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On adele rings of arithmetically equivalent fields
by

KEnear KoMarst (Tokyo)

Let @ be the rational number field, % an algebraic number field,
% 4 the adele ring of k and {;,(s) the Dedekind zeta-funetion of k. Fer a prime
number p, we denote by @, the p-adic number field. The word isomorphizm
for topological rings means a topological isomorphism. In this paper we
shall show the following:

THEOREM, For cvery positive infeger » there are r-+1 non-isomorphic
algebraic number fields ky, &y, ..., k, such that their adele rings are isomorphic
and their Dedekind zeta-functions eoincide.

Namely, let my, ..., m, be squarefree integers = -1, -2 such that

r

wn; does not divide J] m; and m;

i

= 2 (mod 16). Then we can fake

= QUmy e V),

8 ' 8 8 :Jp— :
= Q(V16my, ..., V18, Ving,,, ..., Vi) for §=1,2,.., 7

Lmywa 1 (ef. [3], Lemma 7). Let % be an clgebraie number field, V the
set of places of & and Wy, the set of non-rere prime ideals of k. We adopt
similar notations for an algebraic number field &', Then the following conditions
are eguivalent:

(1) &, ond K, are isomorphic.

(2) There exists a bijection @ of ¥, onto T, such that Iy cmd Lp(p) are
isomorphic for every e Vp.

{3) There exists a bijection ¥ of W, onto W,. such that L, and k'l‘,,(p) are
tsomorphic for every p e W,.

(4) The temso: praduct E®e0, is isomorphic to B ©oQ, for every
;pmme nmber p. :

" Lmvma 2 (ef. [17, p. 362, [6]). Let L be a finite Galois extension of Q and

G = G(L]0) the Galois group of L over Q. Let H and H’ be subgroups of G-

-For every element o of @, let (o) = {-:‘1 or| e @) Lel & and ¥ be subfields
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of I corresponding to the subgrowps H end H' of G, respectively. Then the
following conditions are equivalent:

(1) For every element o of G, the cardinality of C(o}nH s equal to the
emrdinality of C{o)n H'. '

(2) For every prime number p, the collection of degrees of the factors of »
in k is identical with the collection of degrees of the factors of p in k.

(3) The zela-functions Cp(s) and $.(s) are the same.

Algebraic number fields are said to be arithmetically equivalent,
when their zeta-funections coincide. The following lemmsa follows from
Lemma 2:

Levva 3 (ef [2], [4]). Notations being as in ithe above theorem,
ihe fields ko, kyy ooy b, are not isomorphic to each other and we have {y (s}
= {p(8) for ¢ =0, ..., 7 '

Now we show the following:

LA 4, Let b ond &' be algebraic number fields and p o prime number
such that the fensor product k@ Q, is isomorphic to &' Qo Q,. Let F' be an
algebraic number field such that (Fk:k) = (FE': %) = (F:Q). Then we have

(EF)@pQy = (K F)RpQ,.

Proof. Let 6 be an algebraic number such that F = (0], f(») the
minimal polynomial of 6 over Q,p a prime ideal of k which lies above
D, k,[#] the polynomial ring in one variable and (f(m)) the ideal of %, [z}
generated by f(#). Then we have :

(F)@eQ, o= [[ 6BV @k, = [ ]l l23i(f@)) = [T (K l=di(7 (@)}

: plp plo Pl
Pely Pe¥p, PV
’
= [] WP ek = (#F)2,0,-
Dlp
P'Ef’k’

Proof of Theorem. Since 'we have

4

8 8 8
Ey = Q(Vimy, Vingma, ..., l/mlmi, 1/77?f¢+1; ..

8,
*y .'/mr)
and

s s 8 2 —

k= Q(l/lﬁ'mi-, Vi My, .uuy Vg mg, Vilyyyy oans ]/mr),

it is sufficient to. prove &y, o k. If a prime number p is unramified in
Eo/Q, then we have k,®oQ, == k@40, from Lemms 3. Now we assume
that p is ramified and that p 2. If p =1, 7 (mod 8), then k,QeQ,
=k R0, follows from that Q. contains Ve, It p =3 (mod 8), then

k4@ 0y == k@90, follows from that Q  containg ¥ —2. Ifp =5 (mod 8),
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then %,&oQ, =22k ®pQ, follows from that Q,, contains V-1 Suppose
that p = 2. We assume that m; = 2 {mod 16). We should notice that

- e - 8 I s 8 S 3 SR
2 is totally ramified in @(¥Vm,)/Q and Q(V1i6m)/Q. We see that y(Vm,)

contains V2. Hence we have bi®p Qs = Qg Qs from Lemma 4. Hence
we have %y ~ %, 4 from Lemms 1.

The author would like to express his hearty thanks to Professor
Nomura and the referee for their advice.,
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