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Special values of the dilogarithm funetion
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1. Introduction. The dilogarithm function defined, for suitable =, by

i 1 * log(1—1)
Li(2) = > 2t n? = —f»wiw———dt,
= ; ¢

is one of the lesser transcendental functions. Nonetheless, as Lewin’s
treatise [3] demonstrates, it has a very respectable pedigree and a wealth
of curious properties. o '

The present work will be concerned with some unexpected relations
between the values of the dilogarithm function at certain algebraic integers.
Lewin [4] has shown how interesting relations can be obtained by speciali-
zing Abel’s functional equation for the dilogarithm funetion, but this
technique does not seem to yield all the known results. Richmond and
Szekeres [3]have introduced a different idea. They apply the circle method
to obtain asymptotic formulae for the power series coefficients of the
functions occurring on the two sides of a partition identity of Andrews
and Gordon. A comparison of the twe formulae then yields non-trivial
numerical relations for the dilogarithm function. I shall exploit the same
principle here. The investigation hag produced some new partition identi-
ties of the same type as the celebrated Rogers-Ramanujan identities
and some new relations between values of the dilogarithm function.
In particular, T shall prove a formula conjectured by Lewin [4] which
had apparently resisted more direct attacks. Despite this success, these

_idess do not seem to touch the central problem here which is fo explain

the mechanism leading to such a profusion of identities.

2, The dilogarithm relations. It is most convenient to work with the
function
L{z) == Fi,(2) + 4logz-log(1—z)
instead of with the dilogarithm funection itself. To avoid problems with
complex logarithms, the argument z will be restricted to the interval
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0 <z < 1. The function L{z) satisfies the functional equations
Liz)+ L(1—2) = =26
and
L(2) = L{z/(1+2))+3L{z%),

both of which can be readily verified by differentiation.
The functional equations for L (z) yield evaluations of the dilogarithm
funetion at some special algebraic points, namely Euler’s results

(L) L(1) = =*[6
and
(1:2) L(3) = =*/12,

and Tanden’s results
(L3} LEYE—1) ==¥10 and IL{}(B3—V5) =215,

Apparently, there are no other algebraic points at which there is such
an elementary evaluation of the dilogarithm function. However, there
are many identities relating the wvalues of the dilogarithm function at
various powers of algebraic numbers. A simple example ig

{L4) 6L(1/3) ~ L(1]9) = =¥/3,

which is easily obtained from the functional equations for L( #). Again,
if « =V2— 1, we have the relations

{L5) 4L (a) —L(a®) = =?/4
and .
(L:8) 4L(a) 4L(a®) — L(at) = 5=2[12,

‘hoth obtained by Lewin [4]. A similar relation not given by Lewin is
{L7) 12L(F) +3L(F) —2L(p%) = B0, f =3} (V3 —1).

Watson [8] found three relations involving the roots of the cubic 34
~+2z%—g —1, as follows, If the roots of this cubic are denoted by y, — &
and —1/e, 8o that ¥, § and & 1! lie between 0 and 1, then

(L8) L) —L{yY) =n*42, 7 =1/(2cos2x/7),
(L9} 2L(8)+ L(6%) = 5=*21, & = 1/(2e08w/T),
and :

(L10} 3L(s) +L(s%) = 4n?/21, & = 2c083x/7.

Watson obtained these formulae by repeated use of the basic functional
equations given above. Slighfly more complicated relations attach to
theroots of the cubic #3322 —1, If the roots of this eunbic are denoted by
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£, —y and —1/0, so that £, 4 and & again lie between 0 and 1, then
(Li11) BL{L)F3L(EN— L{L3%) = T=%¥18, & =1/(%cosn/9),

(L12)  6L(m —9L(n) —2L(n) + L{f) = —=°/9, 5 =1/(2c0s2=/9)
and

(T13) 6L (8)—9L(0%) —2L (6%~ L(6%) = =29,

Here, (L11) was discovered by the asymptotic analysis described below.
Lewin observed the parallel with Watson’s three identities and conjectured

6 = 2costw/9.

* the relations (112) and (L13) in [4]. (The parallel is perhaps clearer in the

alternative notation
3Lip(Z) + 3L,y (£%) — Li, (%) = 7=*/18 —3log?{,
8Liiy(—77) 4 8Liy () — Liy(—#?) = =*/18 —3log®n,
3Liy( — 6)+ 3Ly (6%) — Liy(— 0%) =

The method fo be described below vields the relations (Lil) and (L12),
but I have not been able to obtain {1:13). As far as T know, none of these
three relations has a more direct proof.

—n18.)

3. The partition identities. The relations in the previons seetion will
be derived by applying the circle method fo cerfain identities which
express basic hypergeometric series as infinite produets. Since the analysis
is rather rough, many of these identities typically yield the samse dilo-
garithm relation and the list below is only intended to be a representative
selection. Many of the identities appear in Slater’s list [6] of 130 identities
of this type. These will be referred to as {S1) to (8130} in what follows.
In stating the identities, I use the standard abbreviations

(a’)n =( &3 Q)n - 1 a‘)(l—a’Q) (l_a’q’nml)’
for » a positive integer,
(a)oo = ('5” g)m :Hm(a’Er Do

and, in general, for any real number =,
(6} = (85 Qa = (85 Dl (67" Des-
The firss few identities are well known, namely Euler’s identities

Py 2 ¢"H)n = 1/(9)e

n=>0

-and

Eqn(ﬂ-i-l)/z )n-mlj(q; oy

=0

. § — Acta Arithmetica XLITT, 2
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and the first Rogers—Ramanujan identity

a

D) = 1G5 Plasl’s Pheor

DA

(P3 = 818)

Il
=1

k22

The following identities are variations on the same thenie, becoming
steadily more complex.

(P4 = 847) 2 (—1; ¢, 0 (@ = (— 5 PeollT5 o
®5=88) 3 (~0u @@, = (Dl e
(P6 =837} D (—=@ul—0 e @Duuia

= {— Qoo (5 Clool’s (@5 Pof(Door

(BT =876) D' (—Dorle® @D (@enso

n={

= (— Qe (0® {05 €%0(8"5 €)oo/ (Do

(P8 = 833) 2 7 Ha%5 ¢~ D
= (0% §)el€’5 Teald’; ol (L5 Toos
(P9 = 861) 2 1 Dalt; P = (@5 9l €005 ool (Do

(P10 = S89) 57

=

IR () P
— a8 §)oo '(q‘f; 1)eol’; Veo(83 el T ol Qs
(P11 = 892) 2 (@5 P DD
| = (8°5 (@3 eld”s ool (Deor
The remaining identities do not appear to be in Slater’s list.

(P12) 14 D=0 s O~ gys ()2

= (0 )uld’; )eol’; Ooold5 €000 €)oo/ (Deos
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(P12 bis) 1+ D' (—0%5 (s M= Dy (@)n

n=1

= (¢ )ald’s Phol’s hald’s €Mel0®; ’“)m/(q)m,

(P13) 1= D05 g% o (L= ¢ = ¢ — 1+ ) — )o@

el

= (05 4ol ool (Do
The final identity is the nearest that T have been able to come to finding
an identity for Lewin’s conjeetured dilogarithm relation (L13). It seems
worth including here to show the Iimitations of the present methods:
In the quest for the lost identity to match the relation {113), T worked

through all 130 identities in Slater’s list [6]. The theorem in Section 5
below cannot be applied in every case, but when it does apply, it gives
a useful independent check on the identity. The asymptotic analysis
located two identities which shquid be corrected as follows:

E6) N (Dl @al85 P = (=8 Phool — % Fhel )l (D

L]

. .
(S10) D' (=10 g™ ia%; Phales ¢,
=
= (0 Pl — Pl — G oo =% )ew-
4. Proofs of the partition identities. I will sketeh the derivations
of the identities (P12} and (P13}, following, more or less, the method -

developed by Slater ([6], p. 151). This rests on the following Véry general
series transtormation first exploited by Bailey. If

n
16‘1: = Z ar'u’n—r’vn-:—r H.Ed 'y v 6 U,
=0

- nr+n7
1’]7.

then, subject to proper conditions for convergence,

(1) Z Cp¥n = ﬂn i *

=0 ﬂ.$

Proof of (P12). Following Slater, let

% = 1/(9_’):” =1/(m)n§ 5 _( n(z n/’y z

The series for 4, ean be summed by the basic analogue of Gauss 8 theorem
([}, Coro]lary 2.4), giving

_ et @@
" @e@fyRe @)@/,
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Again, following Slater, e, and §, arve determined by specializing Bailey’s
sunmation '

@) % (1—ag*) (1)) (@)n (€)n 8™ "
£ (1—a)(ag0),(ag/c), (ag/@), (agfe),b" " d" "

(Do {8]#)co{00)a(a/b0)es (a0 ), (ag be)o (a9 e (ag)c0)s (a0 de) s
(9/5)eo {2/ €)oo (8 @)eo (7]8)0a (€08 /0) e (08 €)cs (0 B) oo (09 [€)os (67 g [bCA ),
for a certain well-poized bilateral hypergeometric sevies. If ¢ = ¢
b =g ¢ =gt d =g and ¢ = ~¢**, and then ¢ is replaced
by ¢?, this yields

T3] , P
@) “5_, (1— qs "r~1 (9 3r} _ (~¢% @),
r——{nm {Q)n.-i-m--\-l (5’)11—3:- (Q)ﬂn( __.Q_}n—l
Sinoce
6741y (9ri—3r) — 192438 —n N33+ 1 ' '.-1—31'
A—g"")g q {(1—¢ ) s
the left-hand side of (3) can be re-writben as
1 L8] | qaf(ar-—sr) gé(w —ar) qé(grg-i-?:r)
+g " -
(q}n(@n-:-l } = l (Q)n+3r(g)9zuai- ) (q)az-i-:‘}:"-i-l(g)nusrwl

2
g-}(Qr ~37) ]
. (Q)n~37+1 (Q)n+3r-1 ]
Thus the preseriptions above are satisfied by taking

: ' 3_ 2. 3
z =g, aF_' =1, Ugpry == — ASr 31‘), gy = q{r(Br ,3r)+gi(9r 3:-),
Ggppy = — g0
and
ﬁn = (= qa; qs)n—l gn/(g)zu( - Q)n—l'

Using the above values for a,, §,, ¥, and 8, in (1), and letting y and =z tend
to infinity, leads to

L4 =% @a €™ (@an(~ Doy
= i-{l—g—}- Z (q}(27r2+3r) RS q}(27r2—3r)_ Q.}(@?r 1850} q§(°7r2—15r+2))}

$ (=% (@5 40— a(— ¢ q”)m(-q“; 4")0 X
X (075 €l
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by Jacobi’s triple product identity ([1], Theorem 2.8). Finally, the right
side ean be expressed as a single product by means of Watbson’s quintuple
product identity ([2], (2.1)), giving (P12). Similaxly, writing

(1— g6r+1) q§(9r2—sr) - qi('!rz—Sr){(l — Iy girel (] gnin)

on the left side of {3) leads to the transformation

Hort~gr+2 2 orf 13 9297 +2
. prlor 9r-r), — Ao 3:-)_,}_2;()' r), _qi(r 9+ ),

A3y Ogpyy ==

5 = (‘—Q3' ga)n—ll(g)zn(_ )n—lr
with ¢y =y =1 and # =g, a.mi then letting # and # tend to infinity
gives (P12 his).
Proof of (P13). For this case, let
u, = 1{{g7 47N, = (1" (g,
v, = 1ft@ Y g7, = (—1)"a" ¢ (o),

Ugp3 =

and
5:1 = (y—li gwl)n(z 1} q )nyﬂﬁn(l-—g/’tD)lw”w“
= () (@) (1 — glw) [z u"g* ",

The series for y, can be summed in the limit when w tends to g, as fallows.
With the above definitions,

_ m_ﬁunz)_r_(gw)’(l_i) on
yﬂ - (g)r—n(w}f—hn w0 ¢ Q

B i'% )5 (4" ( g) (1__ g ) (), (A)u2" g™
& (gt \w w)  (@mw”

By the third iterate of Heine’s transformation ([1], (3.3.13)), the above is

-

o (g @/y)a (g /e ( qy2 )f (gy# [0} (Y} (#), 3" "
@0, \wel (@)@

Now, it is possible to set w = ¢, whenee, by the basic analogue of Gauss’s
theorem,

§=0

Yo = BT (oo (oo (Do (B oo

| The sequences a, and f§, can be determined by replacing g by g~ in the

derivation of (P12). Thus we take & = g,

2 2iaryfe g (3732 -
Ogp1 = _q—}(pr'-3r)), Oy = q—(sr +anf +4q (o7 —an) y Ogpqy = —( 30r+31)
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and
ﬁn = (_g—a; qpa)n—lg_ﬂll(g—l; le)ﬂn(_ _1; Q_I)n—-l
3 .
= (_QE; gs)n—l qn +n/(g)2n( '—‘Q)n—lj
with the convention that o, = §, = 1. Now

‘7 ﬂné =

n=u
1 Z {(—q 3 oW1 (Bamy (0% ez"*)n_l(y)n(z)n}( a4 )"‘_
g)an" Q)n—l (Q)Zn( - g)n—l w
If w = g and y and 2 tend to zero, this gives

yﬁﬂ nz

On the other hand, again letting ¥ and z tend to zero,

2 aﬂyﬂ».= Z aﬂqngl(g)i)

n=0 n=0

v ("—235 ga)n— (y)n( )n. (__) (1__92_)
w

‘/_;" (2) PPN ) P 0

% (—“q35 9z
_J Q)zn( Q)ﬂ.—z

==l

g:n—l (1 — qu—l _ qn_ gﬁ.—!-l + gan) .

and this ean be summed by the method used in the derivation of (P12)
to give ' ' '
(=]

2 ¥ = (43 qﬁ)m(

n=0

Thus, (P13} follows from (1}.

25 ool (Deo-

5. Asymptotic analysis of the series. The estimation of the power
geries coefficients of the series appearing in the partition identities of
Section 3 will be accomplished by means of the following theorem.

TEEOREM. Consider the power series

0 o =53
. . dy
> grlanomi [T g5 )0 = 3 ad®,
=0 j=1 k=0
where a, b, ¢;, d; and & are integers sabisfying a2z 0, b >0 if a =0,

e =50 (mod 2) cmcl a > 0 Suppose that the power series expansion of each

of the products H (g7 -")N ¥ has positive coefficients, and that the equation

H (1—= J) 7= m“ has a unigue root, p say, belween 0 and 1. Then
i=1

as k-soco,

(oga ks 3 (1) L1 ~4),

icm
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Proof, The argument follows the method developed by Szekeres
{7]. Consider fivst the power series
51 Oy ng

72{C!?l-rb)l"l
H

The a,, can be obtained by Cauchy’s formula, applied to a soitable civele
deseribed by q = 77+ (—w < 8 < =) with radins ¢” less than 1. Thus

w r n-—1

i - .
ay, oo J exp {__ z Z glog(1— c—(ﬁ—15)(r1ju+cj-)) -

r

—x F=1 »=l

4 (k—%n(an‘Tb))(ﬁ—iﬂ)}dﬂ.

The rading, ¢~%, of the circle of integration is determined by the saddle-
point condition

r n-1

) 2 2 &l

F=1 w=1{

With this choice of 8, the method of [7], Section 2, gives

r n—1

(k—gn(an+b))f— 3 3" slog(

=1 v=0

H(d + o) [ —1) = k—fn{an+D).

-

(3) logay, = — g rrenf)

+log(f2/2md) +o (1),

where

% = fn.

r djﬂ t., t
- if _"% & and

By the Enler-Maclaurin sum formula, applied to (4),

~u

-
I e @ 1
— = — %
24 d; f ¢ —1 242 (=

i=1

that is

@) —1-%%2} L0,

r djﬂ
. i
= 1{2%[ &
gl 4y o

50 that §is of order k& ~12| Again, applying the Euler—Maclaurin sum formula

fo (B) in conjunction with (4),

1

"y [ Ze, . . \
| {(n logay, =Eg;{7'f;f F 1 dt—a 'u,log( —e % )}—l_—o(klf)..
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The next step is to determine » sc that this expression for log 4y, is maximal.
Let the difference operator 4 denote differences occasioned by moving
from # to #-+1. From (4)

% (dv+e)
2_, P

=

. {1 \7 g {d;r+0;)? e(‘ZJ”T"‘J)ﬁ - & (dyn - e;) 1

T T L LT (fErei dn+ej)ﬁ 1 +o(l}
g=1 =

= —an—3%b

and, as in [7]; Section—éL, this leads to

d |G) Sj tzﬁt _i
4= 53[/ S “}/{ il (65—1)3dt}+0(k A
o

In the same way, {3) gives

. .
Aloga,, = — Z" glog(1— e 5 —auto(l).

J=1
The condition for loga,,, to be maximal i that this lagt expression should
vanigh, that is
r
(8) D glog(1—e™ ) = —au.
=1

Sines 0 < e~* < 1, the hypotheses of the theorem fix ¢~ = u. Substituting
(8) in {6) and (7) gives the maximum

. P L(ZJ'H t
i \ 1 &7
log oy, :2%%{2‘ _ag,f —
=1 13

in which

12
I dt— %ajuleg(l——e‘di")} Fo ('

dju

Do
J oy W ddpulog (1~ e~ = L(1— ).
L]

Finally, @, = > a;,, where the sum over n has at most % terms, all of
them positive, so that

T 1z
logay, = 217 {E };j_L (1—p J)} o).
=1 7
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6. Proofs of the dilogarithm relations. To illustrate the application
of the theorem, I shall sketch the derivation of the relation (132). The iden~
tity (P12) can he re-written ag

P % (@nla’; €)u0™ "
(1—0)(1—) & (% (@ Elald’s ¢ald% O

= (9‘:, ol C)eo(@’s el 5 0l €/ (Dc-

Let >a;¢* be the power series expansion of either side of this identity.
The estimate for loga;, implied by the left side of the identify is the same
as that obfaining for the series

a
+in

¥ (00" )t™ _
& (0% Ol (85 @)al@5 O

Asz in the theorem, let u he th.e real root between 0 and 1 of the equation
(e —a) = a2l —a) (1—a¥),
that iy, «®*—32°+1 =0, so that g = 1/(2c082w/9). By the theorem,
(loga)® ~ 4B{ET — ) 3T (1— ) — L (1 — )~ 21 —p)},

a8 k—co. The estimate for loga, from the right side of the identity follows.
readily from the well-known estimate for the partition funetion; namely, if

oo

[Ta—a¢y = 3 o),

fi=

<

then
logp (k) ~ w(2%/3)"

a8 k—oo. The right side of the identity is obtained by omifting 8 residue
clagses modulo 18 from the last infinite product, whence

(logay)? ~ it {logp (k))* ~ 1072k/27,

a§ k—oco. Now (L12) follews on equating the two evaluations of (loga,)*
and using the funetional equation L(z)+L{l—=z) = 5%/6 to tidy up the
regulting expression.

Tn a gimilar faghion, each of the identities (P1) to (P11) yields the
corresponding dilogarithm relation in the hst (L1) to (L11). A propos
Lewin’s conjecture (L:13), the coefficient of g% in the power series

51 (_q 3 4 )ﬂ»lg
L )1 (@2

=0
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is asjrmptetic to
2R L(1— 08 +1L(1— 6%~ L(1—0) — 11— 65)},

with 6 = 2c084=/9. However, the theorem cannot he applied to (P13)
beeanse the terms of the series there do not have positive coefficients,
This makes it possible for cancellation to oeeur between the terms, and
the identity shows that this does in fact ocour to a rather yurprising extent.
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A generalization of Hasse’s generalization of
the Syracuse algorithm

by
K. R. Marrarws and A. M. Warrs (Brisbane, Aunstralia)

1. Intcoduction. In 1978, H. MoHer [6] discussed an algorithm due to
Hasse: Let m and d be relatively prime positive integers, d = 2; B, is
2 complete set of residues mod &, not including a representative of the
multiples of d; Ny = {# e Z| dfn}. Then H: N;—»N;is defined by
(14) Hp) =

d
where mx —r = &°M, a> 1, dt M, r e Ry. (It is assumed that r e By=mir,
to ensure H is well- deﬁned.)

Méller conjectured that the sequence of iterates (H*(n))ys, is periodie
for all o e N if and only if m < @ and that the set of pure periods
is finite for each choice of m, d and E;. (See Terras [7], [8], Everett {31
Crandall [2] for the speeial case d = 2, By = {1}, m = 3 known ag the
Syracuse algorithm, and Heppner [4] for the general case.)

Closely related to H is the mapping T': Z—Z defined by

(mm-—r)jd if dfe, where me = ¢ (mod 4}, r & Ry,

2 T =14 i dla.

In tact H*(n) = T™(n), where (using Méller’s notation)

mHE () — E
PE BTt and g = Y
a

{==0
In the present paper a more symmetric mapping which generalizes r
is studied. Let d, my, ..., my be positive integers, d> 2, ged(my, d) =1
for ¢ =1,...,d; Rd 2 {ml, ., &z} is a complete set of residues mod d;
r; e Ry, is defmed for i =1,...,d by my»; =7; (mod d). Then T: Z—-%Z
is given by

HE(n) =

ﬂ?)im -7

{1.3) T(@) =——

i @ =2 (mod d).



