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whenee
|2y (m) —g(n)| = o(l}.

This implies, for large @, P;(n) = g(n). Now the result is achieved, as
follows from the relation

WD*F ()l = |D*F(m)— gF(n)] = LDFf(n) —PE(n)} ~ o-ndfle.,
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Primes in arithmetic progressions

by

E. Fouvey (Talence) and H. Twaxtec (Warszawa)

1. Introduction. Statement of results. Tiet @ and ¢ be coprime integers,
g = 1 and for any > 2 Iet z(2; ¢, @) be the number of primes < @ congrusnt
to e modg. One of the hasic and important problems in anaiyfie thecry
of numberg iy that of proving an asymptotic formula for =(x; ¢, ) that
would hold, depending on », for meduli g as large as possible.

The classical prime number theorem of Slegel and Walfisz states that
if 4 is a given positive number and ¢ < (logz)? then

1
P 10))

where ¢ and the constant implied in the gymbol O depend cn .4 alone (nob
effectively computable if A > 2). A mention should be made of the two
conjectures

liz-+ O (wexp(— oV loga))

w(w; gy a) =

n(z; g, a) = liz-+O(x'**), Great Riemann Hypothesis (GRH),

1
(9)

(25 ¢, @) . ]jw'-}l-.O(g‘”Zm”“"’)l, H. L. Montgomery’s Hypothesis,

(49

the first one giving an asymptotie formula for q < @7 and the latter
for g < #*3° (ef. [15]), neither of these relations is expected to be proved
in & near future.

With the development of Brun's and Selberg’s sieve methods it bebéﬁle' |

motivated 2nd popular to investigate statistical resulty which weuld
hold for “almost all” ¢’s in wider ranges. After pioneering works ¢f Yu. V.
Linnik [13] and A. Renyi [18] and some others [17], [1] in 1965 B. Bom-
bieri [2] and A. I, Vinogradov [21] proved a mean-value theorem which
states, in a form given by Bombieri, that for any 4 > 0 the following
holds . ;

iyt < a(logz) ™

1
-’ﬂi(?}, g, a)— ol0)

—
max max
= [a,q]zl. yEg
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with Q@ = 2**(logz)™F and B = B(4), the constant implied in the nota-
tion < depending on 4 alone. This result serves for many practical purpo-
ses ag well as the GRH.

8o far the limit § = #"*(loga)~F for modulus ¢ has not been essential-
Iy extended apart of some improvements on explicit relations between
the copstants 4 and B, for instance B = A+7/2 [19] and B = 4.--2 [23].
P. X. Gallagher [7], [8] introduced major simplifica.tions in the original
Bombieri’s argnments and R, C. Vaughan [20] gave an “elementary” and,
still gsimpler proof. For other variations of proofs and generalizations of
resuifs see for example [16], [12], [10].

There are essentially three prineipal tools that are used in all proofs
of Bombieri~Vinogradov prime number theorem, namely

{i} Siegel-Walfisz theorem for small moeduli, _

(ii) Representation of sums over primes as bilinear forms, in case of
{2} ¢, @) the following ones

.B(M,N; g,a) = Z Lo, 2 bn!

Mom<2M N<n<iN

mn = a(modyg),

(i} Large sieve inequality for Dirichlet’s characters

2, tax(m[ < (@ +1) D) la,l2.

g<Q x{(mod g) n<N N

Tt is the applieation of the large sieve inequality that sets the limit Q = &2

for modulus ¢ in mean-value theorems for arithmetic progressions.
Recently the authors [6] sueceeeded to prove s mean-valne theorem
- for '

n(@, 25 ¢,0) = |{n <23 n = a(modg), pla=p 3>}

with 2 == 2" and @ = 2® where 5 is 2 small positive constant and 6 = 0 (%)
> 1/2. The new key arguments are: the Linnik dispersion method and
the Weil estimates for Kloosterman’s sums. This method is effective for
estimating forms B(M, N; ¢, a) with special valués of M, N such for
example that oceur in combinatorial sieve identity for = (s, 2; ¢, a) with
2 = o", n—small enough, but it does not work if 5 = 12, the case of

#(z; g, @). In three further works [4]), [5], [24] the firgt author hag de-
veloped many other ideas getiing lots of intermediate 1esu1ts approaching
clogser to prime mumbers.

In this paper we enhance Fouvry’s arguments Wl‘bh new estnnates
for sums of incomplete Kloosterman sums given recently by J.-M. Deshouil-
~ lers and. the second author [3]. Their estimates are sharper than those
obtained from Weil’s result or even from Hooley’s R* conjecture. With alt

. these instruments we may :Eumlly treat n(®;q, a) itself. Let us state

the result.

icm

Primes in arithmetic progressions 199

An arithmetic fu_nctmn A: N> C i3 called to be of level D qnd of finite
order » i

Md) =0
|A{d)] < 7. ()

where ,(d) i3 the divisor function. Next 4 is called well-faclorable if for
any Dy, Dy =1, DD, = D there exist two functions g, v of levels D, and”
D, and orders x,, x, respeetively such that :

it d> D,
if i< D,

A= gk,

Of course A is of ovder x < x;+ #,.

THEOREM. Let @ 550, >0, A >0, 2=2. For any well-factorable
Function A of level @ = &% and of finite order x we have

wy D> A (n{w; 7,0)—

{g,a)=1

1
liz) < 2(logs)—*
2@ ) (log)

the constant implied in < depending at most on & a, A and ».

This improvement of Bombieri-Vinogradov result is very sma]l
indeed and the purpose of our work is te show that a progress beyond GRH
iz possible by means now available. Tt was disappointing not o get (1.1}
—l—liw
?(@)
with absolute values. Here the introduction of well-factorable weights
builds up greater flexibility in the arguments from the four previous
works, This not only makes possible to choose optimally the parameters
M, ¥ in the involved bilinear forms but also it allows us to rearrange
the dispersions in a new way. :

Perhaps a few words should be said to motivate our considerations
of well-factorable functions. First of all they are important for the linear
sieve theory. In the traditional notations and assumptions one has

for arbitrary A(g) relevant, e.g. to sum up the errors ={x; g, a)—

(1.2) 8(,P, ) <XVEA{F(s)+e+ D Bi(o, D),
AL :
(1.3) S, P,z z){fs)—s}— D B («#,D),
F<J(e)

where ¢ = logD/logz and each remainder ferm EB;(sf, D} has the form

2 &)

diF)

()

with a well-factorable 4;(d) of level D and order 2
see [117).

(for precise statement
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Tet us give a typical example. Let Dy > ... > D, be such that

1 ...D.i.D?:‘(D,- 521,...,?"

and let 4, be funetions of level D; and of finite orders. Then & = 4;x ... =4,
iz well-factorable of level D and of finite order.

The following is obvious; if ¢ is of level B and A is well-factorable
of level D= R then g1 is well-factorable of level .DE.

Tt should be noted that our method does mot permit the residue
elass a to vary freely with g. Moreover, even fixed ¢ cannot be larger
than a small power of #. The main reason is the lack of good estimates
for Fourier coefficients g;(¢) of Maass cusp forms that are implicitly
employed here by an appeal to [3]. The Petersson conjecture that |o (a)|
< |a)° would perhaps permit to take |a| ag large ag @.

As an immediate application we give the following

CoROLLARY. Lot @, (@) denote the number of pairs of pmmes P, p+2
such that p << m. We then have

7, (%) g (349 8) Bw (iogw)“2

1
whe;aB —2“(1——1—?—?), for any e >0 a%d % 2 2y(8) .

2

A gimilar upper bound with constant 4 in place of 34/9 can be found
in [25] and with 3.9171 in [22] while the heuristically expecied asymptotic
formule states

7, (%) ~ Bx(logz) ™

ag &—0o.

. Bilinear forms for sums over primes. We shall begin 'by expressing
ﬂ{m, ¢, ay or rather _
D Am)

nEL
n=a (mod g}

B(M,¥;q,a) of two kinds to Dbe estimated in the

(%5 g, ) =

a8 bilinear forms ]
next sections.

In his hook [14] of 1963 Linnik gave, among other vital ideas, an
obvicus relaticn

77t =log{(s) =
From 10gﬂ. | po
from which it follows that

@2.1) fig; Z’ (=17 Pt

=1 =0
: “1» ,11._;;32

Primes in arithmetic progressions 201

Hence it is fransparent that studies of snms over primes can be reduced
to sums over several integral variables (or over one variable weighted
by the divisor funetions =;(n)). Notice that the series over j is finite becanse
the terms with j such that 27/ > o trivially vanish. In practice large j’s
cause some technical difficulties which Linnik avoids by applying (2.1)
for n's that are free of small prime factors. In his “Thése de Doctorat
A’'Etat” [5] the first author made several iterations of the celebrated ident-
ity of Vanghan [20] obtaining a variant of (2.1} which does not involve
the described ineonvenience. Yet another formula (the easiest of all for
practical use) was recently given by R. Heath-Brown [9], namely
IeyyA 1 (Heath-Brown). Let 23 2 and J be such that 27 > n. Then

J
(22)  Am) = Y (1) (;’) 3 opm)..pm) > logn,.
fact

Mpenveatily <o Mg n T g e B =T

Proot, Letting

M(s) = 2 mn)n=*

n<g

td

amd  F(s) = (s) (1—t(s) A (s))

we have on cne side

Fls) == (o+ 5‘( ~27(7) 2oy ety

=_Zm@ —a (1)f() X ﬂiﬁal)---#(

1 ml,...,mj<z
and we have on the ofher side

M By Sy = 1
P(s) = —(2 ﬂi”)(— 2 u(m))k—s)J = Yo,
i

k=g mik,m<s : Py

et

) (logn,)n™

.[\4:*@

7

which completes the proof.

For the purpose of this paper we ghall arrange Heath-Brown’s identity
a8 follows:

Let 0 < 4 <1, M, and N, take values (1-- A)'#, | —an integer, M, < #
and let o, = [(14+ A)7 M, M) and A = [(L+4) 2, M. We then

have _
(J) 2 2 log(Ny .. V)

LY
2.3 An) =2 ( jl)
o i= A Nl, N

x> wims) . plmy) 21+0( Z()rgj(n))

myEf ned;
Ty m}nl n]-—n

the error term coming from the approximation logn, = log N,+ 0{4).
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First, by the prime number theorem and by partial summation (1.1)
can be reduced to

(2.4)

N 1
sw,@:i= 3w 3 Am- s > Aw) <stogart.

{g,u)=1 n<r,n=alq} R, (a,q)=1

For each A(n) we introduce (2.3) with & = @M, J = 4. Accordingly,
&(z, Q) splits up into < (4"'logw)® sums of the type

—
Ly Ty W= S A 3 plom) i)
(g.a)=1 et e
ml...mjn]...nj;a[q]

L D plm ))
—_—— B o Ty
_ 7(g) el gy
(Bip.. 0y fga0) =1

where the variables m,, ..., m;, #;, ..., #; are additionally constrained by
(2.5} My oes WPy .. Wy < @

Moreover, there is an error term which contributes to &(x, @) at most

(2.6) 42( )Z %l g)(z rzj(n)+$ 2 rgj(fn)) < An{logay+.

(a,q] 1 nsa[q] (n,g)=1

Anologously, the swms (M., ..., My|N,, ..., N;) with M, ... M N, ... N;
> & contribute to &(x, @) at most : '

g .
(2.7) 2(;’) Z T,,(g)( 2 Tg,.(n)qtﬁ‘ 2 ‘rﬁ(ﬂ.))logu’?

i=1 assQ 1+~ Hegnn 1+ 4)— gt <
. {a,9)=1 . n=alq) { (n,g)=1 e

< Am(logm)"”.
Either ervor (2.6) and (2.7) is admissible if 4 = (loga)™*—*~?, which we
henceforth assume.

F¥rom the above discussion we conclude that the proof of theorem:
reduces to showing that for M, ... M, N, ... N; < # it holds

(2.8) E(Myy ooy My Ny, oy ) < ofloga)®4—,

Notice that (2.5) is redundant, therefore we suppress it to gain independence
of the variables my, ..., my, 5y, ..., %;. Now, &(M,,..., M Ny, ..., N
can be written as bilinear form onee one puts the parameters M,,...
viey My Ny oo, K into two disjoint sets. Our choice will depend on bounds
availablé in the next two sections. :
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3. General bilinear forms., Let, for notational simplicity, m ~ M
and n» ~2N mean that H <m <23 and N < n<2N respectively.
Given M, N, §, R 1 we congider

(M, N; @, E)

e S B i X )

q=@ r-iR il g RN
(gr.a)=1 mn=algr] {ma,gri=1

with ecoefficients oy, f,, v, 6, such that
{A;) For some eonstant » we have

1ag| < Tn(Q)? 1ﬁr] ‘g Tx(r)ﬁ Iymi ‘<'- T,,(WL), Ianl “<- Tx(ﬂ')i
(A;) For any @ 520, b=1, g= 1, (ab,q) =1 and € >0 we have

8, =—— 2 8, 0{ ¥ (log2¥)™%),
n;-"\?' b|n, ? Q)
ne=alg}
the constant implied fn the symbol O depending on » and € Gnly
In this seetion we shall apply Linnik’s dispersion method to prove
the following

PrOPOSITION 1. Let MN <o and for some & > 0

(3.1) m“' < l\T -.'<_. m1]3’
(3.2) QLo N,
{3.3) R < min (g2t N, g5 1)

Then, for any A > 0 we have
(3.4) |€(M, ¥; Q, B)| < w{loge)™

the eonstant implied in < depending ai most on & %, a and 4.

Before proceeding to essential transformations of &(M, N;@Q, R)
let ms make a few preliminary restrictions which do not limit the generality
but are convenient for simplification of the arguments we shall use
later. The result is trivial if AN < o'~° thus assuming that L MN < e,
it is then obvious that the worst case is

(3.5) N MY =a.

Next, dividing the range for modulus gr into subintervals of the type
(Q:, 2@, (R, 2R;] with ;<@ and B, <R vespectively one sees that
there are < (logm)® pairs of such intervals and the worst case is @; = €,
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R.,; = R, i.c. we may assume that
~ (3.6) g~Q, r~R,
TFinally we may assume that
{3.7) 7’8 are squarefree.
Indeed, the w's such that # = &2l, T squarefree, % > K contribute to
&(M,N;Q,R) at most O(E'm(loga)?} which is admissible ¥ X is

a sufficiently large power of loga. As to the remaining »’s we transfer the
factor &2 from n to m getting

(M, N;Q, B)| < D) 18° (B M, 52N ;0, B)|-+ 0 (K" a(logay?)
k<K

where &* means that y,, &, are replaced by ¥i2, and § 1espect1vely.
Proposition 1 is apphcable for each &* giving

&M, N;Q,R)| < En(logw)™1 + K-z (loga)s < s(logs)=4
for K = (loga}y™*2 and A, = 24 +x,.

Having assumed (3.5)~(3.7) we begin the proof of (3.4) with an ap-
plication of the Cauchy—Schwarz inequality
(3.8) &M, ¥;9, ) < QUD (M, N;Q, R) £
where & = loga,

(3.9) 2(M, N-Q R)
=2 a(g)

(g.a)=1 (m,q)=1

> o 38 3 26 3 e

(T ﬂ)=1 mn=algr] (ram)=1 (n,gr)=1

and a{g), y(m) are any functions which majorize the characteristic functions
of the intervals (3.6). In what follows we shall require these functions to

he of ¢* class with supports [2(;) 3Q] and [ M, 33 respectively and
with derivatives satislying

lag)] € Q~, WP(m) < M, »>0

the constant implied in < depending at most on ».
Squaring cut (3.9) we write

(8-10) DU, N;Q,B) = W—2V+T

with the aim of evaluating each term separately.
I. Evalunation of U. Let us begin with the simplest term

- S 3 S Y8 5w
(gm)=1 (ryrasm)=1 T (naqr )=1 (rarg)=1 " (mariy)=t

icm
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By Poisson’s suoumation formula we deduce the following:

= S0 S - 255

(m.,k)vl i vik heZ

where ¢ stands for the Fourier transform of 9. The zero term yields
(k) .

—y {0

Al
whereas the terms with B s 0, by partial integration, yield

< Zi D win (1, 2B H) < o).

g
sk h=1
Hence, letting
X = 5(0) a(g) (ry; 72) PBribr ( 5 8 }
ity {(ray ) 9) ity

(g,2)=1 q {ryro,@)=1 .(n,qu)ﬂl

we conclude that
(3.11) U=X+4+0(@Q N

because a(g)@{grirs)/anr.p(gr)e(grs) = al(g){ry, rs)/erirsp ((”1’ rs)g). Here
the error term O («*@~* ¥?) is admissible for (3.4) to hold.

II. Bvaluation of V. By definition we have

e Sun 3 s D ) X ) 3w

¥ .
{g,@)=1 ("F @) =1 p{ars) ny,ar)=t {(n.aro)=1 (m.rg)=1
m=an,[gri}

where 7, stands for a solution of myn, = 1[gr,]. By the Poisson formula

p(%) AW
Z {m) = 2 p{) 2 {ym) = 7 26(——7@11:)7:(”—;0)
?TbEl[k] m'_z.,,{” vlr; ke
(1= (s',?u) 1 {»)=1
1 14 . '
= (1= =] p(0)+ 0z (r).
: [1{-5)7o+oke)
“ pirpik
Hence, we conclude that
(3.12) ¥ = X+ 0(z°BN?)
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because

ORI O
elgry) gy plrg,p]lrl P g ¢((T12?2)Q)

Here the error term O{«*RN?) iz admissible for (3.4) to hold.
III, Main term for W. By definition we have

. Wl
E18) W= 3 ale) D B8 Y 68, 3
(@) =1 (ryrg.a)=1 (n1sary)=(ng,qre)=1 mnlaa[qr1]
1y =ng(r,79)2) My =alqry
The innermost sum over m will be approximated by 7(0)jgry, r,]
an error E(q, vy, #3, %,, 7;) to be considered later. Here we evaluat
eontribution of the main term, i.e. the following guantity

. a(q) B B
Wo=5(0) > T D s,
Ga= 1 o e T T

vy =ity [{r],79)q]

We detect the congruence n, = n, (mod(rl,w?)q) by the welll
orthogonality of multiplicative characters x(mod(rl, *4) g). The prin
character y = y, yields X while the non-principal characters contr

- R ﬁr ﬂ‘."‘a

70 LT (1, 1)

' (=1 fryy 7]
172 :

where
1
T re,1rs) 1= «{q) ( - -
(74, 73) (q;):,’l L o 2 | 2 amal( S zms,
> . z(l;;diga) (Rary)=1 {norg) =1

and for simplicity we denoted ¢ = (1, #y). By the Canchy—Schwar
equality we have

1T, (ry, 1) 2 Tq(?'za 1)L (g, #5).
Each y # y, is induced by exactly one primitive character p(m
€ > 1, e|eg, thus letting pq = ef we may write

3

1 11 *
Tyfr, ) <=t -1 1
= gg(f) 9‘3( ) 2 1/)(”)671,

é
l<e2aQs wlmode) (n,1f)=1

By (4,) one easily deduces that

I > p(m) 9,

(H.T'f)=1

< t(rf)eNp~C,

R S T e
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This will be used for ¢ < ¥© = E, say, whereas if ¢ > ¥ we appeal o the
large sieve inequality giving
1

o(e)

p(n)d,

2 < ( o} N
(n,rf)=1

f +E) NFs,

B<es2elf v (meod g)

From the three last inequalities we first infer that
Ty(r, 1) < w2(r)Q I N2 2% + oN g™
and then that the non-principal characters contribute to W, in total

NG .
D IR s A CRA LA

LA oL _
< Q—legxs _{_mgﬂﬁ < leng—ﬂ.ﬁ—sz
for ¢ =2A-2%2--5. Concluding the above discussion let us write
down what has been proved

(3.14) _ W, = X+ 0(Q i Nag—24-),

Here the error term is just good for (3.4) to hold,
IV. Brror term for W. Now we proceed to estimate the most
diffieult quantity

{3.15) W, = 2 a(q) 2 By, B:, 2 '6n1‘5n2 B (g, 115 1o My )
= = ={Nara)=1
R e

Let Wi(v, w, p) be the partial sum of W, consisting of the terms with

(Togy Ng) =, Qf =wly], (r,7)=g¢.

Notice that (p, a¥) =1 and {_w, 7) =1, therefore
| Wl"__'z 2 Z Wir; @, 0)

» (cu[xu] (e, n#)=1

W, ¥)=]

where

- Wi, o,0) = 2 alq) . Z Bor, Barg 2 By O Bl 0115 0F a0y 003).

= )=l {ry,mg)==1
gﬁ’éﬁ[v]l {;}r;?c)z)ml (ul,rl)lﬂ(ig,rg)wl
: © T nyengled]
and by definition
(3.16)  R(G, oryy ores vy ) = O p(m)=5(0)/erarag.
’ myny=alor; @ '
mong=dlerag

7 — Acta Arithmetica XLJIL2
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Applying standard but tedious elementary arguments based mm’xﬂy
on the inequality 7,(n) € »’* it can be shown that

3 3 YW, 0, 0 QTN Lot

5 e ap
I'Q>E

(8.17)

50 it is an admissible quantity for (3.4) to hold.

For vg < o® we treat W,(v, w, o) by far deeper means. The two con-
gruences myi, = e[gryq] and mwn, = alor,q] from (3.16) are equivalent
to the one m = I[pr,7,4] where I is & solution of the system
(8.18) Iy, = alprig], bn, =alerq].

By the Poisson summation formula we obtain

)i (o)
¢ ¥
gryTaf er1Ta g

where y(y) is the Fourier transform of y(m). For |b| > 0" QR* M~ = H,
ey, by partial integration the number of times depending on & one gets

B P1y OFsy PHgy V) =
(gy 01y oy, PRy, Vi) E‘H"'aqlﬁ

=] <o,
erraq
This yields o
Wiy, w, 0) = 2 a(g) fif%_%w ) 6’”1 51%2 B
gl ‘2;‘]1 {rra)=1 L {aprer))=1,(ng,verg)=1
= (e aw)=1 (ny,ngy=1,n1=n0l0gl

x D) d=Rierirg) [ ylade(iélenrs as+00)
1<ipl<E :
with the error O(1) that is much sharper than we need for (3.4) to hold.
Now ounr aim is to reinterpret the congrnences (3.18) in order to arrive
Ia,t ineomplete Kloosterman sumg of a certain type. Since n, = 1 Log]
there is an inbeger ¢ such that

g — Ny == th, lx{_ i QN/TQQ-

Next (3.18) are equivalent to

(3.19) by = a-t-ogrity, Tvmg == a+ ogrou,

where %y, %, are integers. Hence ryu,h; — 1 %, 0y = at, 50 '

(3.20) _ Uy = —alryn, (modryn,),
Moreover, since

(3_21). e — My = ot [vot],

icm
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it follows that
(3.22) U4y = — gopr, (modz).

As o matter of fact (3.20)~(3.22) are equivalent to solvablhty of (3 19).
By (3.20} and (3.22) we construet one congruence

Uy =~ Alv¥ ity — BT 1y Pty wory (0 97,1,4),

whence, by (3.19)

th ah iy
= Tt
oryTeg PONL TR YT,
DO ToMy PPryTeg ah
= —ah — alit + (mod1)
¥ Tolty PORL T To

and further, since the last “non-arithmetic” term is < #°! this enables
us o write

1 . . g
e( ' ) = c'(ahm) e (ath 3-ﬂflﬁ) + 0w Y.
eri¥ag v ¥ohy

The error term. O(x*') contributes to W,(», w, o) trivially < N2Riz?*1
< NY?g*. Therefore

ﬁgrlﬁerg !
(3.23) Wb, ,0) = N D Bwdax
: o=t 372 e {ng,ver)=1,(ng.rerg) =1
{rro.av)=1 (n1.09) =1, 10 —ny =oellrel]

. 51 . (ah wg?‘lrgﬂl)e (a?v.t ‘L’Tl’.l’bz) y
- 2

Yoty

xfa(%#%])y(ﬂz Ty f)e( k& )d&—{—O(N”sz‘)-
ot ot oF1Ty

Here > means that the following extra condifion
(3.24) '
must be fmposed. We detect {3.24) by the well-known M&bius formmula

(Re—mny, apt) = of

1 it (my—my, apl) = ¢,

{o,v ;a[u # (d) lo

apt|lsg~1g) .
And for given o|a, (o, ») =1 the two resulting congruences between n;
and n,, namely n,—n; = wg[vof] and n,—mn, = 0[cpl] can he written,
after reinterpreting o(mody) by wo(mody) as one congruence

(3.25)

otherwise.

fg— 1y = gewat(modvagh).
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The reinterpretation of e(mody) by wo(mody) is allowed becanse if w
rans over the residue clagses (mnody), prime 1o », so does wo.

Now our nearest aim is to make the variables of the summation n,
and n, to be independent. For this purpose there are two constraints which
have to be relaxed, namely the congruence (3.25) and the dependence on

g = {ny—n){ ot of the integral _
he )df .
1 T's

The first one is handled by means of additive characters (modwvopt), pre-
cisely we make use of

l(nz—nl—gwat)) |1 i (3.25) holds,
yogl |0 otherwise

Iig) = | a(g‘!)y(qf)e(g

w

(3.26) 7;17: N

2l
¢ Avaat]

and the sccond one by means of the Fourier integral

a(g)y(g8) = [ E(&, n)6(ng)dn

where by the inversion formmula

(& 1) = [ algy(ade(-ng)dg

We have K(&,7) =0 unless M/6Q < &< 63/Q, morcover K(&,n) < §
and by partial infegration two times Wlth respact to g we even get K (&, 5)
< 772071, A1l together yield

(3.27) [T1& &, miazay < mg™
and .
h& 7 (Teg — My ‘
3.28 I(g) =
63 10 = [ [ e 4 T g

Fmally collecting (3.23), (3.26) and (3.28) we deduce that
(320) Wy, 0, 0l <o oR [ [ (8,1

DI

vo’gt

cla, (o r)=1 {r1,r5)=1,{rrq, av) 11 hi<H 15T

rLrge— IR
: Ad-voy
by G 6 1y ela
* vael
Alvoeti(ng ror) =1 | (nysrarang)=1 e
eIV e 1N

d&dn -+ NPy,

wlfng)
2Ty |
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This expression is rather complicated from notational point of view.
To deal with it we formulate in independent notions the following.

Levwa 2. Denote for C,D, H,N,T=1, a -0 and o >0

8.30) #(C,D,H,N,IV
Z (hy, 0, the (;:) ( ht-dﬁ)

- 2 22_49%2 i

esC d<D hxH {<<T Alet]
{g,if)=1 ) (n,c)=1

where a(h, n, 1) are any numbers such that \a(h, n, )i < 1. Then if HT< N
and D <0 we have

(3.3 &(C,D,H,N,T)
02 1/8
‘ 8 1f2 34z
< (GN) [O.DHTN + (CDHNPHT (1+ HTN&) ]7.

the constant implied in < depending af most on a and .
Proof. We shall prove a general estimate
(3.32) &(C,D,H,N,T)(CDHNT)"®
< CDHTNY A (M DHTN* - DU {38 N33 (308 & BT %
® [01[4. (HT)lls_l_DlH-Nl[E (HT)UB _]_Cl,'&DlM_Nl!BL
(3.31) being an easy corollai*y. Since the right-hand side of (3.32) is in-
creasing in ¢, D, #, ¥, I' we can assume without loss of generality that

6 ~0d~D h~H t ~Tand n ~XN. Then, by the Cauchy-Schwarz
inequality '

#(0,D, H, ¥, T)

< CDH chdzz Z

12

3 et fos )

{¢c,d)=1 h~H t~T Aigt] ﬂﬂ-)ﬂN1
{n,c
- ODHZZ' a(h, 2oy 2)alh, 1y, 1) Flo, &)X
“ny=nglef] (c,dnlh2)=% :

X e(aht (fg—11) —~%;n2)

fley d)e (I ﬂ),
(e, dr)=1 . ¢

by = Z’ 2 ta(h, iy, 8 all ta, ?)

fhg~N fvH tT
nng=r,n=ng[ol]
ahl(ng—ny}=!

MODHZZ

say, where
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and f(¢, d) is any function which majorizes thé characteristic function
of the set [(,20]x[D,2D] In what follows we shall require f(¢, d)
to be the one which satisfies the assumptions of Theorem 12 of [3], i.e. of
C* class with Swppf = [}C, 301 % [3.D, 3D] and

avl—[-vz

oD
O ' <

fle, @)

for any v, vs > 0, the constant implied in < depending at most on v, ,.

Notice that N? < < 4N* and |l| < 4|a|HNT = I, say. The terms
with { =0, ie. the diagonal n, = n, contribute to .5”(0 D, H,N, T
less than ACDHTN' which yields the firgt term on the right- hand sule
of (3.32). For estimating the contribution of the non-diagonal terms, i.e.
these with I #£ 0 we first split up the interval (0, 2L] into subintervals
of the type {Ly, 2L)), L; = 2L and then for each of O(log3L) resulting
partial sums we apply Theorem 12 of [3] giving

k3.33 Z‘ S'bl, N e, aye (zm)

r I~Lj (e, dr) 1
< (UDENTY[C(N* -+ L))(C + DN+ ODN L) + D* WP I, 12 BY#

where

—EZ%KEMTZZMA

7 1~L r
(HNT)ST%F{%N Wy, By 85 7y E%ft]: laht (#y — nq)| "‘"Lj}
< (HNTVTN J{h,t, w; t ~ T, |ahitw) ~ L} < (ENT)Z"TNLJ-.

This together with (3.33) show that the worst case is L; = L giving the
remaining terms on the right-hand side of (3.32). The proof of Lemma 2 ig
complete.

Remark. Theorem 12 of {3] depends on the location of exeeptional
eigenvalues of the Laplacian for the Hecke groups Iy(r). If the Selberg
eigenvalue conjecture ig true then the factor

GZ 1/8
1. —
( * HTN3)'
in (3.31) can be suppressed.
Now we wish to estimate W,(», 0, ¢) by an appeal to Lemma. 2.

To this end we have to interpret the variables ¢, d, B, 1, % from (8.50)
appropriately to the sitnation in (3.29). Let us interpret for given values of

icm

Primes in arithmetic progressions 213

the variables &, #, ¢ the variables listed above in the following mauner

a4 as ajo
 as i,y thus e¢< 4NR,
d as rp’ thus 4 < 2R2™,
hoas h thus A< H,
t ag vol thus 1< [¢]Q7' N,
7 a8 Ny thus #» < 2N,

alh, n,1) as 8, e(mmyfet) thus  a(h,n,t) <€o°

Then by (3.80) it follows that

1, ,Q)(:fo

1/8
£ .’LBJIQ_I Rﬁz [RdHQ—-l ..NS‘JB*I-"RSH H3/4N11I4Q—1/2 (1 + _l?g) ]

(£, IR (NR, B, H, N, N/Q)dédn - N

& R?Q—INSﬁme_i_RQ-—aj*ll\?lT]Bma[B—‘.—s_
The same majorization holds for W, with possibly different but arbitrarily
small e. This bound is admissible for (3.4) to hold,

If we colleet all evaluations of U, ¥, W and introduce them into the
dispersion (3.10) we find that the main terms X disappear throughout
and we are left with error terms only which by (3.1)~(3.3), as we said in
appropriate places, arve admissible for {3.4) to hold. The proof of Proposi-
tion 1 is complete.

4. Special bilinear forms. We now cousider the forms &(M, N; , R)
having special coefficients 3,; namely we assume that
(4;) 4, 1is the characterictic funetion of an interval contsined in (N, 2N].

For sneh 6% (A,) iz obvious. In this section we use another méthod to
prove the following
Prorogrrion 2. Let MN < o and Jor some &> 0

(4.1) < N,
(£.2) @<y,
(4.3) B (m/N)5.

Then for some 9 = n(e) > 0 we have
(4.4) (&M, N; @, R)| <2,

the constant implied 4n < depending af most on =, & and &.
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Proof. Like in the plévious section we may assume without loss of
generality that (3.3) and {3.6) hold. Moreover, for making certain Fourier
series convergent rapidly it is most econvenient right now to replace the
step function &, by a smooth one &(n), say, whose graph is

AN aN

gnch that
(4.5) [ 18,— 8(n)ldn < 24N

TF we do this we make an error which in total is

<5’2 q) T, ()

‘z’”(’ﬂ?,) |6n - 6(‘”’)i+

ma=algr]
+ ) Y n ) wlrplary 22
qg

<o M D16, 0(n)| < 2" AMF = 4o+ = ad
n

}18, — 3(n)|

for 4 = o which we henceforth assume.

In addition to {4.5) all we require of §(n) i3 that ity derivatives shonld
satisfy
[6¥ ()| < (AN)™”

for p = 0,1, ..., the constant implied in < depending on p alone. Thex,
by the Poisson formula we obtain

3 =t e

n==emlr] R0

and, like in evaluating U in Bection 8, we deduce that

@ D) ot = > b Fam 2” 2()

{r,gr)=1 vigr ¥|gr
tp(m) ( 1 , et gy
2L 30) -0 = mm(N,A N1 2))
ff) (0)+0 (r{ar) 4.
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The error term O(r{gr)4~") contributes to &(M,N;Q,RB) < o°4'M
< ¢ which is admissible.

© Further, for |h > a” QR/AN = ¢**QR/N = H, say by partial inte-
gration the number of times depending on e we get

8 |—
qr
which enables s to break up the series (4.6) at |#]

total error O(1).

Notice that the main terms from (4.6) and (4.7) cancel and we are
left with &(M,N; @, R, ), say, which stands for the contribution to
(M, N;Q,R) of the partial sum of (4.6) with 0 < [ < H.

(4.8) &(H,¥;Q,R,H)
8—1 2‘ _lﬁ,e(g ) ( aJa—q—)

< g0

= H with an admissible

IN/Q
< f

_N,JzQ g~ m~nL 1<h<H Py
{g,m)=1 (rym)=1

To gimyplify further arguments from notational point of view let us
prove the following '
Leyma 3. Let ¢, D,H,8=1, a #0 and denote

#0,D, 5, 8) = 2 2[ Z 2 a(h,s)e(ah%)

e<0 d=D heH s<S
(e. =1 (5.d)=1

where a{h, &) are any nwmbers with |a(h, 8}l < 1. For any &> 0 we have
(4.9) .B”(G,D,H,_S)

dt.

<€ (CDH;S’)E{GD (ER)M2 4 (4 DHY (H + 8)* - 08 [DH (H + 8)T4* %
| D D\
AL
VHS

Proof. Sinee the right-hand side of (£.9) is inereasing in €, D, H, 8
we ean agsume without loss of generality that ¢ ~C, & ~D, b ~ H and
s ~ 8, Then, by the Cauchy-Schwarz inequality

P00, D, H,8)F < 0D D > alhy, 55)alk, 1) X

m 2~II 51,338

2
X vZf(C, d)g(a(hlsﬁ'—hzsl) 68182)

(e, @)=1
{dss189)+=1

—.ODZ ybISZZf(c dye ( )

1 (se.d)=
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where f(e, ) ig like that from the proof of Lemma 2 and.
e Y%

81,50~8 By, feg~EH
sfsf::a a{hll.;n—hzsl) =1

The terms with § = 0, i.e. suel that &, 8, = ks, confribute to & (¢, D, H, 8)
at most O((HS)*CD(HS)™) which yields the first term of the right-
hand side of (4.9). For estimating the contribution of the non-diagonal
terms, i.e. those with I 5= 0, split up the inferval (0, 2L}, L = 2|a|HS,
into subintervals of the type (Ly, 21,1, Iy = 277 T; and then estimate
each of the O{log3L) resnlting partial sums by applying Theorem 12 of
[3] giving

3 0> S e i 2)

s I~Iy {¢s,d)=1

a(hy, 81)alhy, 85).

< (CDLSYy¥[08*(&® +.1y) (C-+ D - GDLJTI"E) -+ DzLj 8'2]1"215’}’-2
where
BeYSuiey 3 (@3
8 INLJ-

#18 laffy 8y —hoay)l~Ly 83848189
{83.84)|(Ay 89 ~Hg37)

(85, 8,1

< (HS)H(H+8)1L;.

This shows that the worst case is I = I giving the remaining tel ms of the
right-hand side of (4.9). This completes the proof of Lemmsa 3.
By {(4.8) and (4.9) we deduce that

S(M,N;Q, R, H) < mE‘“N(QR)-lsﬂ(Q, M, H,R)

<0 QM (HR) Q' M (H+ R+ QR (MH(H+R)*

QR {
1/4
1 + _ﬂ{_[ 4 M ]
Q@ ' VER! |
< m“"z{m(Q/N)m+NWMH“RQ”"-FN“’“MW (QRz)sla} < ml—zs
pi’ovided (4.1)~(4.3) hold. This completes the proof of Proposition 2.

5. Proof of theorem, conclusion. It remains to prove (2.8). Our
strategy is to arrange each &(M s My | Ny, ..y ;) a8 & sum of the
type §(M, N;0Q, B) which we estlma,ted m Pmposmons 1 and 2. The
choice of @ and R may depend on M and N becaunse the weight function
A(g) i8 well factorable. Since the ranges (3.1) and (4. 1) for N do overlap
it is evident that we can deal with cvery sum #{M, N;Q, R) that may
occur, However, in order to get the maximal value for QR we ghould ar-

trivial ity = M, ..
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range these sums as to get the optimal well location of ¥, To this end we
prove the following lemma of combinatorial nature.
LEvma 4 Let 1< M, <oy, 1SN, <w, 1 =1,...,7 and I, ...

W MNyLNy =y el 724 6013, Then either for some N, we
have
(8.1) Nz
or some partial product of My ... M; Ny ... Ny, call it N, lies in the interval
(8.2) P < N g,

Proof. Suppose each I, is < 9° Excluding all N;s that are > z'*
(at most 3) the remaining N;s and all M;’s yield a product, let us say
_M . M;Ny...N,, which is > y*~%. The smallest partial product of
M N,... N, which is > "%, call it ¥, must satisfy 9" < ¥

< max(m"’“ i 3“’} < #'*. This completes the proof.
I?rooeedmg to the preof of (2.8) we flirst observe that the result is
. M;N, ... N; < 2", thus we assume that #'* < y < .

We shall apply Lemma 4 with 6 = 5/17. Bach &{M,, ..., M;| Ny, ..., N}}

© can be written as &(M,N;D,, D,) with arbitrary Dy, D,>1 subject

to DDy = D — the level of the weight function and with N such that
‘either :
(5.3) N = o892,  §, satisties (A,) and (4,)

or .

(5.4) 21008 o N < g, § satisfies (A,) and (A,).

In the last case 6, satisfies (A,) by the Siegel-Walfixz theorem for the
Mobiug p(m) funetion. According to whether (5.3} or (5.4) hold we apply
Proposition 2 or 1 respectively with § and B which equalize (4.2), (4.3)
and (3.2), (3.3) giving QR — 5872 ™8 3 2+2908-2 — 2%17=* ip the case of
(53) and QR — m-—-smin(wllz—s_NlM, mSISN—SIS} > 2 a-sf)ii—ze 2o17—2% i3 the
case of (5.4), This makes possible to factorize D = ¢”*'~** as D, D, with
D, <9, D, < R. The proof of theorem is complete.
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