Cyclotomic units and Hilbert's Satz 90

by

Morris Newman (Santa Barbara, Calif.)

Introduction. The purpose of this paper is to derive a formula for any unit of \(K_n = \mathbb{Q}(\zeta_n) \), where \(\zeta_n \) is a primitive \(n \)th root of unity, whenever the Galois group of \(K_n \) over \(\mathbb{Q} \) is cyclic. The formula is in the spirit of Hilbert's Satz 90 ([1], pp. 149-150), which states that such a unit \(\alpha \) is of the form \(\beta'/\beta \), where \(\beta, \beta' \) are conjugate integers, and supplies an answer to the question of when \(\beta \) itself may be taken to be a unit. For simplicity, the details will be presented only for the case when \(n = p \), a prime > 3. Only trivial modifications are required for the more general case.

Accordingly, let \(p \) be a prime > 3. Let \(\zeta = \zeta_p \) be a primitive \(p \)th root of unity. Let \(g \) be a fixed primitive root modulo \(p \). If \(a = a(\zeta) \) is any integer of \(K_p \), then \(a(1) \) is well-defined modulo \(p \), since \(\Phi_p(1) = p \), where \(\Phi_p(x) = (x^p - 1)/(x - 1) \) is the cyclotomic polynomial of level \(p \). The integer \(1 - \zeta \) is a prime of norm \(p \), and \(p \) is the only rational prime with ramification.

The Theorem and its proof. The theorem we wish to prove is the following:

Theorem. Let \(a \) be any unit of \(K_p \). Then

\[
(1) \quad \alpha = \left(\frac{1 - \zeta^r}{1 - \zeta} \right) \frac{\beta(\zeta^p)}{\beta(\zeta)},
\]

where the rational integer \(r \) satisfies \(0 \leq r \leq p - 2 \), \(\beta \) is again a unit of \(K_p \), and the representation is unique, apart from the fact that \(\beta \) may be replaced by \(-\beta \).

We first prove two lemmas.

Lemma 1. Let \(a \) be an integer of \(K_p \), normalized so that the polynomial \(a(x) \) is of degree \(\leq p - 2 \), and such that

* The preparation of this paper was supported by NSF Grant MCS76-8293.
(2) \(a(t^i) = e \alpha(t) \), where \(e \) is a unit of \(K_p \) and \(t \) is a primitive root modulo \(p \),

(3) \((\alpha(1), \eta) = 1 \),

(4) the content of the polynomial \(\alpha(x) \) is \(1 \).

Then \(\alpha \) is a unit of \(K_p \).

Proof. Suppose the contrary. Let \(P \) be a prime ideal divisor of \(\alpha(t) \). Then the conjugate ideal \(P^{\sigma(x)} \) (obtained by applying the automorphism \(\zeta \to \zeta^p \)) is also a prime ideal, and must be a divisor of \(\alpha(t^i) \), and so also of \(\alpha(t) \), because of (3). It follows that \(\alpha(t) \) is divisible by every conjugate of \(P \), since \(t \) is a primitive root modulo \(p \), and \(\zeta \to \zeta^p \) is therefore a generating automorphism of the Galois group.

Now \((\alpha(t), 1-\zeta) = (\alpha(1), 1-\zeta) = 1 \), since \(1-\zeta \) divides \(\eta \) and (3) holds. Thus \(P \neq (1-\zeta) \).

We have that \(N(P') = q^s \), where \(N(P) \) is the norm of \(P \), \(q \) is a prime, and \(s \) is the degree of \(P \). Then \(q \neq \eta \), and the principal ideal \((\eta) \) must be the product of the distinct conjugates of \(P \). But this implies that \(q \) divides \(\alpha(t) \), which is in contradiction with (4). This completes the proof.

For the second lemma, we define the special units

(5) \[\eta_h = \eta(\zeta^h) = \frac{1-t^{\sigma^h}}{1-t^{\zeta^{h-1}}} \]

Then

(6) \[\eta_{h-1}(\zeta^p) = \eta_h(\zeta) \]

We have

Lemma 2. Let \(r \) be any positive integer. Then

(7) \[\frac{1-t^{\sigma^r}}{1-t^{\zeta}} = \tau(\zeta)^r \frac{1-t^{\zeta^r}}{1-t^{\zeta}} \]

where

\[\tau(\zeta) = \prod_{i=2}^{r} \prod_{k=2}^{r} \frac{\eta_k}{\eta_{k-1}} = \prod_{i=2}^{r} \prod_{k=2}^{r} \frac{\eta_{k-1}(\zeta^p)}{\eta_{k-1}(\zeta)} \]

is clearly of the form \(\beta(\zeta^r)/\beta(\zeta) \), \(\beta \) a unit of \(K_p \). Furthermore

\[\left(\frac{1-t^{\sigma^r}}{1-t^{\zeta}} \right)^{r-1} = \tau(\zeta)^{-1} \]

is also of this form.

Proof. We have

\[\prod_{i=2}^{r} \frac{\eta_h}{\eta_{h-1}} = \frac{1-t^{\sigma^r}}{1-t^{\eta_h}} \]

\[\tau(\zeta) = \prod_{i=2}^{r} \frac{1-t^{\eta_i}}{1-t^{\zeta}} \frac{1-t^{\zeta^r}}{1-t^{\zeta}} \]

from which formula (7) follows. Formula (6) and the fact that \(\frac{1-t^{\sigma^r}}{1-t^{\zeta}} = 1 \) now imply the remainder of the lemma, and the proof is concluded.

We are now prepared to prove the theorem. Let \(\alpha \) be any unit of \(K_p \). Then \((\alpha(1), \eta) = 1 \) (since otherwise \(1-\zeta \) would divide \(\alpha \). Thus \(\alpha(1) \equiv g^r \mod p \), for some \(r \) with \(0 \leq r < p-2 \). Write

\[\alpha = \left(\frac{1-t^{\sigma^r}}{1-t^{\zeta}} \right)^{r-1} \beta \]

where \(\beta \) is also a unit of \(K_p \), and \(\beta(1) \) must satisfy

\[\beta(1) = g \mod p \]

By Hilbert's Satz 90, we may write

\[\beta(z) = \gamma(\zeta^r)/\gamma(\zeta) \]

where \(\gamma(\zeta) \) is an integer of \(K_p \). The theorem also tells us that \(t \) may be taken as a primitive root modulo \(p \), but we do not assume this, since it develops naturally in the proof.

We may write

\[\gamma(\zeta) = (1-\zeta)^s \delta(\zeta) \]

where \(s \) is a nonnegative integer and \(\delta(\zeta) = 1 \), so that \(\delta(1, \eta) = 1 \). Furthermore, we may assume that \(\deg \delta(z) \leq p-2 \), and that the content of \(\delta(z) \) is \(1 \), since

(8) \[\beta(\zeta) = \left(\frac{1-t^{\sigma^r}}{1-t^{\zeta}} \right)^{r-1} \frac{\delta(\zeta^r)}{\delta(\zeta)} \]

and the greatest common divisor of the coefficients of \(\delta(z) \) may be cancelled out in (8). Now (8) implies that

\[\beta(1) \equiv t^r \mod p \]

Since \(\beta(1) \equiv g \mod p \), \(t \) must itself be a primitive root modulo \(p \). Thus Lemma 1 implies that \(\delta(\zeta) \) is a unit of \(K_p \).
Since ℓ is a primitive root modulo p, we may write $\ell \equiv g^a \mod p$, where $1 \leq a \leq p-2$ (in fact, $(a, p-1) = 1$). Then
\[
\frac{\delta(\ell^a)}{\delta(\ell)} = \frac{\delta(\ell^a) \delta(\ell^a \ell^a) \ldots \delta(\ell^{a(a-1)})}{\delta(\ell) \delta(\ell^2) \ldots \delta(\ell^{a-1})}.
\]
Put
\[s(\ell) = \delta(\ell) \delta(\ell^2) \ldots \delta(\ell^{a-1}).\]
Then $s(\ell)$ is also a unit of K_p, and
\[(9)\quad \frac{\delta(\ell)}{\delta(\ell)} = \frac{s(\ell^a)}{s(\ell)}.
\]
Thus we have that
\[(10)\quad a = \left(\frac{1-\ell^2}{1-\ell}\right)^{-1} \left(\frac{1-\ell^{a^2}}{1-\ell}\right) \frac{s(\ell^a)}{s(\ell)}.
\]
Now Lemma 2 implies that
\[(11)\quad \frac{1-\ell^a}{1-\ell} = \frac{\ell(\ell^a)}{s(\ell)} \left(\frac{1-\ell^a}{1-\ell}\right),
\]
where $\ell(\ell^a)$ is a unit of K_p. Thus (10) and (11) together imply that
\[a = \left(\frac{1-\ell^2}{1-\ell}\right)^{-1+as} \frac{\ell(\ell^a)}{\ell(\ell^a)} \frac{s(\ell^a)}{s(\ell)}.
\]
so that a is in the form required, except possibly for the exponent $r-1+sa$. But Lemma 2 implies that this may be reduced modulo $p-1$. This completes the proof of the first part of the theorem. To establish the uniqueness, suppose that there are two representations
\[a = \left(\frac{1-\ell^2}{1-\ell}\right)^{r_1} \beta_1(\ell), \quad b = \left(\frac{1-\ell^2}{1-\ell}\right)^{r_2} \beta_2(\ell),
\]
where $0 \leq r_1, r_2 < p-2$ and β_1, β_2 are units of $K_p.$ Modulo $1-\ell$ we get
\[g^{r_1} \equiv g^{r_2} \mod 1-\ell,
\]
so that
\[g^{r_1} \equiv g^{r_2} \mod p.
\]
This implies that $r_1 \equiv r_2 \mod p-1$, so that $r_1 = r_2$. Thus
\[\frac{\beta_1(\ell^a)}{\beta_1(\ell)} = \frac{\beta_2(\ell^a)}{\beta_2(\ell)}, \quad \frac{\beta_1(\ell)}{\beta_1(\ell)} = \frac{\beta_2(\ell)}{\beta_2(\ell)}.
\]
The unit β_1/β_2 is thus invariant with respect to the generating automorphism $\ell \rightarrow \ell^a$, and so must be rational, and hence can only be ± 1. This completes the proof of the second part of the theorem.

Conclusions. A nice group-theoretic interpretation can be given to these results. For a fixed primitive root g modulo p, the set of units of the form $\beta(\ell^a)/\beta(\ell)$, β a unit, clearly forms a multiplicative subgroup E_β of the full group of units E. What has been shown is that E_β is of index $p-1$ in E, and that the quotient group E/E_β is cyclic, with generator $\frac{1-\ell^a}{1-\ell} E_\beta$.

An interesting corollary which follows directly supplies an answer to the question of when a unit of K_p may be written as the quotient of conjugate units:

Corollary. The unit $a = a(\ell)$ of K_p may be written as the quotient of conjugate units if and only if $a(1) \equiv 1 \mod p$.

It is only necessary to note that if a is a unit and t any integer, then another unit e exists such that
\[\frac{\delta(\ell^a)}{\delta(\ell)} = \frac{s(\ell^a)}{s(\ell)},
\]
the argument being identical with the one leading to formula (9).

References