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Some asymptotic formulas on generalized divisor funetions, ITI
by
P. Erpos and A. SArxOzy (Budapest)

1, Throughout this paper, we uwse the following notation:
C1yCay-eny Xoy Xq, ... denote positive absolute constants, We denote
the number of elements of the finite set § by i8|. We write ¢ = exp(a).
We dencte the least prime factor of » by #{n}), while the greatest prime
tactor of n is denoted by P(n). We write p*|ln i p°|a bub p* 1n. o(n)
denotes the number of all the prime factors of # se that e(n) = > a and
we write e
(R, &, y) = Z a.
2%in
| z<p<y

The divigor function iz denoted by d{n):

d(n) = D'1.

dln

Let A be o finite or infinite sequence of positive integers o, < @, << ...
Then we write

1
Foo)= 31, folay =2 dm =1

aed asd acd
s [: Lo ajn

{in other words, 4, (n) denotes the number of divisors amongst the a; 8)
and
D, (2) = max d,(x).
I<in=Cow
The aim of this series is to investigate the funchion .D,(z). (See [1]
and [27; see also Hall [4].) Clearly,

D' am) = af (@) +0(@).

ln<e

Thus if £, (a) is large then we have D, (z){f4(®) > 1. T Part IT of this
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geries (see [2]), we showed that f,(w)->+ oo implies that

im sup D, (2)[f4(2) = + o0,

Ttoo

in fact, we have

lim supDA(m)exp(al (log f.( (=))* )

>0
We proved this by showing that if f, (2) is large (in fact, it is sufficient
to assume that N ,(x) is large) then there exists an integer y such thab
o<y <exp|(log)?) and D,(y) is large. In this paper, our aim is to
prove that if we have more information about f,(v) then D, () /f 4 (v) musi
be large for the same ». In fact we prove thab

TearorEM 1. For all w >0 and for o > X {w),

-} oo,

1 falz) > (loglog @)
implies thai
(2) D 4 (@) > wf (@)

' {¥ote that by Theorem 1 in [1], the lower bound (logilogz)**in (1) can-
not bé replaced by logloga.)

Sections 2 and 3 are devoted to the proof of this theorem while in
Sections 4 and 5 we discuss some other related results.

2, In. order to prove Theorem 1, we need some lemmag.

LEvMA 1. There exists an absolute constant e, suoh that for'all =0
and y =1 we have

(3) Z %< 2.

URSHY
oln)>y

Proof. Lemma 1 can he proved easily by using Brun’s sleve. In
faet, (3) is frivial for « < 1 (since in this case, the left-hand side is equal
to 0}, while for % > 1, (3) is a consequence of [7], p. B3, Theorem 4.10,

LimMua 2, Let us write

(4) Q2) = 2—(1+m)log(l+x).
Then for 1<y, 2y<e<go, 0<a

(5) Z

sy
almyd<i~o I Up
y<psE

<1 we hove

1 < é;v8xp (Q(—a)l og OgZ)

Proof. Tet 1o, 0< a1, and let B be an arbitrary nonempty
set of prime numbers not exceeding ». Put B(v) = ¥ 1/p. K. K. Norten
el

By using this theorem with F = {p: y < p <
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proved (see [5], Theorem (5.9); see also Halisz [3]) that

2 1< ¢,0exp(Q( —a) E(v)).

B
pﬁlln,ps ﬁ<(1 )

By using this theorem with B = {p: y < p < 2} (note that B + © by
2y < z), and with respect o the well-known formula

(6) Dijp
<z

= loglogw 4 ¢;+0(1),

we obtain (5.

LEMMA 3. For 1<y, 2u<z<<o, 0<a< <1 we have

(7) 2 1< e (f)a w(Z—)

n<r y<p<z
olny)>(1+0) % Up
v

Pz

—12

exp (Q(a)log I :z)

{where Q(x) is defined by (4)).
Proof. Let 0 < a<{ § < 1, and let ¥ be an arbitrary nonempty set
of prime numbers not exceeding ¢. Put H(v) = Y’1,’1) K. K. Norton

proved (see [5], Theorem (5.12); see also Hala.sz [3]) that

2 1< e(f)a v ({E{®) " exp(Q(a) E(v)).

py" ??(I'I‘Q)E(U)

2} (again, B + @ by 2y < 2),
and with respect to (6), we obtain (7).

3. In this section, we complete the proof of Theorem 1. Define the
positive integer B by

(8) m1—1sz~1 < woTa)E - $_1—1sz,
i.e., ' _
3logw 1 3logw '
gE-1 <2® R-1<——log——<R.
falw) =77 77 Tlog2 T fale) T
Then for large %, we have
1 3l
(9) E< w_l il -+1 < 2loglogw.
S
Fori=0,1,..., B, let )
@ == wl-—IIZ‘,
and for i =1,2,..., R, put

A;=Anle;_, m).
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Then by (1) and (8), for large s we have

w J(3Y-3i-3iovi

=1 ‘acdy ae:
G<IR =5 xR€a<$
. 1 L
/fA( ) Z 7 /f‘i(m) ; .
TRERSE xe_fd(x)fagﬂgx
=1, (® (1+0 )loggf11($f3>f () fdz(w) =fA2(m)'
Obviously, there exists an integer 7 such that L<j< R and

1.1 (31

aed ; i=1 ‘aedg

henee with respect to (9) and (10},

. _ 1
. e = s B
acd;

Jalz)
tloglogas

Let us fix an infeger § (1<i<

R) satisfying (11), and write 4, in
the form : ‘

(12) .Aj == A;U_A.;A!

where A; consists of $he integers & such that a e 4; and there exists an ’

integer 4 satisfying o
13) . _ (logz) < d < gt Hieta
and d{a, while A; consists of the integers ¢ such that ¢ € 4; and d+a

for all satlsfymg (13). (For #1104 < (Toga), we ha,ve Ay =0.)
We have to distinguish two cases.

Cage 1. Assume first that
1 1
Tay(@) = § 2 > 5 f4 @)

aEA_,"-
Then by (11), we have
(14) foey= > 1 _Jal®)
4 2 a 2 f4,(@) 8logloge =

dEA;
For a e 4}, write a in the form

= a*(a)b(a),
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where 4%{a) denotes the least infeger d such that 4 safisfies (13) and d|a.
Then for a s 4; we hzwe b(a) <a<a=a" s gnd (loga)® < d*(a) 80

that 1
.. ‘ 1 1
(18) = _J ra Z d*(a a) . ;,,b Z @ (a)
aEA ae.i aed),
b¥(ay=b .

2 1 S1 B

1{2—7 aEA '
pal™ peiay] ’b

<b<12’:,"73 2 (10gm)“‘ - ]Oglm)s
DED

D"(a) b

1
L5 — ( nig
= (l(}gm)3 1<b<x1“‘“1f°"'

aeA b
b“(a) =b : oo
2
<—-———1 3 ( max 2 1) 2logz = — ( max | 2 1).
(0ga} N\ i1 (log®m)?® 3, g cpp-1127 /
B acd; acd
t*{@)=b - o*{a)=0

I o is large enongh (in terms of o) then (14) and {(15) yield that

2 1> (long 2_

as,d
b’(a) ——b

(logx)2

nax 16 loglogm

1hat— U

———— f (%) > of s () +1

so that there emsts an integer b, for which

(16) 1< by < B
and
an X 1> efy(@)+1.
u_EA"
B¥{a)=by

Put s = [f ()]+1. Then by (17), there exist distinet integers
@y, Gy, ..., &, SUch that a, can be written in the form

Cay = by d*{a;) = byd;

where
(18) : . . ((10gm)3<') d{g_m1]21+1mf‘4(z).
Let
W = bydydy ... dy
Then by (16) and (18), we hawve
(19) U = bydydy ... d, < @ (@A

- w1——1,'23‘ ( mmJ +lor A(x))sz,,(x) =,
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and obviougly, &; == b,d;/u and a@; == b,d; € A g0 that
(20) dy(u) >3 = [af (@)]+1 > of 4 (@).

(19) and (20) yield (2) and this completes the proof of Theorem 1
in thiz ease.

Case 2. Assume now that

1 V1
(21) Lo = M i<l fum) =2 X

" aE.A.J-
GEAJ-

Then (12) and (21) yield that

1 1 1
(22) fola) === M= 3=
El a,EA;’ a/EAJ- BEA}
1 1
2 F1)= 5 L) =gyl >0

For u =1, let
3lo x)\*
9(%) ( gfal )) .

3
Then for 1< u <—;~10gf 4(#}, the function g(u) is increasing since

31
g'{u) = y(u)log—%-(ﬂ) >0

and for large x, we hawve

fal)

g(1) = 3logf,(m) < {logloga

and

3 e f (w)
g(;; Iogfm) = (fa (@) >W'

Thus there exists a uniquely determined real mumber # such thatb

(23) 1< t<—2—1ogf4(a;)
and
3logf, (#) \* Fa(@)
24 = o= 4
(24) gt ( : ) (logloga)? "
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We need a lower bound for this number ¢. By (1), we have

(25) g{% logf (@) = (6V2)54l) = (f ()]0 /oNows

Jal®)

(fA (m)}mu < fA ()

910 __
< (fala)f™ = (logloga)? "

(23), (24) and (25) imply thas
(26) ' Hogf (@) <t

(since ¢({u) is increasing for 1 < u <~:-;’-logf (m)).

Let nus write
#; = max {1 4@, (1oam)) .

Let A; denote the set of the integers & such that a e A and
wla, 2;, ) > ¢,

Now we are going to give an upper estimate for

i3t
aed,;

aE.A;.' .
add} ofa, g2l <t
T acdy and w(a,s, #¥) < t then by the definition of A, we have
w1—1/2i“1 —a <a<w = g1t
and & ean be written in the form
@& = upyl ... ppmy

where P(u) < (loga), 2; < p, < ... < pp < 8%, m< w{a, 7, 7y <t and
plo) > o,
Thus by Lemma 1, we have

o St SAHS P A

% s i .
acd; Puyy<Qogz) " osmet g <L <pp el j'Iop v
ol
agd J'
_ 1
x Py o
; v
. p(v])-a-'lﬂ

7
mj_1<upf1,..p;|7ﬂv<xjnzj_lz”2



icm

402 : P, Erdos anmd A Sdrkédzy -
[t Teo Y
’ = \% 1 — 1\
<o M 2 (x> I
\pluy<ilog ) - © o gpeps ls’zf a=1 :

o [T 32 +ZW( ST

p<(logn) a=0 % <p<z‘f” a=1

=l [] 3 :up)( +Zm'( 2 Z l)m)"'

'p<(loga)’ ap<peati?! a=1

It is well-known that
I l ! < ¢,logy
1-—-1fp

Py

2‘ Zw— loglogy +¢,+0(1)..

nEy o=l

Thuy with respect to (1}, (23), (24) and (26), and by using the Stirling-
formula, we obtain from (27) that for o> X,(w), . :

and

[t]
(28) Z < eyplog ((Qoga)?) (1 + 2 (logloga'? —lowlogszr cn)’”)

asA

aé_ntj

= cmloglogm(l—'r

2 1 ‘(Iog Icugar;“'?.j +0 )m) o
- 13
! loge;

o1 logat? w
< eploglogw (1+ Z wl (log mg“ +0u)

st ='¢;ploglogm (:H— 5‘

m=1

(102; of 4 () + 013}’:
t!

e{log af 4 (@) + 61a) )t

(log.amfA () +- 011) )

< ¢yptloglogz

:

slogf (@)} 1
%) =Eloglogm

< cmtl’zloglogm(

£4(@)

i
= loel _JA
TR Ogm( (logloga)*

16

_ 1 fal=)
16 loglogz =
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(22) and (28) yield that

@) L@ = > =

2’_

asA; . aEAj
cnéA;
Jalw) — fal®)  _ Jalw)
8loglogw - 16logloge  16logloge

Let § denote the set of the integers # such that # <
be written in the form

oz and 7 can

(80) =n =au where aecA; and ofu,z, m’f‘) > ——10ng

For fixed n €8, leb p(n) denote the mumber of representations of # in
the form (30).
Then we have

(31) _er(n) =2 > 1

n=x ) IIGA. du%i .
m(u s :z:l'l" ]> log_fﬁ(:r)
DD X ED )
aEA ugzio u<a:p‘a

o2z, 22 )ﬁ— logf 4(=)

TIn order to estimate the last sum, we use Lemma 2 with z, ¥, z/a and

1/400 in place of ¥, 2, » and o, respectively. Then 1 < ¥ and 2y < 2 hold
frivially by the definition of & (and by j < ), and also 2 <o holds by

) i o &
= —<— =9

PR )

' a

{since we have ¢ € 4] and thus & < ;). Thus Lemma 2 ean be applied,
and we obtain with respect to (1) and the definition of 2; that for large o

1 ) Togatt?
400/ 7 logg;

-

Ha
(32) Z’ l<aexp (Q(—-

n<wla

1j2h, 399 =
olu, g2 ) W e
k4 <P

b
,_.

x 6 Ogmlﬂj
<& exp(-3-10° logl—m

& _ 1z
=6 exp [ —3-10 " log2uf,(#)) < 3
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Furthermore, by (6) we have

300 3 1 399 Jog 2%
= Rl 1 —a.).
(33) 400 2: 77 400 (Og logz, c”)

zj<_‘p€_z

127

By (8), we have

(34) fAﬁ(m) < longzR g logmllﬁ.
We obtain from (1) and (34) that
(33) logz, = Jogmax{(logz)’, a2’ Tfata
1 1jod
= MaxX {310g10gm, &}
= max {h)gm"’” Slogloga loga” }
loga™ ' 2af (@)

< axX {IOg 2 3loglogs  log Caaad }
Fa@)8 7 20f ()
< max {hgmmi 3 (fu (@)™ ' loge }
: Salm)[6 20f 4 (@)
18logz"®

(33) and (35) yield for large a that

399 1 399 loga'¥
36 il 2 — > _
B8 150 p ~ 400 (Og logz; G”)

¥

zj<p€z]
399 (£ (@) 18
= L - 19
00 (Og 18 G”) ~ 19 1084 )
henee
(37) > 1< > 1.
uj&z{a u<zia
li2h 18 !
m(u,z,,zl y< g lo8s y4(2) m(u,zj,zllz )é%ﬂj <z @1;21';—)
(32) and (37) yield that
1l
1< ——.
3 a

u<zle
w(u,Zj.arlly)>:—:10gf F 4(2)

Some asymplotic formulas on gencraliszed divisor funciions, IIT 405

Thus we obtain from (29) and (31) that -

(38) 24}(%);;([%]_%%) >2%

n<e p Ag aEAj
. & . aEfA(m)
2 T (@) > 32loglogz

Now we are going t0 give an upper estimate for Y ¢(n). Obviously,
. n=T
for n< # we have ¢(n) < d, (n) < D, (») hence
(39) 2, 9m) = Yom< Y D,z) =|8|D,(x).
Ny nes ney
Thus in order to obtain an upper bound for > ¢(n), we have to estimate
n<z

8.

If n € § then by (26), (30) and the definition of the set 4}, we have

w(ﬂ,z,-,w”zj) = w{ou, 2, 2y = o{a, 2, mwj) + w(u, 2, x”ﬁj)

18 1 18 Bo
>+ g Toglule) > 5 log (@) + g loar(e) = goloaks (@

hence

(40) ISt< 2 1.
. nEL
m[n,zj,zli-""?j> ‘:—i logf 4(x)

In order to estimate this sum, we use Lemma 3 with 2, %, 2, 17/37
and 9/10 in place of ¥y, 2, v, a and §, respectively. 1<y, 2y <2< v and
0<a< f<1 hold trivially with respeet to the definition of z;.) We
obtain with respect to (8) and the definition of z; that for » > X,(w),

(41) 2 1

nEE

i 54
W(n,ﬂj,scmj):v =

zj<p;a:”2i5
1\~ : i7 log2™®
= =h
<cﬁm( 2 P xp (Q(ST) 08 logz, )
zj<psa:m}
- 9, log 2%
TP T 1000 08 g gt Taraa

1 9
< G WOXP (-—ﬂ%a logof 4 (w)) < @eXp (—W lﬂgf_g(os)) = w(f‘{(w))"s,uo'
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Furthermore, with respect to (6) and the definition of 2; we have:. *

EINS DR
J--<13<:c]1"j 9:1}21+ &f 42) cpeali®
gﬁin_-jﬁ %
7 Vi 9—1 P
;u<zlf2 wf4(z)

,‘ni‘-}-l

—loglogaM™ ™ elas) g

bb
(logzwf_,i( )+ o) < g 10874(®)

and thus -

w2 D= by 1.
i ‘nE : : -n,sa: o

j 55
m(n,z;,zlt' 27) > logf 4(z) m(n,zj,x1!27) w2 1

= =
3‘2’ oj<D gml"zj »

(40}, {41) and (42) yleld that _
(43) 8] < w(f g ()L
Finally, we obtain from (38), (39) and (43) that

of (@)

32loglogz < n{?_.'; w(n) ‘<“|SJ“_D—4(m) < m(fd ($))_9II°BDA ()

hence with respect to (1),

D,(@)>£4(0) falm)" >

32 (f;t (m))llzn
WMW>W()

(fA (m))glm

3210g10gm >fa(@)

= fulo)

for 4 > Xy(w). Thus (2) holds also in Case 2 and this completes the proot
of Theorem 1.

4. By using the same method, we can ghow that Theorem 1 is frue
also with (logloga)**® in place of (loglog®)® on the right-hand side of
(1). In fact, in order to prove this, the only nop-trivial modifications
are that ¢ must be defined as © = ylogf,(z) where # = 7{g) (>0) is
sufficiently small in terms of ¢, and in (30), the cond,ltmn o {1, %, m”z)

18
> logf,(#) must be replaced by w(u, 7, ) > Klogf, () where
K = K (e} is sufficiently large in tgrms of &, Furthermore, then Lemmag 2

icm
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and 3 must be replaced by lower and upper estimates for

!
nEY

olnyAdzL X 1p
y<p=<s

where L is arbitrary large but fived. Such estimates could be deduced
by the methods used by K. K. Norton in [6]. (Norton’s estimates cannot
be nsed in the original form gince the error terms in his lower and upper
estimates depend implicitly on the set E of the prime nombers whose
multiples we invegbigate. Thus in our case, these results would yield
lower and upper bounds depending implicitly on {p: y <p <2}, ie,
on y and z, instead of the explicit estimates needed by us.)

On the other hand, we guess that also the exponent 24 could be

_improved, and, perhaps, Theorem 1 is true also with (loglogz)'** or

even o,,(w)loglogs on the right-hand side of (1). This is the reason of
that that we preferred to work oub the slightly weaker estimate given
in Theorem 1 whose proof iz mueh simpler.

5. One may expect that if we know that f,(y) is lalge for oll ¥y <
then Theorem 1 can be sharpened in the sense that the lower bound glven
for f, (@) in (1) (for fixed x) can be replaced by a much smaller lower
bound for f () (Hor all y). In fact, we show in this section that

THEOREM 2. For all w > 0, there exists a real number X, = X, (w)

. - loga .
such that if x> X, and wriling § = exp W , we have
(44) Ta(y} > 22logloglogy,
then
(45) D,(@) > wf 4(2).

Furthermore, we show fhat Theorem 2 is best possible exeept the
value of the constant factor on the right of (44):

TEEOREM 3. There.exist positive constanis oy, €4y X; and on infinite
sequence A such that .

(46) falo) > eplogloglogn  for oll @ > X;
and - - ’

47 | tim ing 24

(47) e @)

In order to prove Theorem 2, we need the following lemma:
Lemvis 4. If o > 1 t=1 cmd A is an arbitrary sequence of posifive
integers” such that

(48) Dy(w) <t

7= Acta Arithmetica XLI, £
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then we have
N (@) < 1,
Proof of Lemma 4. Agsume indirectly that
N (a04) > ¢,

ie.,
N (g0y > 14,
Then there exist integers ay, Gy, ..., @y, such that a, € 4, a,cd,...
erey Oy €4 and
(49) Oy <y < < Ay, S M),

Pot 4 = a,8, ... ay,,. Then a;|u for 1<<u<<[#]1+1 and thus
{50) a (u) = [H]+1L >t
On the other hand, by (49) we have
(51) == @l .. Gy < (BT R
(50) and (51) iraply that
Dyz) >t
in contradiction with (48) which completes the proof of Liemma 4.

Proof of Theorem 2. We have to distinguish two cases.
Case 1. Let

L4(2} > (logloga)™.
Then for # > X (), (45) holds by Theorem 1.

Cage 2. Let
(52) fa(2) < (logloga)™.
Assume indirectly that
(83) D (@) < of ().

Then by using Lemma 4 with ¢ = of,(#), we obtain that
(54) N (@1D) = N (@) < ¢ = of, (a).

Put M = N (@44 and let a4y <a,<...<a, denote the a's
not exceeding #*~4@+1), Then by (52) and (54), we have

A M
o N L
L@ = 3h< D)5 <log Moy
L

Te=l

(55)

< logaf 4 (@) + 040 < log o (loglogm)® + ¢,,
< 21loglogloga.

icm

Some asymplotic formulas on generalized divisor fumctions, IIT 409

On the other hand, by (51) we have

logx

et —ep
A

o (logloga)®® +1L
> exp(___mgm ) = .
{(loglogz)®

Thus (44) ylelds that
L@ (eLE) > 1 (g) > 2210gloglogy

1
087 o > 21loglogloga

= Bloglog G og e

in contradiction with (55) which completes the proof of Theorem 2.

Proof of Theorem 3. In the proof of Theorem 1 in {1], for # = X,
we constructed a sequence B(x} such that

(56) fB{z) (2) > ey logloge
and
(57) Dpa(#) < 2loglogs.

Let us define the infinite sequence x, < @, < ...
recursion: let

by the following

o =X, and a, — explexp(exp(;_,)-

For # > 1, let
H(x) = {n: Ve<n< @},
Finally, let
00
A = |J B{z,)U E(loglogz,).
=1

We are going to show that this sequence 4 satisfies both (46) and (47).

First we prove (46). Assume that 2 > X,. Then there exists a
uniquely determined positive integer % (= 2) such that w,_, < » < a,.
Then either

(58) oy < &L exp(wy_,) = loglogw,
or
(h9) exp{(my._,) = loglogo, < @& < o,

holds. If (58) holds, then by (56) we have

Fa{®) 2 fa(@e ) 2 Foe,_p (@) > eylogloga, , 2> ¢;1loglogloge
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while if {59) holds then
. . 1
fa(w) = H(oglogmy) = 3 o=
7
- (oglog ey i<n<loglog e,
>} logloglog, 31 logloglog».
Thus in faet, (46) holds in both cases. o 7
Tn order to prove that also (47) holds, it iz sufficient to show that
for k. =1,2,..., we have. . : : g
D (o) .
falwg) ~ 7%

If w< &, then by (57) we have

dw=Y1= 3 1+ ¥ 1

(60)

Cr R I T
= D 1+ Yi= > Lidg,mw
a<loglog gz, i a<loglogxry,
alu,ed © qEB(zk) alu,aed
K logloga, + D,y () < 3logloga,
hence
(61) : 0 Dylmy) < 3logloga,.
Farthermore, by (56), we have
. L s o
(62) Jaloy) = Z“C:? 2 " = Faey (@) > 0glogloga,.
a<y aeB(zy)
aecdd : .

(61) and (62) yield (60) and the proof of Theorem 3 is completed.
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