COROLLARY 1. Let $\varepsilon > 0$ be given arbitrarily. Then for every $\alpha, 0 < \alpha < 1$, there is an infinity of natural numbers $j = j(\alpha, \varepsilon)$ to fulfill

$$\min |\alpha^j p - q| \leqslant \frac{\delta^{-1} + \varepsilon}{\log p}.$$

In particular, the inequality $|\alpha^j p - q| \leqslant (1 + \varepsilon)\log p$ has infinitely many solutions in primes p and q.

References

SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH
Bombay 400 005, India

Received on 19.6.1979

Generalizations of Ramanujan’s formulae

by

YASUSHI MATSUOKA (Nishinagano, Japan)

Ramanujan found the following formulae: For positive a, β with $a\beta = \pi^2$ and an integer $v > 1$,

\begin{align*}
(1) \quad & a^v \left\{ \frac{\zeta(1-2v)}{2} + \sum_{n=1}^{\infty} a_{2v-1}(n) e^{-2\pi n} \right\} \\
& = (-\beta)^v \left\{ \frac{\zeta(1-2v)}{2} + \sum_{n=1}^{\infty} a_{2v-1}(n) e^{-2\pi n} \right\}.
\end{align*}

\begin{align*}
(2) \quad & a^{v-1} \left\{ \frac{\zeta(2v-1)}{2} + \sum_{n=1}^{\infty} a_{2v-1}(n) e^{-2\pi n} \right\} \\
& = (-\beta)^{-v} \left\{ \frac{\zeta(2v-1)}{2} + \sum_{n=1}^{\infty} a_{2v-1}(n) e^{-2\pi n} \right\} \\
& = -2^{2v}\sum_{k=0}^{v} (-1)^k \frac{B_{2k}}{(2k)!} \frac{B_{2v-2k}}{(2v-2k)!} \alpha^{v-k} \beta^k,
\end{align*}

where $\zeta(s)$ is the Riemann zeta function, $a_n = \sum_{d|n} a^d$, and B_n are Bernoulli numbers defined by $\sum_{n=0}^{\infty} B_n x^n/n! = x/(e^x - 1)$. G. H. Hardy [3] gave two proofs of (1). E. Grosswald [2] proved a more general formula which contains both (1) and (2). Many variants of Ramanujan’s formulae are known. The historical survey of the formula and its generalization are explained in [1].

Recently the author [4] presented as an analogue of (1) a formula for the values of $\zeta(s)$ at half integers. In this paper we shall extend further the Ramanujan’s formulae (1) and (2) to rational numbers. Our method of the proof is similar to that used in [2].
Theorem 1. Let \(a \) be a positive integer and \(n \) be an integer greater than 1, and define for \(x > 0 \)
\[
G_{a,n}(x) = \frac{1}{a} \sum_{k=2}^{\infty} \sigma_{a,n-1}(a) e^{-\frac{a^2}{n} \frac{k^2}{x^2}} + \sum_{r=1}^{\infty} \left(\frac{a}{2\pi a} \right)^{2a+1-r} \Gamma(2av-a+1+r) \times \nonumber
\times \prod_{k=-a+1+r}^{r} \zeta \left(1 + \frac{k}{a} \right) \left(2v + \frac{1}{a} \right) \pi^{-\frac{1}{2}x^2}.
\]
where
\[
\sigma_{a,n}(k) = \sum_{n=1}^{\infty} \frac{1}{\zeta \lambda a \cdots n \lambda a}.
\]

Then for any positive \(a, \beta \) with \(\beta = \pi^2 \) we have
\[
(3) \quad G_{a,n}(a) = (-1)^n G_{a,n}(\beta).
\]

Remark 1. Ramanujan's formula (1) and the theorem in [4] follows from (3) with \(a = 1 \) and \(a = 2 \), respectively.

Remark 2. The function \(\sigma_{a,n}(n) \) coincides with the ordinary divisor function \(\sigma_{a}(n) \) when \(a = 1 \); i.e.
\[
\sigma_{a,n}(n) = \sigma_{n}(n) = \sum_{d|n} d^a.
\]

Equation (3) implies especially
\[
G_{a,n}(2\pi x) = (-1)^n G_{a,n}(2\pi \beta x) \quad (t = 1, 2, \ldots, a),
\]
which leads to the following

Corollary 1. Let \(a \) be a positive integer, \(n \) be an integer greater than 1 and \(r \) be an integer with \(0 \leq r \leq a - 1 \). Then
\[
\prod_{k=-a+1+r}^{r} \zeta \left(1 + \frac{k}{a} \right) \prod_{l=-a+1+r}^{r} \zeta \left(2v + \frac{1}{a} \right)
\]
\[
= \pi^{-\frac{a^2}{a} - a + 1 + r} \sum_{a=1}^{\infty} \sigma_{a,n-1}(a) e^{-\frac{a^2}{n} \frac{k^2}{x^2}} + \sum_{r=1}^{\infty} \left(\frac{a}{2\pi a} \right)^{2a+1-r} \Gamma(2av-a+1+r) \times \nonumber
\times \prod_{k=-a+1+r}^{r} \zeta \left(1 + \frac{k}{a} \right) \left(2v + \frac{1}{a} \right) \pi^{-\frac{1}{2}x^2}.
\]
where \(b_{a,n,r} \) and \(c_{a,n,r} \) are rational numbers.

Theorem 1 is equivalent to the following

Theorem 1'. Let \(a \) be a positive integer, \(n \) be an integer greater than 1, and define for \(\text{Im} \, z > 0 \)
\[
E_{a,z}(x) = \frac{2}{\zeta(1-2v)} \left(\sum_{n=1}^{\infty} \sigma_{a,n-1}(a) e^{\frac{a}{n} \frac{k^2}{x^2}} + \right.
onumber
\times \prod_{k=-a+1+r}^{r} \zeta \left(1 + \frac{k}{a} \right) \left(2v + \frac{1}{a} \right) \pi^{-\frac{1}{2}x^2}.
\]
\[
\left. + \left(-1 \right)^n \sum_{r=0}^{\infty} a(2\pi a)^{-2ar+1-r} \Gamma(2av-a+1+r) \times \nonumber
\times \prod_{k=-a+1+r}^{r} \zeta \left(1 + \frac{k}{a} \right) \left(2v + \frac{1}{a} \right) i^{-\frac{1}{2}x^2} \right).
\]

Then the function satisfies the transformation equation
\[
E_{a,z}(-1/z) = \frac{a^{-\frac{1}{2}z}}{\zeta(1/2)} E_{a,z}(x).
\]

Remark 3. \(E_{1,v}(x) \) is the normalized Eisenstein series of weight \(2v \).
\[
E_{1,v}(x) = E_{2,v}(x) = 1 - \frac{4\pi}{B_{2v}} \sum_{n=1}^{\infty} \sigma_{2v-1}(n) e^{\frac{2\pi inz}{a}}
\]
which can be found in [5].

Proof of Theorem 1. If we write
\[
(4) \quad \Phi_{a,v}(x) = a(2\pi a)^{-\frac{a}{2}} \Gamma(2v) \prod_{k=0}^{a-1} \zeta \left(s + \frac{k}{a} \right) \zeta \left(s + \frac{a-1-k}{a} + 1 - 2v \right),
\]
we have the following functional equation
\[
(5) \quad \Phi_{a,v}(2v-1/\alpha - s) = (-1)^{\frac{a}{2}} \Phi_{a,v}(s).
\]
To show this we put
\[
\varphi_{a}(s) = (2\pi)^{-\frac{a}{2}} \Gamma \left(s + \frac{k}{a} \right) \zeta \left(s + \frac{a-1-k}{a} + 1 - 2v \right)
\]
\[
(\alpha = 0, 1, \ldots, a-1).
\]
From the functional equation of the zeta function, we have
\[
\varphi_{a}(2v-1/\alpha - s) = (-1)^{\frac{a}{2}} \frac{\cos \frac{\pi}{2} \left(s + \frac{k}{a} \right)}{\cos \frac{\pi}{2} \left(s + \frac{a-1-k}{a} \right)} \varphi_{a}(s),
\]
and thus
\[
\prod_{k=0}^{a-1} \varphi_k(2v-1+1/a-s) = (-1)^{av} \prod_{k=0}^{a-1} \varphi_k(s).
\]

Using Gauss' multiplication formula for the gamma function, we get
\[
\prod_{k=0}^{a-1} \varphi_k(s) = (2\pi)^{(a-1)/2} a^{-1/2} \Phi_{a,v}(s),
\]
which yields (5).

We next consider the function
\[
g_{a,v}(t) = \sum_{n=1}^{\infty} \sigma_{a,2v-1}(n) e^{-\frac{\pi}{4} an^2 t} \quad (t > 0).
\]

The series converges absolutely in \(t > 0 \) and uniformly in any interval \(\delta < t < \infty \) with \(\delta > 0 \), since
\[
\left(6\right) \quad \sigma_{a,2v-1}^2(n) \leq \sum_{n=1}^{\infty} \prod_{k=0}^{a-1} m_{k}^{-2v-1} \sum_{\substack{n = n_1, \ldots, n_a = n \atop \sum_{k=0}^{a-1} n_k = n}} 1
\]
\[
\leq \sum_{n=1}^{\infty} \sigma_{2v-1}^{a-1} \quad \text{for} \quad s > a(2v-1)+1,
\]
so that
\[
\sum_{n=1}^{\infty} \left| \sigma_{a,2v-1}(n) e^{-\frac{\pi}{4} an^2 t} \right| \leq \sum_{n=1}^{\infty} \sigma_{a,2v-1}(n) e^{-\frac{\pi}{4} an^2 t} < \infty.
\]

Thus we have
\[
\int_{0}^{\infty} g_{a,v}(t) e^{-st} dt = \int_{0}^{\infty} \sum_{n=1}^{\infty} \sigma_{a,2v-1}(n) e^{-\frac{\pi}{4} an^2 t} e^{-st} dt
\]
\[
= \sum_{n=1}^{\infty} \sigma_{a,2v-1}(n) \int_{0}^{\infty} e^{-\frac{\pi}{4} an^2 t} e^{-st} dt.
\]

The inversion of the order of integration and summation can be justified by the uniform convergence. Substituting \(u = 2\pi an^2 t \) in the last integral, we get
\[
\int_{0}^{\infty} g_{a,v}(t) e^{-st} dt = \sum_{n=1}^{\infty} \sigma_{a,2v-1}(n) \int_{0}^{\infty} e^{-u} \frac{u^{s-1}}{(2\pi)^{a/2} n} \frac{a an^{-1}}{(2\pi)^{a/2} n} du
\]
\[
= a(2\pi)^{-av} \Phi_{a,v}(s) \sum_{n=1}^{\infty} \sigma_{a,2v-1}(n).
\]

Taking account of the inequality (6), the last series is absolutely convergent in the half-plane \(\text{Re} s > a(2v+1) \). Thus
\[
\sum_{n=1}^{\infty} \frac{\sigma_{a,2v-1}}{n^s} = \sum_{n=1}^{\infty} \sum_{\substack{n_1, \ldots, n_a = n \atop \sum_{k=0}^{a-1} n_k = n}} \prod_{k=0}^{a-1} \frac{1}{n_k} \frac{e^{-\frac{\pi}{4} an^2 t}}{an^2 t}
\]
\[
= \prod_{k=0}^{a-1} \frac{\zeta(s+k)}{a^k} \frac{\zeta(s+a-1)}{a} + 1 - 2v
\]
for \(\text{Re} s > a(2v+1) \) and so for all \(s \) (by the identity theorem). By (4), (7) and (8), we obtain
\[
\Phi_{a,v}(s) = \int_{0}^{\infty} g_{a,v}(t) t^{-s} dt.
\]

The definition (4) shows immediately that \(\Phi_{a,v}(s) \) is regular in \(s > 2v \).

We note further that
\[
\Phi_{a,v}(s+it) = O(e^{-\frac{\pi}{2}t^2/\sigma}) \quad (b \leq s \leq c, \quad |t| \geq 1),
\]
where \(b \) and \(c \) are any fixed real number, and \(d > 0 \) is a constant independent of \(t \), which can easily be verified. Thus we can apply Mellin's inversion formula and obtain
\[
\int_{0}^{\infty} g_{a,v}(t) e^{-st} dt = \frac{1}{2\pi i} \int_{2v+i\infty}^{2v+1/2+\infty} \Phi_{a,v}(s) e^{st} ds.
\]

By means of (9) we can shift the line of integration to any position \((\sigma_0 - i\infty, \sigma_0 + i\infty) \). Taking \(\sigma_0 = -1+1/2a \), we obtain
\[
\int_{0}^{\infty} g_{a,v}(t) e^{-st} dt = \frac{1}{2\pi i} \int_{-1+1/2a+i\infty}^{1/2+1/2a+i\infty} \Phi_{a,v}(s) e^{st} ds.
\]

If we substitute \(s = 2v-1+1/a-S \) and use the functional equation (5), we get
\[
\int_{0}^{\infty} g_{a,v}(t) e^{-st} dt = \frac{1}{2\pi i} \int_{-1+1/2a+i\infty}^{1/2+1/2a+i\infty} \Phi_{a,v}(s) e^{st} ds
\]
\[
= (-1)^{av} (-2v+1-a-S) \frac{1}{2\pi i} \int_{-1+1/2a+i\infty}^{1/2+1/2a+i\infty} \Phi_{a,v}(s) e^{st} ds = (-1)^{av} t^{2v+1-a} \Phi_{a,v}(\frac{1}{t}).
\]
The residues in (11) are as follows:

\[
\text{Res}_{s=-r/a} \left(\Phi_{a,r}(s) t^{-s} \right) = a(2\pi a)^{-2ar+r} \Gamma(2av-a) \prod_{k=0}^{a-1-r} \xi \left(1 + \frac{k}{a} \right) \times \\
\times \prod_{m=0}^{a-1-r} \xi \left(2r + \frac{1}{a} \right) t^{-2r+a} (0 \leq r \leq a-1).
\]

To calculate the residue at \(s = -r/a \) we need the functional equation of the zeta function, Gauss' multiplication formula for the gamma function, and the equation

\[
\prod_{k=1}^{a-1} \sin \frac{k\pi}{a} = \phi^{1-a}.
\]

Thus

\[
\text{Res}_{s=-r/a} \left(\Phi_{a,r}(s) t^{-s} \right) = (2\pi a)^{-r} \prod_{k=0}^{a-1-r} \xi \left(1 + \frac{k}{a} \right) \times \\
\prod_{m=0}^{a-1-r} \xi \left(2r + \frac{1}{a} \right) t^{-2r+a} (0 \leq r \leq a-1).
\]

These calculations as well as (11) and (12) imply

\[
g_{a,r}(t) = \sum_{r=0}^{a-1} a(2\pi a)^{-2ar+r} \Gamma(2av-a) \prod_{k=0}^{a-1-r} \xi \left(1 + \frac{k}{a} \right) \times \\
\prod_{m=0}^{a-1-r} \xi \left(2r + \frac{1}{a} \right) t^{-2r+a} (0 \leq r \leq a-1).
\]

Replacing \(r \) by \(a-1-r \) in the first sum, we get

\[
g_{a,r}(t) = \sum_{r=0}^{a-1} a(2\pi a)^{-2ar+a-1-r} \Gamma(2av-a+1+r) \times \\
\times \prod_{k=0}^{a-1-r} \xi \left(1 + \frac{k}{a} \right) \prod_{m=0}^{a-1-r} \xi \left(2r + \frac{1}{a} \right) t^{2r+a} (0 \leq r \leq a-1).
\]

Setting \(t = (a/\pi)^a, \ 1/t = (\beta/\pi)^a, \) we obtain the equation (3).

Theorem 2. Let \(a \) be a positive integer, \(r \) be an integer greater than 1, and define for \(x > 0 \)

\[
F_{a,r}(x) = x^{-ar+(a-1)b} \left\{ \sum_{n=1}^{\infty} \sigma_{n-1-2r}(n) e^{-2\pi anx} - \\
- \sum_{r=0}^{a-1} (2\pi a)^{-r} \prod_{k=0}^{a-1-r} \xi \left(\frac{k}{a} \right) \prod_{m=0}^{a-1-r} \xi \left(2r + 1 + \frac{1}{a} \right) x^r \right\}.
\]

Then for any positive \(a, \beta \) with \(a\beta = \pi^2 \) we have

\[
F_{a,r}(a) = (-1)^{a-1} F_{a,r}(\beta)
\]

\[
= \sum_{r=0}^{a-1} a(2\pi a)^{-a+r} (a-1-r)! \prod_{k=0}^{a-1-r} \xi \left(1 + \frac{k}{a} \right) \prod_{m=0}^{a-1-r} \xi \left(2r + 1 + \frac{1}{a} \right) x^{a-1-2r} + \\
+ \sum_{b=1}^{a} \sum_{r=0}^{a-1} (2\pi a)^{ab-a+r} (2ab-a-r)! \prod_{k=0}^{a-1-r} \xi \left(1-2b + \frac{k}{a} \right) \times \\
\prod_{m=0}^{a-1-r} \xi \left(2r - 2b + 1 + \frac{1}{a} \right) x^{a-1-2r}.
\]
Remark 4. Ramanujan’s formula (2) follows from (14) with \(a = 1\).

The proof of Theorem 2 shall be done in the same way as that of Theorem 1, using the functional equation

\[\psi_{a,s}(1 - 2s + \frac{1}{a} - s) = (-1)^{a(1 - s)}\psi_{a,s}(s),\]

with

\[\psi_{a,s}(s) = a(2\pi a)^{-s-1}\Gamma(s) \prod_{k=0}^{a-1} \frac{s + \frac{k}{a}}{\zeta(s + \frac{a-1-k}{a}) - 1 + 2s}\]

References

Received on 16.10.1973
and in revised form on 25.3.1980 (1177)