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with differences 4> 0 that tend to increase with n. Some sample values
follow; the values of U in the table are truncated at one decimal place.

n P a Uly(n—d), §)
a000 48611 91 48616.6
10000 104720 188 104732.9
20000 224737 i 358 224744.7
30000 350377 528 350389.1
40000 479909 681 4788107
50000 611953 347 611955.9
60000 746773 969 746773.9
70000 BB2377 1163 882385.4
80000 1020379 1295 1020380.7
90000 1159523 1443 1159525.7
100000, 1299709 1598 12897225
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Gaps between primes, and the pair correlation of zeros
of the zeta-function

by
D. R. HesTE-BrOWK (Oxford)

1. Introduction. In studying the finer properties of the distribution
of the zeros of the Riemann Zeta-function, Montgomery [7] examined
the pair correlation funetion

@) = 3 Win—rle(Xri—n).

02y, 3T

Here W(u) = 4/(44u?), e(u) = exp(2wnin), and y runs over imaginary
parts Im(g) of the non-trivial zeros ¢ of {($) (counted according to multi-
plicity). Montgomery based his investigation on the agsumption of the
Riemann Hypothesis, and we shall follow him; for convenience we use
the abbreviation RH. It is clear that Fj(X) = ¥, (—X), that Fy(X)
< T'(logX)? and that F,(X)> 0 (this follows from Lemma 3 below).
Montgomery showed in addition that, on RH,

(1) Fp(X) = TX+ o 0™ (log T)*+O(T)+0(aX) +0(Ta*IogT),

for o = ™%, m = 1. Actua]ly he stated a slightly less precise result, but
it iz clear that his analysis leads to the above refinement. When 0 < 8
<'f<1—4, where, as later, X = (flogT)/2n, (1) reduces to Fp(X)
= TX+Q(T), uniformly in f. Moreover, Montgomery conjectured, in
general, that

7 .
{2) Fp(X) ~—— QogT)Min(1, B])

uniformly in 0<< < |f] < A. From (1) he deduced, on RH, several
important consequences for the distribution of the y’s, and he showed
that the conjecture (2} would lead to more powerful conclusions — for
example, that ‘almost all’ zeros would be simple.

Results connecting the distribution of the primes p, and the zeros.
of the Zeta-function have long been known. In particular von Koch [5]
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showed, on RH, that
Y(x) = z+0{@" (loga)?),
Cramér 1], also on RH, that

(3) P =Pu € P7l0gD,,
and Selberg [91, sub]ect again to RH, that

D) (Paa —2,)* < a(loga)’,

Dy ST
and thaft. ‘almost all’ intervals [#, 2 +f(#) (logx)?] would eontain a prime,
i fa)— .
U In addltlon, it has generally been expected, in a rather 1mpremse
gensé, that information on the distribution of the +’s would improve the
above results on primes. It turns out that the conjeeturs (2) containg
just such information. The first result in this connection was due to
Gallagher and Mueller {3], who showed that (2), together with RH,
implies
('4)'_' ‘ ‘I’(m) = m—;—o( "z(logm)"‘)

Mueller [8] later showed tha.t ‘the weaker hypothesis
(X } € TlogT,

umformly for 0<<3< |8l < 4, together with. RH, also suffices for (4),
and further, that these two hypotheses yield

Do — P € P (logp, e
for any s> 0.
© We shall extend these results as follows

TEEOREM 1. Assume RH, and that Fp(X) = o{T{ IogT) ) as T—+o0,
mtformly Jor 1< B < A, for every comstant A = 1. Then (4) follows.

TEEOREM 2. Assums RE. Then

‘ logx
a, <wA“‘loga:-I—Max{(K(logzK)—z)—zMa'XF:( 2g )}.
xs;pnﬂsm 12 K31 < Kxfd T
dp>4 )
whare, as later, d, = Do 11D
COROLLARY 1. Assume RH and ihat

(6) ' FT( ozg

) <€ TlogT,
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uniformly in x end T for a4~ (loga) ' < T < xd47" (loga). Then

d, < md‘llogm.
By S dp > A
COROLLARY 2. Assume RH and that (5) holds, with p, in place of x,
uniformly in p, and T, for p(logp, )< T< 1(;1/310,‘;;5)n Then

d, < (p,logp, )"

CoroLLARY 3. Assume RH and that (3) holds, uniformly in x and
T, for £¥2(loga) < T << o. Then

\_\‘ d; < x(loga)®.
Pu<~‘°

COROLLARY 4. Assume RH and that (d) holds, uniformly in z and
T, for z(logey* < T <<a. Then ‘almosi all’ mtef'wls [x, 2+ f(=)logr]
contain a prime, providing that f(x)— co. That is fo-say, the Lebesgue measire
of the set of © <, such that the interval contains no prime, is o(z,) as
;').'.’1-—-}00

We have made no attempt to get the smallest possible T-intervals
in these results. Corollary 1 is an immediate consequence of Theorem 2
and the bound ¥, (X) < T'(logT)®. Corollaries 2, 3, and 4 follow trivially
from Corollary 1, since {5) holds when # < T < %, by (1). However one
could easily give a shorter direct proof of Corollary 2. We expect the con-
clusion of Corollary 4 to be best possible, but we are unable to. disprove
even that ‘almost all’ intervals [z, # +logz] contain a prime.(!) Regarding
Corollary 3, we may conjecture that, in fact

2 @2 ~ 2zloge.

. DT
Finally we have
THEOREM 3. There exist numeﬂﬂwaj const(mts €4, 6y as follows. Assume

RH, and that

T5(z)logT

for some 8(w) in the range (loga)™? < 5(m) <1 and for a(logz)y 2T
< wlogm. Then

< 0, 8(x).
e <Py, e 10

(*) When 0 < A< 1 at least a proportion 1—2, asymptotically, of intervals
f#, z--Alogx] contain no prime. The author is grateful to Professor P. X. Gallagher
for ghowing him a very simple proof of this.
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Thus, if {2} holds uniformly in T’ and 8, for § in some neighbourhood
of 1 then, on RH,

imint Dot Fn
e 102D,

2. Preparations. In this section we lay the groundwork for the
proofs of our theorcims.
Lemwa 1. Assume RIL. Then, if =, T2 2, we have

Yia) =a— D &% (EHiy)7 +B (@) +F (),

|y|<a"
where

Ew) = Bz, T) € o +al (logal)* and F(a) = F@,T) < An)

for n—t<wm<nti ,
This follows, for example, from Davenport [2], Chapter LT7.

LEMma 2. Define #(x) = Ylogp, where the sum is for primes p < &,
and

(1 81t —1
Assume BRE. Then, if T>2l>2 and o, <8< 1, we have

alt) = w(t, 8) =

I = !fzoj {ﬁ(w+w6)—19(w)~m6}2~{ b m”2+fvm(y)}”tdm < B2, 0),
where *p =T

By, 8) = w3 8 + a3f* 8% (log g M® -+ o) S(log o) +
+ 2% 8 (log ) + @ty (log @) -
For the proof of Lemma 2 we write ‘
| Glw) = B(w, 8) = DL wd)— () —ad,
G (x) = V{e+2d) —F(n)— 28 -G ().
Then, by Lemms 1 and the Cauchy-Schwarz inequality, we find

2y .  §ired 2,
I= f 1GH(@)2 —{G{z) +H ()} de < 2 fﬂ 6 () H ()| dx -+ IOH(w)Edm
*o % 20

<{ TQG(m)zdm}llg{ T°H(m)2dm}-+ }I[’H(m)ﬂdw = [P 1Y 1 I,
g g oy

pay; here we have written-

H(z) = G4{2) —E(x+nd) +E(z) ~F (z -+ wd)+F{z)

icm
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for brevity., We proceed to bound I, and I;. We have
27g g .
I «d#+ [ {fo+ad)—d@))dr <o} +logzy) | I3 i
T 2y Tyl
€8+ (loga)t )

TSP g4y
ip—gl<sdny

0xy € o 0* + ok Blogag,

where p and ¢ run over primes. Here we have used the uniform sieve
estimate

a(k)
k

(6) 2 1 <x

Dasnn— o=k

(logz)™ (A <k<0),

where o(k) is the sum of the divisors of k; this fellows, for example, from
Halberstam and Richert ([4], Theorem 3.11).
Turning now to I,, we have

Gulo) = (Do +aef) —d@P)+ D (B(Co+zopin) —d(m)f

3<n<logry

< [D{(z+o0)?) — B+ (logag) 3 {B{lw+asfi) — s,

3<nglogmy

whence

a
25
[ &@prde <ogrr 3 Smtoga) > ) dm,
%y apsphiaisin Banloging gyt gf<iny
10* - by pT— g4y

<€ 7% 8 a3 dloga,

on applying (6). Moreover, as T = &5, we have

2rg

2z
f E{zry2dx, f E(z+xd)dr <€ x,.
gy y

Finally, we find

A(n)? <€ mologa,
Ig—1lEnlrg+1

27
f H{x)? da_s' £
o

and similarly
2uep

- f Fle4xd)de <€ myloga,.
zp
It follows that
I, < a8+ 2 slogw, + zolog s

this, in conjunction with our bound for I,, proves Lemma 2,
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Our next two lemmas show how to hound the sum

Z(T,0) = E(T,v,X) = 3 ely(o+X)

0L pT

in terms of F(X). We shall make no use of RH, or even of the fact that y
is the imaginary part of a zero; the results hold good if y runs over an
arbitrary countable set.

Lemma 3. Define k(o) = 2rexp( —4=|v]). Then

o

f k()| Z(T, v)|2dv = Fp(X).

—0o

Te prove this we have only to note that
[ k(@)o(v)do = W(a).

LEvma 4, Let T2 1. Then

Z(T, 0) < TV {Max F (X}
t<r
- By Montgomery ([6], Lemma 1.1) we have
' ‘ 1 1
FO) < [if'(w)ldv+ [ [f(e)ido
-1 -1

if f-has a continuous derivative on [ --1,1]. Thus

1
=0 < 15, o1 | xa, 0
3

1
dv - f (T, v)j2dv
-1

oo

<{ fk()|2:‘(1* 'v|2d'u {fk y)[

—oo 00 o<y

ye(y(v+X)) r dv}m-i-

+ f k(o) |5(T, v)i2dv.
However, on summing by parts,

D) vely(v+X)) = TX(T, v)

0<y<T

r
— [ Z(, v)de

icm
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whence
[r@| 3 yvelyo+D)[ a0
—m o<yt

oa T oo
€T fk('v)!E(T,v)lﬂdv—{—Tf- [ k@2, o)irdod
¢t =~

—e

< T2 Max F,(X).

T
Lemma 4 follows. '

3. Proof of Theorem 1. Taking T =& in Lemma 1, we have, by
partial summation ‘

T
Pig)—a < 2 {1+T"|2’,‘(T, 0, X+ [ t7°12(, 0, X))dt},
. 2

where @ == ¢"X. When #3732 o** we have, by the hypothesis of
Theorem 1,

Max F,(X) <

< t<elf?
= o{r{logt)}

< Max Fy(X)-+ %[a,x Fy(X) = O{"2(log7)*) +o(r(logT)?)
iy

umformly in 7. Henee, by Lemma 4,
T
LT, 0, X)i 4 [ 121z, 0, X)idt Mo(logm)”)
24
On the other hand _
24 2t
[ 12,0, D) < [ #7(logtydt < A7*(loga)*.
2z A 2
Thus

P (x) —o| < ' Cle(A, m)-}—A‘z)ml’z(lbgw)

where C is an absolute constant and, for any fixed 4, & (4, az}—>0 aB @00,
Now suppose £>> 0 is given. Choose A = (20’3")”2 and take z, such
that

le(4, 2)[ <

e/(20) (22> ®o).

Then [¥(z)—2z|<

4. Proof of Theorem 2. We shall write , in place of # in Theorem 2.
The result is trivial if 4 < loga, or, by (3), if 4 > «}*loga,; thus, taking
8 = AJ{dw;), we may assume that z;' < 8 < 25" loga,.

s2V*(logz)* for @ > &,, and Theorem 1 follows.
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We begin by examining the integral

2y
J = f B+ ad) —9(z) —2d)ide.
0
2 < p, <32, and d,> 4, we have p, <2< s+wd<p,+d,, and so
#e+ 1) = B(x), for p, < @< p,+1d,. Thus

Dt 1y i2
I 2 f (@) e > ) 8 2 d,.
MRDEIT2 To<s 8z/2
0 d;z;! 0 n 0 g:l,gazuj

On the other hand, by Lemma 2 with T = #f,

J € By, 6)+ 1, }JUI 2 7" w(y) |2dw,

Zp i<

and for the present range of 4,
B(my, 8) < a;blogam,.

Henee it remains to show that

(7) f 'y w”w(y)] dar < oy Mo (K log2J0) )" Max: 7,(X)},
gy  yl=r

where X = (logm,)/2r. _
We treat the terms with |y| < 677 and |y} > 67" separately. In the
first case we have

S o) <| X avoy)]
ri<1/8 o< p1/0

and, by partial summation,

1/8
¥ w(y) = 2(1/5,1;,_:\{)(»(1/5)—f Z(t, v, X)o' 1)dt,

G<p<C1/d &}

where @, < o < 22y, £ = ¢+, However we have the trivial bounds

(8) w(f) € Min(d, [t|™), w'(1) < 6Min(s, |7,
‘whence
1/6

S o) < 81218, v, X)] +8t [ 20,0, D

D<ys1fd
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Then, by the Cauchy-Schwarz inequality and Lemma 3, we find

15
J'| 3 o a <f {12113, 0 X)i“rés‘} 156, 0, )it}
LI ST
(log 2)/27 18

< 2, f {62|X(116,@,X)|5+ 63f |E(t,@,X)]2dt}dﬂ
o v

1j8

< m, f 10) {52|5*(1/§ v, X)|2 +63f |Z(t, », X)Pdt}

1/é

(9) = mg 82 1y ( X)) 4y f F(X)@t < z,8Max F (X},

r=1/é

af required.
We turn now to the case §' << jy| < T. Here we use the decomposi-

tion

Savug) = @ty (o-+20) (3+ip) 7 — 3o (3+ip)™

¥

whence

3 aa(p e <f | > @G

vy Ya<|yl<T zg eI

Partial summation now yields

N @ +in) = Z(T,0, D) F D) - Z(L8, 0, D) (1877 +

P<y<T
: P
+i [ Z(t, 0, D)(F+it) Rt
1j6
and therefore '

o (3+iy)t < TTHE(T, v)l+6|2(1i6 o)+ frﬂv*t v)|dt.

1<yl =X L

After applying the Cauchy-Schwarz inequality we find-

T . r T
{ [z, v)idt}'s;{ [ (10g(1+t5))"9dt}{ | t‘:‘(log(l-{-tﬁ))zw(t,v)|’d’t}
1/a 1/d 1/8

T
< [ 17 log(1 +8))2L2(2, v)2dr,

1/4
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whenee, by Lemms 3,

2
mi”m(y)lgdw
:co Ty
a
<f {T‘HE(T 0+ 2EA8, )+ [ 17 (log (L4 t8))21 2, m)mu}
1/4

<oy [ k(o) {THE(T, o)t + 841213, )2+

—o

+ jt Y(log (1 +t8))21Z(¢, v)(2 dt}dv

144

= 0y T B p(X) + 2, 0°F 5 ( X) -+, f 1% {log (1-+16))2F,(X) dt

1/8

< 2,8 Max {(K (log2K) %) Fg,s( X)) .
Kzl

Together with (9), this yields the required. estimate (7), and the proof
of Theorem 2 is complete.

5. Preparations for the proof of Theorem 3. Theorem 3 is naturally
more delicate than Theorems 1 ard 2. In this section we begin by evalu-
ating, in terms of F,(X), the integral

I= fk(w)}S(v)Pdv,

where
S(e) = D' ely(r+X)o(y).
o psT
On expanding we find
I= D> Wiri—re((rn—r)X)o(p)ely).

[IC?@%T

From (8) we have w(yy) = ©(y,) +0(8% |y, —y,]) whenee, for y, < y,,

w(p)@(ye) = lo(y)|2+0(5 |y,

The error term here contributes

2 (l‘l‘(?z"'?’l))_l < §*(log T)*

<y EKyy

== y1Hya) .

€ 3 oyt

0 yg T
to I, whence

1= Z W(?l

1<y T

=y e((¥i—y2) X) o (Maxy,)|2 +0 (82 (log T)*) .

icm
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Partial gummation now yields

.
' d
I = |o(TEF(X —th(X) {E ;m(mﬂ} dt+0{6'logT)").

We now consider
fan)

[ B@)18(0) +

— o

8(v)[2dv;
this is clearly

21+-2Re f k()8 (v)2dv.

However the last integral is

D o) o) Wiy Fyde(p+r)X) €8 3 Wiy+p.) < 8 (logTV,

<y i

whence

I

I?I=§T

(vTX) I do

4 a
— z|m(T)12FT(X)—2f Fy(X) {I’z{ ;w(mz} dt+0{8(log T}).
¢

We now suppose x> 2 and 27 < <z logw, (however X and z are
not yet assumed to be related by z = &%), and we take T = #*. The

expression above 18 then <-d(logs), Ly (8), and hence we have

[l 3

17T

y(0+X)) o(y ldw<< s(logay

uniformly for all real X. ¥ wé now choose I = loglogz+0(1), we shall

therefore find

( f + f) | D eyt (?)jzd’v < ¢ 3(loga) < S(loga) .
=T
Consequently
fk 0| Delpv+I)ow) o
lvlsm

r . .
a
= 2|w(T)l21”r(X)-2f Ft(X){E Iw{t)lﬂ}\ di+0{5(loga) ™).
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Our choice of T yields
lw(T)2Fp(X) <€ T (logT)® < d(loga)™.
Moreover, if -
Aty = A(t, §) = {2t 'sin(}d)}?,

then
d
o ()2 = A'(#)+0(827%) +0(Pt7).
Thus, finally, we find
LEMMA 5.
L T
fk('u)‘ N efy(o+X)) o [ v = —2 [ Fy () di-+0 (5(log ™).
] =T ) 0 .

6. Completion of the proof of Theorem 3. We begin by corhbining
Lemmas 2 and 5. We write o —exp(2nX), ¥ = exp(2n(v+X)})
z, = exp(2n(L,+X)) and 1 = (log2)/2w. Then

Ly+t . 25 ) .
f k(@)i Z e(y(v—t-X))m(y)l“d’fu = (27)t J. k(fv)y"?{ Z_?/HWW(V)}-CZE
Lg =T g I7l=1"
20
= (2m)7 [ k(0)y TG ()2 dy +0 (25 % (Lo) B(g,, 9)).
%y
If we now let L, run over infegral multiples of I in the range ¥ = —J

« Ty << Ml = L —1, and sum, then the error terms will be of the forn
ngﬂk(Lo)wgab(logmo)c < a% % 8 (log o)° }_j exp {2xt({a ~2)n —2n)j)
x4 Nan<M

< 37 & (log oy,
gince in each cage (that is for o = 5/2, 9/4, 2, 3/2 or 1) we have ja —2| < 2
It follows that

L I
[Bin)] 3 elpwtDjopa = [koy 6 yrd+0Bw, 8),
—-L

N
whence Lemma 5 yields, for our range of 4§,

xD T
[ Min(%, oy @)y = —2 [ F(X) A’ ()@t 00 #*loga),
xfD} 0 '

in which D = exp(2=L).
We now introduce an average with respect to &, in order to restric
the t-integral to the range mentioned in Theorem 3. We multiply b
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K(8) =1—12~6/4], and integrate for A< <34, where 1< A
< to " loge. K (4) is so chosen that

a 3 a p— a .
Afzf(a) 7 Ally )88 = — {241 (1 — 447 47 (cos 24) (sin 314 ))) = 0, 4),
say. Here O(1, 4) < Min(i™* 4, 4%, and so
a
Jrx 0, Hat = f Fy(X)O(t, A}di+0(T} 4 (loga)s) +0 (T A (logw)2),
1]

where 0 < T, < T,. We choose T, = x{logz)~®, T, = alogw. Now, if, in
accordance with the hypothesis of Theorem 3,

F{X) —1X| << td{z)logt
tor T, t< T,, then

T
fF,(X)G(t, A)d
0

3 n,
S
=f1{(6) ftXa—A(t, 8)dtds +0 (4 8(x)log ) +0 (z=* #2loga).
A T .

Moreover
Ty P 2y 4
. f(211gi 2 — Tt —latn 1
ftX = {2 sinjatyYai = s0x f o-(vsin}v)2de
d.’:."I
—452?([@:—1 sin o) Tog: — f {sm%”}dw)
61'1 ?
=4ax( f{sm%”}da+0(aT1)+0(a~1T;1))
[ .
and
~ sm%fu ™
[yt =
(1]
whenee

4
—2 [ Fy(X)0(t, 4)d
0
LE .
= (logw) [ k(8)8d8+0 (a2 4 "logx)+0(426(x)log).

4
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Thus
34 zD
|fk(a){ | Min(a, Sy Gy, é)zdy—alogm}da|
A4 xfD .

& p 2 AP logw - A2 8(x)logx .

The integrand of the é-integration is a continucus function of 4, whence
there mast exizh some d, 4< 634, such that
*D
(10) [ Min(e™% a2y~ {B(y +y8) —#(y) —y}dy
©/D

= dlogu+0(@ 2 A" loge) +0 (48 (x)logz).
We proceed to expand and evaluate the above integral in the form

mD .
[ yrein(a, aty~dy —2 3 (logp) fydMin(@™, oy~ dy+
z/D P

+ ¥ (logp)(logg) [ Min(a7% a2y~)dy
g

= E:"‘“ZEz”}‘En

where 2/ D<y<aD and p/(A+0}<y<p in By, Max(p, 9)/(1+d) <y
< Min(p, q) in F;. We readily tind F, = }06*+0(w4*/D). When 2z/D
< p < 12D, the integral in ¥, is

» N i
y8Min(27% o'y~ dy = (L+0(4)) [ poMin(s™®, a*p~h)dy
Bi(1+8) PIA-+8)

= p? 0*Min (2™, fp™*) (1 +0(A)),
and otherwise is majorized by this. Hence

B, = (1+0(4) Z p2&*Min (e o*p Hlogp +-

22/ DL p<iael )
—}-O( 2 pmﬂw“"’logp) —|—O( 2 ;p“"Azwzlog}J)
p<2/D pRizl}
= 188 -0 (2 4%/ D).
A similar calenlation shows that the contribution to B, from terms with
P o=qis
(1-+0(4) > poMin(z~%, 2"p~*)(logp)-+
opj DEp<iaD
+0( 3 paaiogp?) +0( 3 p° e (logp)
. p2alD pEiD

= flogw4-0(4).
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For the remaining terms of ¥, we suppose p < ¢. The integral, in this
case, vanishes unless ¢ < p (1 + 8), when it is trivially < »AMin(s72, z°p~).
Thus terms in which p < 2/K or p > K, where 1< K < D, contribute

« ¥ + XY ¥ Y NAQogFyMin(at 2 N4,
N="<o|E  N=MpeRK N<o<iN p<q<p+2ON
On applying (6) we may estimate this as < zA*K . These results, in
conjunction with (10), show that the terms with p< g < p(1+8), o/K
< p< oK, must contribute

328+ 0@ A logz) + O (48 () logw) 0 (242K 7).

This quantity will be positive if x4 > K(log2)*®, 24 > Kd(z)logw, and
K is a sufficiently large absolute constant. Consequently there must
exist & p and g with /K < p < 2K and

P < g < p+3E*Max((loge)”, d(x)loga)

and Theorem 3 follows.
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