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On a sequence of {j, ¢)-normal approximations
to /4 and the Brouwer cenjecture
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1. Introduetion. We present @ firgt application of our results concern—
ing the phenomencn of (j,s)-normality in the rationals {[4], p. 233;
see def. Type A, p. 229 and further studies in [37, p. 389) to a specifie
given convergent sequence of rational approximations 9, /g, < 1 in lowest
terms whose limit, in this ease as n-»o0, ix the interesting number =/4.

In order to establish the (§, &)-normal character of the representations
of a given sequence of rational numbers in some hase ¢, we need specific

information concerning the magnitude of the exponents =, in the prime

N r
decomposition of the denominator g, = [T p;’ a8 # imcreases without
i=1

bound. In particular, we need to show, in erder to prove (j, ¢)-normality,
that there iy at least one odd prime p,|g, such ﬂ;at the exponent n; of
that prime is such that @; >#+s; where p (g 1), &](p;~1), and

P fegns -y &), €. s; is the maximum expenent to which p; appears

in each least exponent d;.;,d;.,,...,d, for the primes contained in ¢,
which exceed p, np to the maximum prime p,lq,.

Even though there are many convergent sequences of rational ap-
proximations p,/q, such that limp,fq, is some real number of interest.

— 7-+00
such as e, =, ¥2, ete., we find that when we consider given sequences
(It is important to keep in mind here that we are not considering “con-
structed” cases of sequences but repregentations based on well-knewn infi-
nite processes.) that the above arithmetic informaticn eoncerning behavior
of the odd primes contained in g, as # increases withoud bound i3 not
known at the present time. '

In this paper, we will show that an infinite product representation.
which ean be writben ag a produect of factorials will yield a great deal
of arithmetic information concerning the prime deécomposition of the
suecessive partial products. For this study, we consider the Wallis infinite.
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produet for =/4 which has the partial product

(1.1) paltn = [ [ (1-1/@i+1))

where limp,/q, = =/
N0

Since we are investigating quesiions in relation to =/4 in base 10
(We could have used = and removed the integral part, but-for econvenience,
we consider /4 < 1.}, we will show there exists an infinite sub-sequence
of n values such that each p,/g, < 1 is in lowest ferms and the primes
2 and 5 are missing from g,. In addition, we show for the particular sub-
sequence of n values that the exponent of any fixed odd prime g £ 5 in
4, becomes arbitrarily large. These results imply that in base 10,p,/q,
over this particular sub-gequence of # values are such that they converge
onte =j4 by means of purely periodic representations, i.e. the expansion
of p, /g, converging toward w=/4 begins immediately at the decimal point.

Furthermore, we alse prove that these parfial products p,/g, for each
" a value are (§, e)-normal in bage 10. We then apply these results to a con-
jecture of L. H. J. Brouwer which we promised in ([4], pp. 234-235), i.e.
he thought that it was an undecidable proposition to prove that somewhere
in = there would occur a fixed chosen set of digits like 0123456789 when wis
represented in hase 10.

Actually, we can paraphrase Brouwcr’s conjecture, and say that
he believed that it was an undecidable proposition to prove that a given
irrational like = was & normal number in the sense of Borel when rep-
regented in base 10. This follows at once since, if a real number is normal
in any integral base, then any specified bleck of digits will have its
expected limiting relative frequeney over the infinite collective in ifs
radix representation. The normality in base 10 of = wounld assure the
occurrence of 0123456789 somewhere in the expansion.

On the other hand, It is surprising to note that even though the
preponderance of real numbers are absolutely normal, ie. normal in
every infegral base with the non-normal numbers of measure zers, and
in addition, with the support of abundant nurmerieal evidenee for normality
in real nmmbers such as e, w, 1/5, ete., no demonstrations have heen given
to date to show that specific given irrationals such as these are normal
in any base.

Much. of our work to date cn the extensive phenomenon of {f, s)-nor-
mality in the rationals has been motivated by an effort to lay a foundation
for such a demonstration based upon the (§, £}-normal properties of ratio-
nal approximations to irrationals.

We note here that the Brouwer type conjecture is decided (4],
Th. 6, p. 233) for a broad class of {], e)-normal Type A rational fractions.

On a sequence of (j, &)-normal epproximalions o =ji ~ 267

For example, we can state that the block 0123456789 will occur some-
where within the set of digits slightly greater than the squnare root of
a period length ([3], p. 377) (even though we cannot compute its first
appearance!) of say, Z/17" << 1 as represented in base 10 with (Z,17) =1
and n sufficiently large (sce [4], p. 235).

2. The prime decomposition of p,/g,. By filling in the missing prime
factors, (1.1) can be writien

(2.0) Dol = 2 (1o A1) {20 1))

where ¢, may contain any odd primes p < 2n+1 for sz 1.
U Eip,n) is the exponent of the prime p contained n 2!, we ean
write p, /g, in lowest terms as

(21) Puln = 250 [ [ 7@
{z}

where

{2.2) F(p,n) =2B(p,2n+1)—3E{p, n)— H{p,n+1)

or :

Fip,n) =(L+38(p, n)+8(p, n+1)—28(p, 2n+1))f(p —1)

“and

{2.3) G(2,n) = 4n—17(2, n)

where S(p, n) is the sum of the eoefficients ; in the p-adic representation
of m, ie. nip) = Ya;p*. . :

i

We study t];()a behavior of the exponent F{p,n} from two points
of view, (1) we can choose some fixed » > 1 and let p ron over all the odd
primes 3,5, ... < 2xn-11; {2) or fix p and let » inerease without bound
in the suecessive approximations p,/q,.

Tn essence, this means we can study the complete prime decomposition
of a given p,/q,, or determine the behavior of the exponent F{py, )
of some given fixed odd prime p,|q, as the factor pl'®e™, when » increases
without bound. We find that these results depend intimately on the
p-adic form of #. For example, we can show that there exists an infinite
sequence of n values such that F(py, #y) = F{py, tix) = 0, ... for my < 0
< ..., 1.6 there exists an infinite sequence of « values such that the chosen
odd prime p, is missing in the denominators g, of the suceessive approxi-
mations p,/q,. When F(p, n) = 0, we call this a minimum value of F(p, n).
Most important for our (§, e)-normal considerations, we can also show
that there exists a strietly monotonic imcreasing infinite sequence of

% values sueh that F(p,,#n) iz a strictly increasing, monotonie infinite

sequence of positive integers.

4 — Acta Arithmetica XT.IL3
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Ve find that it is convenient to consider F(p, %) in (2.2) as defined.

over the p°(p—1) values of n contained in °<Cn << ™™ —1 for some

0dd prime p where s = flog,n] for any % in the in’rewal Implicitly, this

Z‘ [#/p'] where [2]

ig the greatest integer not greater than & with [n/p°] = 1 and [#/p*™1] = 0,
and we may consider all positive integers # = 1 as contained in the intervals
I<agp—1, pn<p*—1,... for any odd prime p.

In Theorem 1, we cbtain precise information on the value of F(p, n)
for a fixed p and particular n = p*, p*+1, ..., p°™* —1 within the interval.
We find that ¥ (p, ») is a multivalued funection which takes on the values
051, ..., 2(s+1) depending on the digits a, in the p-adic form of n. We mean
maltivalued in the sense that each of the 2s - 3 nonnegative integers 0, 1, ...
e+ey 2(8 -+1} are assumed by F(p, n) at least once over the p*{p —1) valnes
of # in the interval. Necessary for this paper are the zeros or minimums
of F(p, n} as well as the maximums, i.e. when F{p, n) = 2(s+1). We show
in Theorem 3 that these “critical” values oceur in the lower half and 11pper
half of the interval jp < < PP 1. For example, let p =3 and s = .4,,
then for n = 3%, 32-+ » 3%—1; we find that F(3 9) F(3,12) =
F(3,11) =1, F(3 1@) F(B 18 = F(3,21) =2, ..., F(3,13) = I’(S,,.
16) = F(3, 22) = F(3, 28) = 6 which are the maximums 2(2-41) =6 in
the interval 32 m< 38 —1.

In Thecrem 2, we prove that all the powers of 2 are in Pyl 257 &

< G2, n) K 23 (5+35) for all n contained in 2° < n < 2°1 -1 for any
§22 0. This resnlt implies that G(2, n) is a positive strmtly monotonic
inereasing funection of » > 1.

consideration depends upon the function E(p, n)

&

In all the considerations of the p-adic forms of n(p) = 3

i=0
2 << p* 11, it is clear Dy implieation that ¢, must he 1,2, ..., p—1,
but the g, for 0 <{{ < & can he 0,1,...,p~—1.
TueoreEx 1. Let nip Z’azp in PP L Pt —1 where p is any

odd prime, s = [log,n], _'p‘ (;1—r1),
= [2n/p** 1 Imed?2 for i =0,1,...

°[(2n1), §; = [2n/p" ] —2[n/p ]
&

s 85 and define the function k(z) = Y &

ifx
Jor any 0 << x5, then the exponent F{p, n) of an odd prime p < 20 +1 in
Pl = 25 ")/H.’Pﬂp ") ds given by:
(2)
(2.4) Case 1. w >0, o =0, Fip,n) = 2k{w)+w where w < F(p, ny

< 2(s41) —wjm wo=1,2,..
- w1

n&+land oy =p—1fori =0,1,...

icm

On a sequence of (j, &)-normal approzimations to w/i _ 269

Case 2. w =0, v>0, F(p,n) =2(k®)+0) where 20< F(_fp,n)

L 2s+1) forv =1,2,... ,s—!—l and o, = (p—1}/2 for 1 = 0,1,
oy L3 fimally,

C‘.ase S.w=0,9=0,F(p,n)=2k(0)where 0

0 k{(0) < 8-+, where aq & (p—1)/2 or p—1.

Troof. Write (2.0) as

Fip, n) <2(s+1),

2
@) Palt = 204120120

and Iet ¢ 2= 0 be defined by »" (2”) where (%:’) ig the bhinomial coefficient.

Some results concerning the prime factors of 2;1,) have already appeared

(see Erdds [27], p. 516; [3], and a result of E. Kummer in 1852, L. E. Dickson
{1}, Vol. 1, p. 270).
Following the procedure of B. Kummer form 2n = §,p°t -+ ¢p*+ ...
. +6p+c, with the “carry-over” system

for 4=1,2,...,5 and
g; =0 or 1,

(2.6) 2ay = 8o+ 6oy ---y iy +2a; =8P+

then

1
=

i.e. 7 is the sum of the carry-overs in forming # = in p-adic form. We may
also write

{2.7) r = H(p, 2n)—-28(p, n)

= 2 ([2n[p* 1] —2[0/p* ) =

Za = T{0)

=0

where [20/pl—2[n/p] = b, [20jp*1-20n/p*) =8y, ..., [2nfpT]—
—2[n/p°*?] = 4, are the carry-overs of the Kummer system in (2.6).. The-
fore, the congruence modnle 2 follows at once. If we consider the particular
forms of # implied by cases 1, 2, and 3, we can obtain the total carry-overs
in forming 2= in each case and obtain F(p, ») from the w and v according
to the case. In case 1, # = a,p°+ t_12° 1+ ... + a0+ (p—1)p¥ "+ ...

.. +{p—1) which u:uphes for s=w, p¥ll(n +1) and p™(2n 1), and

thug, we have ¥ = Zéi = 26 +w = k(w)+w when we form 2u(p), ie.

i=0

we gurely have w carry-overs from the {p.—1)’s and from there on, & vari-
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able nmmber according to the magnitude of the digits «; for w<<i<s
8

Y‘é Thus, it follows from (2.5) that the

exponent of p iz given by ¥ (p, n) = 2(L(w)+w)—w = 2le{w) + w. Simi-
larly, for case 2, @ = ap*+a,_ ;p° '+ ... +ap"+(p-1)p" 2+ ...
L =-(p ——1),'_., and thus, p"|(2n-+1) and pf(n+1) which shows that

r = Ik{y) =

which is denoted by k{w) =

Z‘ét, i.e. there can only be possible carry-overs §, from the

¢'h to the sth place in 2n{p). So for case 2, we hawve from (2.5), F(p,n)
= 2k(v)+20 = 2 (k{v)+2).

It is merely convenient to state cage 3 in the form given, since each
I'(p,n) of case 1 forw = 0 and case 2 for v = 0, reduce to F(p, n) == 2&{0)

8
= 2 }'é,. For the indicated hounds on F(p, #) in each case, these depend

i=p :

only on the sum of the carry-overs §; in each %(#), i.e. it all §; =1 for
each § =@, &+1, ..., s=>kir) =8-+1—w, orif all §; = 0=F(x) = 0, ete.
Finally, the bounds on w and » follow from the possible p-adic structures
- of 2(p)+1 and 2n(p)-}-1 as indicated above. Theorem 1. is now complete.
' Let us diseuss a number of important consequences of this result.
One can clagsify all the integers #{p) in »* <\ n < p°**—1 according to
the 3 cases and obtain all the possible valnes for F(p,n) > 0, ie. they
imply specific restrictions on the digits a; in the p-adic structure of n{p).
In Theorem 3, we give explicitly the p-adic conditions for the ocenrrence of
the maximums, F(p,n) =2{s+1) and minimums, F(p,#) = 0 in the
interval. These minimums and maximums in p° < n < p*+' —1 for certain
# values, necessary for this paper, occur only in ease 3 and cage 2, resp.
If w=20, v =0, k(0) = 0=F(p, n) =0, these imply digit rvestrictions
on #(p}, i.e. ease 3= no (p—1)’s or {p —1)/2°% from the right and no earry-
overs in ferming 2n(p). On the other hand, mnximum% ¢an oceur in cases 2
and 3, i.e k(s+1) =0, v = s+1 for case 2 and E(0) = s--1 for case 3.
In fact, each case reveals the requirements on n (p) so that F(p, ) can take
on a strietly monotenic increasing sequence from the indicated minimum
F(p.n) =0 to the maximum F(p,n) = 2(s+1), i.e. Flp,n)=10,1,...
..y 2{¢-}1). Other conclusions can be drawn in reference to even and odd
values for F(p, n} in the interval.

The following corollary gives what we might call the “horizontal?
structure of the p, /g, in (2.1) for a fixed # > 1 as p runs over the odd primes
3y5,... < 2nL1. It shows that in p,/q, as # increases without bound
every odd prime p, will sppear for scme 2n+1 = p, and have the
expenent 2 as long as a-+1 < py < 20 +1 for sueceeding n values. Then
for some sufficiently large N and all » > N such that 3L p S N+,
the F(p, x) will begin to run over the values 0,1, 2{s+1) according
to Theorem 1 and continue the pattern for all § = [log n] Thus, it is

icm
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clear that the exponent of any chosen odd prime in g, will become arbitrarily
large for some sufficiently large .

Cororrary oF THEorEM 1. Consider all comsecutive odd primes
P =3,0,...<2n-}+1 for a given n 2> 1 divided into 2 classes 3 < p, < w1
and n-+1 < p, < 2n-+1, then Fp;, n) =2 and F(p;,») will have o value
ehosers from 0,1, ..., 2(s+1) depending on the particular n as steled in
Theorem 1 where n is contained in some pf < n < pf** 1 with s = [log, n]
=0,

Proof. Using (2.2) in the form

(2.8) Fip,n) =2{[2n+1}/p]+
or

[(2n+1)/p*]+ ...}

F(p,n) = —3{In/p]+[n/p?1+ .. }—{[(n+1)/pI+[(n+1)/p21+ .. }
and thuos s+l < p<<2n 41 or 1
[(2n+1)/p] =1

(@n-+1)/p < 2—1jp=
for such p and all [(2n+1)/p¥] = 0 for & >1.

Rimilarly, I—ip<afp<l—1jp=[mip*]=0 fork>=1 and also
[(n-+1)/p*] = 0. Therefore, we have F(p;, n) = 2 for those p = p,. :
If the odd primes are such that 8 <p, <n-+1, then [2/p*] and
[{n--1)/p"] begin to take on non-zero values. Hence, we are in the con-
tent of Theorem X which implies the possible values 9,1, ..., 2{s-+1) for
F{p;, n) according to the particular » values as located in pf <n < pftt—1
for some § 2= 0 and choice of p; < »-}-1. Thus, we obtain the above ecorollary.

As an example of this regult, let » =11, then

Sp<12<p, <23 = 9, =3,5,7,11 and g =13,17,19, 23.
Thus, F(p;, 11) = 2 for all p; and F(3,11).=1, F(5,11) =4, F(7, 11)
=2, F(11,11) = 0, and therefore p,/q, = P1/qn = 2%°/31-5%- 72110+
132-172:192:23% where G(2,n) =411 —4 = 40. Here F(2,11) = 1+
+38(2,11)4 8(2, 12) —28(2, 23) = 4 where 11 == n(2) = 1011, n({2)+1
== 1100, 2n(2)+1 = 10111, and therefore, 8(2,11) =3, §(2,12) =2,
8{2, 23) = 4, resp.

Also, » =11 is located in 32<C11 <331 for s =2, and 611N
<E -1, TSUCTe -1, 11111 112—1 for § =1. We note that
F{5,11) = 2(1+1) = 4 is one of the maximums on the range 5' <11
<b:*—1 for ¢ = 1.

Concerning, G+{2, n), we have

THEOREM 2, G2, n) in P, [q, = 280 [T pFE js g strietly monotonic

positive increasing function of n conlained in 2° < n< 27 —1 for s3>0
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where AG(2,n) = G2, n+L)—6G(2, n} 18 such et 3 < AG(2, n) = 2.—1~
+o< s+8 with 2°)(n-+1) or (n42) .sm_d L5 e+l for consecutive
n such thot 257 —9 < @(2, n) < 25+ — (¢ B). “

Proof. Form p,,1/¢,.1+ Pulls, and we obtain from (2.1) and the
factorials in (2.0)

28n+1)(n+2)
2, AF(p,m)

{2-9) pn+IQﬂ/Qn+1pn - 2_“;( u)/QI’ P e (2%+3)2
where AF(p,n) = F(p, n+1)—F(p,n) for any odd prime p.

Hence, we ean write

(2.10) 2481492 (5, +1) (0 +2)

where AG{2, ) is the max power of 2 which divides 2*(n 1) (% T{—Z). [I.Thus,
it is clear that 4G(2,n) = 2-+v where 2°{{n+1) or (n+2). Since either
(n--1) or {n--2) is even but not both, and (2n--3) is always odd, we have

1< v s+1 where the upper bound s-+1 is due to # = 28+ —1, or m+1 -

= 2°t1 but n+2 = 2°71 41 is odd. Hence 3 < 4G(2Z, 7)< s+3 which
establishes the strictly monotouic positive nature of G(2,n) over con-
secutive » values. To complete the theorem, we have 4-2°—F(2,2%)
<G(2,n) < 4(2°H 1) - F(2, 2071 —1) and 82,2 =1, §(2,2°+1) =
8(2,2-2841) == 2, Le. by (2.2) F(2,2%) = 2. A similar calculation shows
that F(2, 251 —1) = s+1, and therefore, the upper bound on G(2, a) is
95451 =2V (s+5). =

Tn passing, we note that (2.9) also implies some interesting additional
information coneerning AF{p,n) but this is not germane to this paper.

The following result gives the restrietions on the coefficients a; (or
“digits”} in the p-adic representation of # so that F(p, n) achieves either
jts minimum zero or maximum 2(s-+1} for any = 0. We require this
result in the next section and in (j, £)-normal considerations.

TEEOREM 3. Consider the p-adic form of every m e [9°, p*¥1—1] where

g
:Z%Z’i, 1o, <p-1, 0o, <p—1 for 1 =0,1,...,8—1 for
any odd pmme P cmd 8= 0, then

(a) (i) Plp,n) =0 for a iolal of ((5-+1)/2)"{{p—1)/2)* values
of n in ihe lower-half interval [9°, (p°T1—38)/2] for 822,
1< a,<(p—1)/2, 0< o< (p—1)/2 for i=0,1,...,s—1,

(i} F'p,n) == 0 for s =1, 1<a1\( -—1)/2, 0<a0<(p —3)/2,
(iify Fi{p,n) =0 fors =0 and 1< ay< (p=3)/2,

(b) Fip,n) =2(s+1), the mazimum, for {(p--1)/2)°(p—1)/2
' values of n in the upper-half interval [(p*T1—1)/27p°T1 2]
with (p—1)/2 < a<p~1 for 1 =1,2,...,8 and (p—1)/2
Lo Sp—2 for 20, o <
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Proof. As we said earlier, ¥'(p, n) = 0 only from case 3 in Theorem 1,

therefore, k(0) = 38, = 0, ie. no “carry-overs” in forming 2, thus
: i=0

Fp,n) = 0. It is also clear that we must requive that a, # {p—1)/2

sinee » == 0, i.c, p < (2n+1). The other conditions on the «; follow at

onee. .

By constructing the least # = »° such that F(p, p®) = 0 and the
lazgest n = (p—1)p*/24 ... +(p—1)/2—~1L = (p°**—3)/2 such that
Fp, (p**' —3}/2) = 0, we see that they all fall in the lower half interval:

For the enumeration, in each of the ¢ —1 place positions, we ean have
at most (p +1)/2 choices for the a; for i =1, 2, ..., s—1 and in the first
place and the last (p—-1)/2 choices, therefore, a tofal of {(p +1)/2)~ %
% ((p —1)/2)2 values of » occur in the lower half such that F(p,n) = 0.

Part (b) follows by completely analogous argnments using only case 2
and 3 of Theorem 1 assuring that the maximum number of earry-overs
oceur which leads to the stated restrictions on the digits in the p-adic form
of n such that #{p,n) =2(s-+1). m

3. F(3,n) =0 and F{g,s) = 2(s+1). In this section, we prove
that there exists an infinite sub-sequence of strictly increasing positive
integers # such that F(5,x) = 0 and F(g, n) = 2(s 1) where ¢ ¢ 5 and
£ can inerease without bound. Since the powers of 2 are confined to p, in
P./¢, and 5 is not contained in ¢, over this particular sub-sequence of
n-values, we have a sequence of rational approximations to w4 for which,
the perieds begin immediately at the decimal point in the base 10 rep-
regentation of p,/g,.

In 1975, P. Brdos et al. [3] proved that if 4, B, p and g are pos:ttwe
integers such that A/(p—1)+B/(g—1)>>1, then there exists infinitely
many integers whoge base p representation has all digits < A and whose
base g expansion has all digits << B. According to the reqmlements of
Thecrem 3, we need to prove there exists mfmltely many positive in-
tegers such that in base p alldigits are < 4 and in base g, all digits are > B
where later, we set 4 = (p—1)/2 and B = (¢—1)/2 with p and ¢ distinet
odd primes. ‘ I ¥

Pirst, an extension of notation, let (p, < A)-G denote that a number
in base p i3 “(p, < 4)-good”, i.e. all digits are < 4, and if (p;> 4)-G,
then it is “(p, 2 4)-good?, etc. Thus for our purposes, we will show: there
exNR ©infinitely many positive integers which  are (b,=<¢ ") G and
{2, = (¢—1)/2)-G in base g = 5 where g.ig-an odd prime. :

To be even more precise according to Theorem 3, this means we can,
jind an infinite sequence of over-lapping intervals; ie. & =B < n
< (”SIH—S)@}, the lower half and the upper half I, = $(g® T 1y

Sa+1

<n<g' —2}for any fixed odd prime g 7 5-where n _eI m I guch that
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F{5,n) =0 and F(g, n) = 2(s;+1). For example, let §; = 3, §, = 2,
g =T, then I, = {83 n<< (B*-3)/2} = {128 < » < 811} and I, = {171
< 1< 341}. We find five “solutions” in Iy nI, = [171, 311], L.e. » = 180,
185, 186, 276, 285, which have the required digit structure in hase b and
base 7. For instance, n = 180 = 1210, == 345, where « is (5, <2)-G and
(7,28)G for 4 =(5--1)/2 =2 and B =(T —1}/2 =3, resp. Further-
more, F(5,180) =0, F(7,180)=2(2+1) =6 for s, =2 for the
powers of the primes 5 and 7 in the denominator of the partial product
PagolTige O (21).

Even though, we have been assured by D. H. Lehmer (quoting Brdds)
and R. Graham {personal correspondance) that the particular proof as
given in ([3], pp. 8486}, will go through for the case desired here, i.e. the
one change from (¢, < B)-G to {g, > B)-G, we present the following inde-
pendent proof which differs from [3] in a number of salient points.

THEOREM 4. Let A and B be positive integers satisfying Bl(g—1)
L Ajlp—1) €1 where p and g are distinct odd primes, then there ewisls
infinitely many integers whose base p expansion is (p, < A)yG and base
g expansion i3 (g, = B)-G.

Proof. Since logp and logg are incommensurable, there exists
infinitely many exponents o and f so that ' '

(3.0 ‘ B(¢f-1)fig—1) < Rp® < ¢" —1

where B =1, 2, ..., p—1. In other words, the base g expansion of Rp
has either all digits > B or has a digit > B preceding any digit < B where
B is some fixed choice of 1,2, ..., p~1. For example, we have 3(73—1}/6
< 2-5% =505, < 73—1 with p =5, e =3, R =2, ¢q=17, =3, and
B=3 .

Our proof follows the basic ideas in that of [3], but with some. alter-
ations. We shall define the so-called tail T for N, (the fail is essentially an
unaceeptable sequence of digits in NV, or we could say, “(q, > B)-NG"), L.e.
we have

(8.1) N =ap"+ ... +0,0" =b¢+ ... +0,¢+T

where the tail T'=b, ¢ '+ ... +bg+b, is such that b, < B-1
and all the b, in N —1T' ave acceptable, ie. by =B for k =4, 4+1, ..., 7.
TIn [3], digits which are = B can be part of a tail, i.e. B(g® —1}/(¢g—1)+1
< T< ¢ —1, ([3% p- 85, top). For example according to this choice, if
g =1, B =3, and i = 2, then we have 434, 430, ..., 466 where the tails

are 34,38,...,66 or 23 << T<48=34,<T < 66, which contain the

~ acceptable digit 3 in the tails. - . :

We -seek those N, which are (g, > B)-G, and we might proceed by
analogy with $ails sweh that 0 KT < B¢ —1)/ig—1), for our case, Le.
for the casé sbove, in 408, 401, ..., 430, 431, 432; tails T = 30, 31, ..., 32
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would be unacceptable according to this analogous choice. However,

we want to keep all acceptable digits > B = 3, so for fails, we would

choose 00,01,...,26 and keep 430, 431, 432, with fails 7' =0,1,2.
With this in mind, we define our fails

(32) O0<T<(B-1¢+(g-1)¢*+ ... +(¢-1) =B -1
and we seek those U < p™ in N% - (¥ +TU), such that
(3.3) Bl -Dg-1)—-T< U< g -1-T.
This infers that ¥* = (N + U), is such that
(3.4) bg+ ... +bhg+Bd .. +B
SN LG+ o0 FHE gD+ - gD

As omr first “modification” (similar to the requirement in ([3], p. 84),
in “proof of lemma®), we require that '
Ap™—1)
p—1

A

(38.5) T =byq0 o Abg b < <8 =p"— < p™.

' Essentially, this means determine the tail by (3.2) with T'< ¢ < & for

our initial choice of N. Clearly this means that (3.1} is such that &
= T'modg and N = Omodp™, i.e. our initial ¥ = p™¢’C’ where (0, pq}
= 1. o this direction, it is not diffieult to prove the usefnl result:

Tea. Let B¢ —1)/(g—1) < a,p" < g —1 where @, =1,2,...

. 1 .
vy Ay then for ol N:pmg‘()’e[B(qrg_l ), q”l—l], we  have
] nlogyp
Z b n 9 P rars .
g <pm<p® where 0i<Y [ Torg ]

This characterizes “starting values” or initial choices for ¥ which
will guarantee (p,< .4)-G and (g, = B)-& numbers for some N* when
using the U-values contained in (3.6) to follow.

TUsing the “Fact” (see [3},p. 86) that there exists ab least one
) m], we require that

A

(p, < A)-G number in the Tange [m, (P

= e [Cr=s R R
g = Bli— - T U |[—= ) I L B O I A
36) @ B(g_l) T U<( 7 (Bl ) 7)<

In (3.6), we ha_ve

=)o) <l e



276 R. G. Stoneham

which holds if ¢ < p™ ag assuzed by (3.5) and

p—1 B B A
e« Zrertr

Tinally, we want

(22 ) e

in (3.6) which ean be written

[Bllg—1)— A [(p—1))(¢" 1)
1—4j{p-1)

Sinee Bf{g—1) < A[/(p—1)=B/{g—1)—4/(p-1) < 0, it is clear that
{3.6) will surely hold for 0 < T'<{ B(g*~! —1) as required in (3.2) if we further
require that 1—4/(p—1) > 0. For the case 4 = p—1, returning to (3.6),
we have for amy I, B(¢-1)/(¢—1)—T<gd—1~T it B/lg—1)<1.
Therefore, all requirements are satisfied if we assume that B/(g—1) <
Af(p—1) < 1. Theorem 4 follows by a finite nuinber of modifications. m

In the following theorem, we establish the (4, s)-normality of the
Dlq, in base g =2%-p% in such a way that the representation in this base
has no non-periodic part, i.e. the expansion of the Wallis partial product
representation of =/4 begins directly at the “decimal point” or g~ ie.
is “purely periodic® Tf ¢ = 1, § == 1, and p = 5, then we have the expan-

(3.7

<T< Bg'-1.

sion in base 10 and can make our statements about the Brouwer conjecture

‘which concerns the base 10 representation of =/4.

‘ ToeoREM 5. There ewists an infinite sequences of positive integers
w such thai the associaied partial Wallis infinite producis Pulln

n
= H1 (1 —1/(2i+1)) are (j, e)-normal and purely periodic in base g = 2%pf
L :
where p is any fized odd prime.

Proof. The fraction p,/g, <1 in lowest terms is (j, e}-normal in
base g = 2%-p” (i.e. it is a Type A fraction (see [4], Def. Type A, p. 229 and
Th. 6, p. 283)), if we can show that there exists at least one odd prime ¢|g,
such that its exponent F{g, n)> Z(q)+s(g) where Z(¢) =1 1is fixed fojr1
some choice of 0dd prime g 7 p and g such that ¢%@(|(g%0 —1); and @ |
'{d(Pj)_: (Pra)s - @(py))  wWhere  g<p<pry; <...<pyr< 20+l
contz_mmed in g,. {The notation ¥¥||{a, b, ¢, ..., T) denotes the maximum
exponent of & which divides a,b,0,...,7, an extension of the nsual
symbol.) Consider the p, /g, defined over the sequence of a-values which
‘we showed in Theorem 4 such that F(p,s) = 0 and Flg, n) =2(s+1)
where ¢ <m < ¢ —1. For these n, the odd prime factor p7@m — po
=1in ¢, and g attains to the maximum ¢+ in ¢, : '
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Since at most @(Pyy) = Py —1 = 20°@ < 01 which implies ¢°9 < n,
and noting that ¢° < n < ¢*71 -1, we see that at most s(g) = s, or 0 8(g)
< 5. Therefore, we can write the requirement for (J, e)-normality here as
Zig)+s(q) < s--Z(q) < Flg, n) = 2(s+1)or Z(g) < s+ 2 which will always
hold for any fixed Z{g) > 1 by some sufficiently large initial &, i.e.
choiee of ny, such that subsequently sz s, for successively larger n 2> 9,.
This implies that for some initial p, /g, We have {§, &)-normality and
subsequently for all larger m-values in the infinite subsequence of p,/g,
-/ such that F(p,n) = 0and Flg,n) = 2(s+1). &

If we set ¢« =1, # =1, and p =5, then the results here show that
there exists an infinite convergent subsequence of p,/q, for those n con-
tained in ¢ < n< ¢ —1 for some fixed g = 5, as s increases without
bound such that for each n, F(5,n) = 0 and F(g, n) =2(s-+1) in the
denominator of eich g, where s = [log,n].

In other words, this means we have obtained a convergent sequence
of (4, ¢)-normal Type A rational fractions such that their representation in
base 10 converges toward =j4 beginning immediately at the decimal
point. Since we have proved in ([5], pp. 377-378, Th. 2 & 4), that sets of
digits within the period of a (§, £)-normal Type A rational fraction slightly
greater than the square root of the period length, i.e. {o(g,))*+ are (5, &)-
normal, it follows that the block 0123458789 will oceur within such
a set of digits beginning at the decimal point, i.e. within the approximation
to w/d.

Unfortunately, at the present time, we cannot say whether the block
0123456789 iz in the “stable” portion of the approximation to /4, ie.

_the part of the period which does not change as m increases, or the portion
~ of the period which changes as n increases without bound.

The methods presented here can also be apphed to an infinite product
representation of an algebraic irrational. For example, in the infinite
produet :

o

(3.8) cosf = n (1 —40%/(2% —1)2mY)

k=1

set § = w/4, hence 462/x% = 1/22. By filling in factorials in the successive
products, we may show that ‘

3.9) Palg = (4n—1)1 [ —1) 12" [(20—1)1]*

where lim p,/q, = V2 for n>1: ¥ p,/q, = F]p"®™, we-would have the
1700 : L e, (z} : ’

“exponent functions” F(p, n) to study '

(3.10) Fip,n) = E(fp., dn—1)+2E(p, n——l)——BE(p,IZ%,-I)
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when p is an odd prime, and ‘
(8.11) F(2,n) =B(2,4n—-1)+20(2,n-1)—3H(2, 2p—1) —2u

for p = 2. From (3.11), ona can see that p, is odd and ¢, is even, i.e. the
powers of 2 are strictly monotonic inereasing in the demominator ¢,.
Algo, the agsociated p-adic sum funciions based on S(p,n) can
he used.

It iy interesting to speculate on what d1st1ngm%hes the algebraic
from the transcendental irrationals based on the infinite product rep-
resentation which leads to the related exponent functions F(p, n) based
on the factorial furctional forms. These clearly determine the behavior of
the primes in the prime decomposition of the successive rational appro-
ximations p,/q, to the limit of the sequence, i.e. in geneml a ra‘aonal
or an algebraic or transcendental irrational.

Perhaps, 2 Diophantine regult, such as the Thue—Slegel—Roth theorem
could specify restrictions on the exponential function F(p, o) in the facto-
rial representation of the associated partial products so that the limit
number of an infinite product is algebraic. or transeendental.

Soon, we shall present results coneerning some of the conjectured
([4} p- 230) (7, ¢)-normal sets in the periods of certain Type B rational

”

fractions (see Def. 1, p. 229), i.e. those positive integers m = Il ;% where
F=1

g =1modyf, &l(p;—1), PPN Ay1s .oy &), ANA 1, < 2+5;. This will

include cases which involve nth power residues.

Finally, there appears to be two possible avenues for further work
on the question studied in this paper which, of course, relates ultimately
to proving that given irrationals are normal munbers. Find a convergent
sequence of Type A rational fractions, i.e. (§, £)-normal, which has a rate
of convergence such that the stable set of digits exceeds the square root
of the period length, or improve the bounds on the sef of digits within
& period which are (j, ¢)-normal such that these sets are within the stable
portion of the approximations.

It such sequences can be determined, we could prove by the procedures
in this paper that the limit number of such a convergent sequence of rational
approximations is a normal number.
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