Correction to the paper "On a conjecture of D. H. Lehmer", Acta Arith. 42 (1982), pp. 97-100

by

D. G. Cantor and E. G. Straus (Los Angeles, Calif.)

John Dixon has pointed out to us that our statement "If \(p_1 = p_2 = p \), then \(\theta_1 \theta_2 \) is a \(p \)th root of unity and \(M(\theta) = M(\theta^p) \) where \(\theta^p \) is an algebraic integer of degree \(\frac{d}{p} \)" is incorrect.

This in no way invalidates our theorem or its proof. However we have to resort to Lemma 3 of Dobrowolski's paper (Acta Arithmetica, 34 (1979), p. 385) which implies that the number of primes \(p \) for which there exist distinct conjugates \(\theta_1, \theta_2 \) with \(\theta_1^p = \theta_2^p \) cannot exceed \(\log d / \log 2 \).

Since the number of primes in our estimation is \(\sim \frac{1}{2} (\log d / \log \log d) \), the omission of \(\log d / \log 2 \) of these primes will not affect the estimates of the norm of the generalized Vandermonde or the magnitude of its divisor.

UNIVERSITY OF CALIFORNIA, Los Angeles

Received on 15. 3. 1983