Remarks on the arithmetic properties of the values of hypergeometric functions

by

F. Beukers (Leiden), T. Matala-aho and K. Väänänen (Oulu)

1. Introduction. The purpose of the present paper is to apply the classical method of Siegel [10] to a consideration of the arithmetic properties of the values of certain hypergeometric functions

\[F(a, \beta, \gamma; z) = \sum_{n=0}^{\infty} \frac{a(a+1) \ldots (a+n-1) \beta(\beta+1) \ldots (\beta+n-1)}{n! \gamma(\gamma+1) \ldots (\gamma+n-1)} z^n \]

\((\gamma \neq 0, -1, \ldots) \)

satisfying

\[z(1-z)y'' + (y - (1 + a + \beta)z)y' - ay = 0. \]

We shall prove the following theorems.

Theorem 1. If \(a, \beta, \gamma \) are rational numbers, \(\gamma \neq 0, -1, -2, \ldots \), then the functions \(F(a, \beta, \gamma; z) \) and \(F'(a, \beta, \gamma; z) \) belong to Gallokhin's \([3]\) class of \(G \)-functions (for definition see § 3).

Theorem 2. Let \(a_i, \beta_i, \gamma_i \ (i = 1, \ldots, m) \) be rational numbers satisfying

\(\gamma_i \neq 0, -1, \ldots; a_i, \beta_i, \gamma_i - a_i, \gamma_i - \beta_i \notin \mathbb{Z} \ (i = 1, \ldots, m); \quad a_i - a_j, \beta_i - \beta_j, \gamma_i - \beta_i \notin \mathbb{Z} \ (i \neq j; \ i, j = 1, \ldots, m); \) none of the numbers \(a_i + \beta_i - (a_i + \beta_i) \ (i \neq j; \ i, j = 1, \ldots, m) \) is an even integer. Let \(x_i, y_i, z_i \ (i = 1, \ldots, m) \) be integers, not all zero, and let us denote \(h_i = \max \{ |x_i|, |y_i|, |z_i| \} \ (i = 1, \ldots, m) \), \(H = \prod_{i=1}^{m} h_i \). Let \(0 < \epsilon < 1 \) be given. There exist positive constants \(\lambda, C, \) depending only on \(\epsilon, m, p \) and the functions \(F(a_i, \beta_i, \gamma_i; z) \ (i = 1, \ldots, m) \), such that

\[|x_i + \sum_{i=1}^{m} \left(a_i F(a_i, \beta_i, \gamma_i; z/q) + y_i F'(a_i, \beta_i, \gamma_i; z/q) \right) | \geq \lambda q^{-1} H^{-1-\epsilon} \]

for any rational number \(p/q \neq 0 \) satisfying \(q > C \). In particular, the numbers \(1, F(a_i, \beta_i, \gamma_i; p/q) \) and \(F'(a_i, \beta_i, \gamma_i; p/q) \ (i = 1, \ldots, m) \) are linearly independent over \(\mathbb{Q} \) for all \(q > C \).
Theorem 3. Let \(a, \beta \) and \(\gamma \) \((\neq 0, -1, \ldots)\) be rational numbers such that \(F(a, \beta, \gamma; z) \) is not an algebraic function and \(a, \beta, \gamma \neq 0 \). Let \(F(x_1, x_2) \equiv 0 \) be a polynomial in \(\mathbb{Z}[x_1, x_2] \) of degree \(\leq N \) and height \(\leq H \). There then exist positive constants \(c, \delta, \) depending only on \(a, \beta, \gamma, N, H, \delta \) and \(\varepsilon \) such that
\[
|F(a, \beta, \gamma; 0)| = O(H^{-1/2}(\log \log H)^{1/2})
\]
for any algebraic number \(0 \) of degree \(\leq \tau \) and height \(h(0) \leq H \geq \varepsilon \) satisfying
\[
\log h \geq \left(\max \left\{ 2, N \right\} \right) \log \log h,
\]
which is then satisfied for \(\varepsilon \) of order \(\min \{ \varepsilon, 1 \} \).

This theorem implies, in particular, the linear independence (over \(\mathbb{Q} \)) of the numbers \(F(a, \beta, \gamma; 0), F'(a, \beta, \gamma; 0) \) for all algebraic numbers \(0 \) of degree \(\leq \tau \) and height \(H \geq \varepsilon \) satisfying \(\log h \geq 16 \log \log h, \log \log h > 0 \), which is obtained from (3). This kind of result, the need of which was already pointed out by Siegel [10], is obtained in the main lemma in Section 2. The proof of the theorems is then completed in Section 3.

2. Main lemma. First we prove.

Lemma 1. Let \(\delta \in \mathbb{Q} \) and let \(K \) be the denominator of \(\delta \). For any \(n \in \mathbb{N} \), let \(L_n = K^n \prod_{p \in \mathbb{Z}^+} p^{n(p-1)} \). Then \(L_n \frac{\delta}{n} \) is an integer.

Proof. Notice that:
\[
L_n \frac{\delta}{n} = K^n \frac{\delta(n-1)}{n} \prod_{p \in \mathbb{Z}^+} p^{n(p-1)}
\]
for any \(n \in \mathbb{N} \). Let \(p \) be a prime not dividing \(K \). The number of factors \(p \) in \(n! \) equals \([n/p] + [n/p^2] + \ldots \). Notice that \(p^a K^{\delta} - mK \) if and only if \(p^a m - b \) is divisible by \(K \). Furthermore, at least one of the numbers \(K, K\delta - mK \) divisible by \(p \). Consequently, among the products \(K, K\delta - (n-1)K \) are divisible by \(p \). Hence the product \(K\delta - (n-1)K \) contains at least \([n/p] + [n/p^2] + \ldots \) factors \(p \). Thus we see that \(L_n \frac{\delta}{n} \) has only prime divisors of \(K \) in its denominator.

Let \(p \mid K \). Since \(n! \) contains at most \([n/p] + [n/p^2] + \ldots \leq [n/p - 1] \) factors \(p \) we see that
\[
K^n \prod_{p \in \mathbb{Z}^+} p^{n(p-1)} \frac{\delta}{n}
\]
is integral as asserted.

In the following computations \(a, \beta \) and \(\gamma \) denote rational numbers with \(\gamma \neq 0, -1, -2, \ldots \). It follows from (2) that
\[
F(1/z, 1/z, 1/z) = (2\beta + a + \beta + 1)z - \gamma \frac{(n+1) + (n+a)(n+\beta)}{E^n}.
\]

5 - Acta Arithmetica XVIII
This implies
\[\frac{1}{n!} \left((1 - z)^n \mathcal{F}(n) \right) = \frac{p_n}{q_n} F^r = p_n F^r + q_n F^r, \]
where \(p_n \), \(q_n \) are polynomials in \(z \) with rational coefficients. The following lemma gives a bound for the denominators of these rational coefficients.

Main Lemma. Let \(K \) be the common denominator of \(a, b, \gamma \) and let \(\eta_n \) be as in Lemma 1. Suppose that \(\delta \neq 0, -1, -2, \ldots \). For each \(n = 1, 2, \ldots \), the coefficients of \(p_n, q_n \) are rational numbers whose denominators divide \(s \eta_n \), where \(\eta_n \) denotes the least common multiple of \(1, \ldots, n \).

Notation. The fact that a rational number \(\eta \) has denominator \(d \) will be denoted \(\eta \in \mathbb{Z}/d \).

Proof of the Main Lemma. Write \(V_n = (n+1)^{-1}(1-z)^{n+1} \mathcal{F}(n) \).

Then, by (3),
\[(n+1)(n+2) V_{n+2} = \left([2n+1 \alpha + \beta + 1] + (n+1\alpha + \gamma) V_{n+1} \right) + \left(n+1 \beta + \gamma \right) V_n. \]

Substitute \(V_n = a(n+1) \ldots (n+1\alpha + \gamma) U_{n+1}/n! \). Then
\[(n+1)(n+2) U_{n+2} = \left([(2n+1 \alpha + \beta + 1) + (n+1\alpha + \gamma)] U_{n+1} + \right. \]
\[\left. + (n+1 \beta + \gamma) \right) V_n. \]

Let \(U(t) = e^{\frac{\alpha}{n!} t \mathcal{F}(n)} \) be the generating function of \(U_n \). We shall derive an expression for \(U(t) \). It follows from (4) that
\[U(t) = \sum U_n e^{t \mathcal{F}(n)} \]

We solve this differential equation for \(U - U_0 \) by standard methods. After division by \(t - (2s-1) t^2 + (s-1) t^3 \) we obtain
\[\left(U - U_0 \right) + \left(\frac{a-\gamma+1}{1-s} \right) U_0 = \frac{1}{1-s} \left(a \mathcal{F}(n) + \beta \mathcal{F}(n-1) \right). \]

Solution of this differential equation yields
\[\mathcal{F}(n) = \mathcal{F}_1 U_1 + \mathcal{F}_2 U_2, \]
where
\[\mathcal{F}_1 = a e^{ \int \mathcal{F}(n) dt}, \]
\[\mathcal{F}_2 = \beta e^{ \int \mathcal{F}(n) dt}. \]

and
\[\mathcal{F} = e^{\alpha t - \gamma t} \left(1 + \mathcal{F}(n) \right). \]

Let \(\mathcal{K} \) be the common denominator of \(a, b, \gamma \). If \(\delta \in \mathbb{Q} \) and \(\delta \in \mathbb{Z}/\mathcal{K} \) we know by Lemma 1 that \(\left[\frac{\delta}{\eta} \right] \in \mathbb{Z}/\mathcal{K} \). Therefore the \(\eta \)th coefficient of the power series expansions in \(t \) of the functions \((1-z)^{n+1} \) and \((1+1-z) \beta \) is a polynomial of degree \(\leq n \) in \(z \) with coefficients in \(\mathbb{Z}/\mathcal{K} \). The same holds for the product of these two expansions and its inverse. It is now straightforward to see that the \(\eta \)th coefficient of \(\mathcal{G}_1 \), \(\mathcal{G}_2 \) is a polynomial of degree \(\leq n + 2 \) in \(z \) having coefficients of the shape \(\sum a_k (a+k)^{-1} \), where \(a_k \in \mathbb{Z}/\mathcal{K} \). Finally, we have
\[\frac{a(n+1) \ldots (n+1\alpha + \gamma) U_{n+1}}{n!} - \frac{1}{1-s} \left(a \mathcal{F}(n) + \beta \mathcal{F}(n-1) \right). \]

Let us consider the numbers of the shape
\[\left(a(n+1) \ldots (n+1\alpha + \gamma) \right) \frac{1}{n!} \sum_{k=\alpha}^{n} \frac{a_k}{a+k}. \]
Notice that
\[\frac{a(n+1) \ldots (n+1\alpha + \gamma)}{n!} (a+k) \]
\[= \frac{k!(n-k-1)!}{a! (a+k-1)!} \frac{a(n+1) \ldots (n+k-1)}{n!} \frac{(a+k)(a+k-1) \ldots (a+1)}{(a+k-1)!} \]
\[= \frac{1}{n!} \left(\frac{(a+k-1)}{a+k} \right)^{(a+n-1)} \]

By Lemma 1, the product of the last two binomial coefficients is in \(\mathbb{Z}/\mathcal{K} \). Thus we conclude that our numbers have denominators dividing \(\left(\frac{n+1!}{1!}, \ldots, \frac{n+1!}{1!}, \ldots \right) \mathcal{K} \). It is a well-known fact that if a prime power \(p^b \) divides \(\left(\frac{n+1!}{1!}, \ldots \right) \mathcal{K} \), then \(p^b \leq n \). This implies that \(\left(\frac{n+1!}{1!}, \ldots \right) \mathcal{K} \).
In order to prove condition (iii) we note that by the Main Lemma it is possible to choose for the sequence \(\{d_n\} \) the sequence
\[
d_n = \frac{T_n}{n} [1, \ldots, n+1] K \alpha, \]
which clearly satisfies \(d_n \leq \gamma_n Q_n^\alpha (n = 0, 1, \ldots) \) for some constants \(\gamma_n, Q_n \), since \([1, \ldots, n] \leq \gamma_n^\alpha \). In the case \(n \in \{0, -1, -2, \ldots\} \) \(F \) and \(F' \) are polynomials and thus condition (iii) is obviously satisfied. Theorem 1 is thus proved.

Theorem 2, which improves [2], Theorem 1, is now an immediate corollary of Theorem 1, [2], Lemma 2, and [12], Corollary 1.

In the proof of Theorem 3 we shall need the following result giving the conditions for the algebraic independence of \(F(a, \beta, \gamma; z) \) and \(F'(a, \beta, \gamma; z) \).

Theorem 5. Let \(a, \beta, \gamma \) (\(\neq 0, -1, \ldots \)) be rationals. If \(F(a, \beta, \gamma; z) \) and \(F'(a, \beta, \gamma; z) \) are algebraically independent over \(C(z) \), then either (2) has only algebraic solutions or at least one of the numbers \(a, \beta, \gamma - a, \gamma - \beta \) is algebraic.

Proof. If \(F \) and \(F' \) are algebraically dependent then it follows by Siegel [11], pp. 60–62, that there exists a solution \(w \neq 0 \) of (2) such that \(\omega'/w \) is an algebraic function. In order to study the analytic behaviour of \(w \) throughout the complex plane we continue \(w \) analytically along closed loops in \(C \setminus \{0, 1\} \) beginning and ending in a point \(z \) of \(C \) different from 0 and 1. After traversing such a loop the function will in general change into a different branch \(w_z \). We now distinguish three cases.

I. There exist two other branches \(w_1, w_2 \) such that \(w'/w = w_1'/w_1 \) and \(w'/w_2 = w_2'/w_2 \) are mutually different. Then the difference \(w_1'/w - w_2'/w_2 \) is a non-zero multiple of the Wronskian \(s' (1 - 1/z + 1/z) \), which is algebraic. Therefore \(w \) is algebraic.

II. There are exactly two branches \(w, w \), such that \(w'/w \neq w'/w \). Let \(T_{\beta}, T_{\gamma}, T_{\alpha} \) be simple loops enclosing \(z = 0, z = 1, z = \infty \) respectively. Suppose \(T_{\beta} \cap T_{\gamma} \cap T_{\alpha} \approx 1 \), that is, the path \(T_{\beta} \cap T_{\gamma} \cap T_{\alpha} \) can be contracted to \(z \) in \(C \setminus \{0, 1\} \). After traversing such a loop \(T \), two things may happen, we have either (1) a substitution \(w \to w_0 \), \(w_0 \to w_2 \), or (2) a substitution \(w \to w_0 \), \(w_0 \to \mu \), \(\mu \in C \). Because of \(T_{\beta} \cap T_{\gamma} \cap T_{\alpha} \approx 1 \), the possibility (1) occurs exactly twice. Let us assume that \(T_{\beta} \) and \(T_{\gamma} \) are the loops under consideration. Denote by \(S \) the substitution that \(w \to w \) undergoes after traversing \(T_{\alpha} (i = 0, 1) \). Clearly \(S \) \((i = 0, 1) \) has order two. Since \(T_{\beta} \cap T_{\gamma} \approx T_{\alpha} \), the functions \(w_0, w_1 \) change into \(w_0, w_1 \), after traversing \(T_{\beta} \cap T_{\gamma} \), and since (2) has rational exponents it follows that \(w_0 \), \(w_1 \) are roots of unity, and thus \(S_0 S_1 \) has finite order. A group generated by \(S_0, S_1 \) such
that $S_2^2 = S_2^2 = 1$ and such that $S_2 S_1$ has finite order is necessarily finite and thus $w_1 w_0$ must be algebraic. By the argument in I we know that $w_1 w_0$ is also algebraic. Thus w_0 and w_0 are both algebraic and (2) has only algebraic solutions.

III. Every branch of w is a multiple of w. Then w'/w is a single-valued algebraic function must be rational. This happens only in the case in which at least one of the numbers a, b, c, d is an integer (see [7], Chapter II).

Because of Theorem 6, Theorems 3 and 4 are immediate corollaries of the following Theorems A and B, which are proved in [13], and which slightly improve [9], Theorems 4 and 6.

Theorem A. Assume that the functions (5) satisfying (6) are algebraically independent over $\mathbb{C}(z)$ and belong to the class $\mathcal{F}(K, g_1, g_2, Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, Q_7)$, and let $P(x_1, \ldots, x_n) \neq 0$ be a polynomial with integer coefficients in K satisfying $\deg P \leq N$, $|\text{coeff} P| \leq H$. There then exist positive constants δ, λ, τ, depending only on $g_1(\theta), \ldots, g_7(\theta)$ and ε, and a positive constant C, depending only on $K, g_1(\theta), \ldots, g_7(\theta), \varepsilon, N, \theta, \delta$, and τ, such that

$$|P(g_1(\theta), \ldots, g_7(\theta))| > C^{-1}(\log(\log|\theta|))^n$$

for any algebraic number θ of height $h(\theta) \leq \delta \varepsilon$ satisfying $[K(\theta): Q] \leq \tau$.

Then $\theta(\theta) \neq 0$, $\log h \geq (\max \{2, \delta N\})^{1/2} \log \log h$, $0 < |\theta| < e^{-\varepsilon(\log(\log h))^2}$.

Theorem B. Let the functions (5) satisfy the conditions of Theorem A. Let $L_1(x) = a_1 + b_1 x \neq 0 (i = 1, \ldots, s)$ be linear forms with integer coefficients in K satisfying $\max \{|a_i|, |b_i|\} < H$. There then exist positive constants δ, λ, τ, depending only on $g_1(\theta), \ldots, g_7(\theta)$ and ε, and a positive constant C, depending only on $K, g_1(\theta), \ldots, g_7(\theta), \varepsilon, N, \theta, \delta$, and τ, such that

$$\max_{1 \leq i \leq s} |P_i(g_1(\theta), \ldots, g_7(\theta))| > C^{-1}(\log(\log h))^n$$

for any algebraic number θ of height $h(\theta) \leq \delta \varepsilon$ satisfying $[K(\theta): Q] \leq \tau$.

Then $\theta(\theta) \neq 0$, $\log h \geq 2^{1/2} \log \log h$, $0 < |\theta| < e^{-\varepsilon(\log(\log h))^2}$.

References

[12] — *In a class of G-functions, Mathematics*, University of Oulu 1/81 (1941).