Kyushu-Toukai University.
Finally the author is very grateful to Professor K. Shiratani of Kyushu
University for his kind encouragements. He also thanks Professor Y. Narumi
of Kyushu-Toukai University for his kind advice on computational techniques.
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