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For Theorems 3 and 4, consider the conjugates of 8 given by (2.3),
where acof([—2,2]) (Fed),ae | —oo, —~2]U[2, x)) (¥ = #), and
B el (¢ = &, #). Then all conjugates of }(a-(a?— )”) are on U for

” By)"* are of the
I
= ). Thug the

% = &, and real for € = 4. Further all conjugates of

(
J=
form B*Y ., where w iy on U (% = &) and real (¥
result follows from the parametrization (1.2) of 7.
It remains only to show that, given 2* on %(0,1, B, 1), where &
= k(B) and B e 8, (¥ = &, #), then the zeros 2 of
¢ —() "
o o208
lie on ¥(C, B, B,s&), where &k = 1 or 2 for € = #.
Let & = (B¢ ((eB)*1)7?, where ¢ > O in the case k = 2, % = .
Then the % roots #; are given by
{z;—C) e
E
where e = cxp (2wi/k), 80

4 = C+ R0/ B (0! BPHE™Y (= 0,..., k—1).

For ¢ = &, 0’1" ig on U, and /"% i real for # = 2. Thus we have
o parametrization (1.2) for 2;, which proves the regult.

- wj(g-B)llztl]k_i_ (cuj(sB)I"ztw"‘)_l (j' =0,..., k—-—l)

8. We now prove Theorem 1. Suppose that we have a parabola.
Z(C, F) with ¢ having a conjugate ¢” s (. Then as we saw in the proof
of Theorem 2, there are at most 8 possible values for the parameter of an
algebraic number 2, with conjugate 2., both on (0, I"). Hence the sum
of the degrees of all algebraic numbers lying with their conjugates on
Z(0, I} iz at most 8.

A similar argument holds for € = &, 4, if ¢ or R is irrational,
except that 8 is replaced by 24.
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A new cubic character sum
by

A. R. RagwADE and J. C. Parvamr (Chandigarh, India)

1. Jotroduction and the statement of the main result. For a polynomial
J{#) with integer coefficients, the character sum Zis detined by N (fl@)|p),

a{modp
where p is a prime and (ap) the Legendre symbol. Tf f(z) is linear, then

clearly X, = 0 and it is well known that

a){—l i »—4ac = 0 (modp),

x = |—
az? +bete (]9 P 1 it b —4dac =0 {modp).

It is surprising that beyond this little is known even for cubics, except
some estimates. It is therefore equally remarkable that the exact value
of X, is known for the following cubies:

(i) @'+ az,

(ii) o(x?+4dax-+2a?),
(ili) #°+ e, and

(iv) m(2?®--21lax -+ 11248,

Proofs of (i) can be found in [2], [7], [12], [16], those of (ii) in [1],
[17], (A3}, [4], [B], those of (ili) in [9], [10], [8], [18], and those of (iv)
in [15]. The eommon feature of these four cubics is that the curve ¥t = f(x)
iz simply the most general elliptic curve defined over the rationals with
complex multiplication by, respectively, l/:—l, 1/:5, ]f“:?m>, V1.
There are five other such elliptic eurves and it is conjectured by E. Lehnier
and R. J. BEvans that in cach of these cases X, has an answer similar to
the albove four cases. Recently L. 8tark has developed a method which
evalnates these sums systematlcally The exaet statement of Stark’s
result (unpublished) is: :

2},,,(:5) = ¢ where f,(«) is the corresponding elh‘ptz’c curve and where

¢ 6 2
lp = ¢? d* with |—] =14 =7,|—)1 = 11, |—| if m = 19, 43
4p = ¢*++md® wi (m) 1@fm c,(p)@ffm 1,(p)fofm 19,43,
67, 163.
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We gather from E. Lehmer that Stark’s proof of this result is far from
clementary.

There are o few f(z) of degree > 3 for which X, is known cxactly.
See [1], [11], [6], [19].

The object of this paper is to treat the cage m — 11. We make use
of the ¥V —11 divigion points on the elliptic curve with complex multi-
plication by ¥ —11. The caleulation of these division points is the major
difficulty in the proof. The rest is similax to the case treated in [15]. The
relevant f{#) in our eare is given by

fl) = 2 —33-320°24-7-16 11%a°.
For this f we have (by letting & — 2a2)

2a - (m3—8-33w—l—14-112) (2@)
Ly =— =[—]& S0y .
d (:p) 24 ? w0 W

w(modw)

Our ain is the following:
TueoreM 1. We have

6 ifp=2,0,7,8,10 (mod1l)},
o otherwise, where 4p = ¢2--1Ld% with ¢
determined uniquely by (¢[11) = (6|p).

S =

2. The vV —11. division points on y* = f(m). Lot
(21) - ¥ = f(#) = 2* —33-32¢°w-+11%-7-16-4°

be the general elliptic curve with complex multiplication by ¥ —11.
If (#, ) is & generic point on (2.1), then it is known that [14]

—1-¥ =11
-121‘/“"_‘_ (2,9} = (X, ¥),
where
¥ = (6 +¥ —11) [#° — 4(1L —V —11) -+
18[z —2 (11 —V —11)a}
+88(1L — 7V ~11)ats — 704 (11 ~14¥ ~~11) 4]
| 18[2—2 (11 ~¥ —11)0] ’
_ 4=V —11)[e* —6(1L—V —11)az* +

¥ .
: 27fz —2(11L — —11)a ]’
- +88:3(3-+V —11)ade 411 -64(11 — 6V —11)a*]y
27[z—2(11—V —11)a]
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~1—y ~11 — =
It follows that —+(m, y) = (X, ¥). Subtracting, we get

V—1l(z,9) = (X, ¥)—(X, 7).

The ¥ ~11 division points on (2.1) are those (2, y) for which ¥ —11i{x, y)
= I the point at infinity, i.e. (@, y) for which X = X or Im(X) = 0, i.e.
the (#, y) for which the @-coordinate satisfies the equation

" —83az* +11-80a*a® -~ 1137+ 64a%a® —112-37 <2560 -+ 112+1024 -434° =0,
and if we let # — 4ar this cquation beeomes
(2.2) #° —220% 4+ BBa® 4-7-11%0% —37 112 -+ 43 -112 = 0.

If &, ., 25, 5;, & ave the roots of (2.2), then the 10 proper ¥ —11 division
points ave (a;, +y;) ( = 1,2, 3,4, 5).

We firy, as solutions of this equation, nnmbers belonging to the maxi-
mal real subfield of Q(Z) where £ = ¢/, The reasons for cxpecting
this are:

(i} Past cxperience with the other cases.

(i} 'We want the answer in such a shape.

{1ii} Tt may be possible to prove this by using general theory {of el-
liptic eurves).

So let §; = 4-277 (§ = 1,2, 3, 4, 5). These ; are the roots of

(2.3) 65+ 6%*—40° -3*+30+1 = 0,
If #, is & root of (2.2), then the other roots are the conjugates of @,
Let then '
& = alC1+a2€2+aacg+a4C4+a’sCs,
g0 that
@y = @5 Ly + a8y + a8+ ag L,
@y = gl gl ol a5 a8,
@y = W&+ agly @ ly -+ ay &y 0y G,
&y = a251+a¢53+a553+“35¢+a1§5 (aj eZ).
Then Mo, = —a, —a, —a, —a, —ag. But by (2.2) Y, = 22. Hence
(2.4) — Oy Gy e Oy — = 22,

2 — Acta Arithmetlca X4
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Now work out the second elementary symmetrie function 2%%
of the @’s. A straightforward caleulation shows that this equals

5
{ a3 + 2 a0+
i= GimTyarnb
: i . ‘
(&g g+ Gy 00y ¥y By + @y 85+ %“s)} (SR T A P A AN

—!—{ja‘;’-ﬁ- D g+

fel ff=1y...,5
i)

'+(a’1a'2+a']a’5+“2“’4"{”“3“¢+a’3a‘5)}(¢1€3+é-l €4 + ":2 ¢J+ CzCa+ 1:455) “+

v 3 anf3 )

% E5 TN

14

It we simplify this using (2.4}, it boils down to 11 (86 —} 3 al}. But again
by (2.2} 3'wx; = 55; hence

(2.5) 66—% > a} = 5.
Equations (2.4) and (2.5) are

(2.6) @+t gt ay o = —22,
T @ taidadtadtad e 192,
The latter equation here has only a finite number of solutions (in fact
Just 16 up to the sign in the a;) but of these only b satisty the first one.
They are

(2.7) (@, @y g, 04y a5) = (—8, —6, —~3, —~3, —2}, (—8, -3,
"5: “‘2: _2): (_‘8, ""5: “45 "47 "“1):
(—7, -7, —4, —2, -2), (—6, —6, —5, —B,0).

Here in each case the a; may be combined with the § in 120 ways, butb
without loss of generality we may take @, = a,f; --24 other possibilities,
80 that each case hag 24 subcases. These are far too many to be checked
for solution by computation. We therefore work out the third elementary
symmetric function }au,0, of the roots and equate it to —7-11* using
our equation (2.2). The final result is the equation
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(2.8) —7-11* = 32 @3 -+ T (@ 0y Gy + 0y 8, 8y - @y 0, 05+ 0, A 0+ Gy, 05) —
——2._2; a3 a; — 1B (ay ay @, + &) Gy O+ 4, G0, + 0, By, +
T
+ @@ a5)+11(ala, + gz 0, + atas - aa, -+ ala,) .
Here we have used the following results:
(i) 25,3 = _4:
(iii) £3Z,-+4 conjugates — 7,

(iv) £iZ;+4 conjugates — —4,
(v) &i¢,-+4 conjugates = —4,
(vi) £¢5+4 conjugates = —4,

(vii) Y} 50, =3,
(viil) £;0,0s+4 conjugates = 7,
{(ix) £;¢,8,+ 4 conjugates = —4.

Now use ) aja; = —4-11-61—3 af (obtained by using the identity
Sa-Ya=Yaatry aj)and 33 o;a;a, = Y al—22-59 (obtained by
eubing a4 a,-+az-+a,+a; = —22), (2.8) gives the equation
(2.9) —6(a a0, +a,a,0,+ a,l.a,,as + 8y Gy @+ g O t15) +-11.- 79

= —32(a{+aj+o}+af+ad)—3(elay -+ ala, + aia, - aia,+ala,).
Now try out in this the various permutations from the cases. This gives
the following two solutions: (a,a,, a5, &y, a5) = (~8, —8, —2, —5,
~2) and (—8, —2, —5, —5, —2). Of these the first one works right
through. Hence we have the following

PrOPOSITION 1. The B rools of (2.2) are ®; = —8f, —5E, —2&, —38, —
—2¢5 amd the 4 conjugates w,, u,, x,, ¢, obtwined by letting { - (j = 2, 3,
4, 5) in @, _ ‘

This then gives the following

ProOPOSITION 2. The w-coordinates of the proper V —11. division poinis on
{2.1) are ’

X, = daw, = 4a[ BT+ =B+ ) —2(E+ ) =B+ —
' —2(8+ 9],

Xy = damy = 4a[ —2(L+ ) —8(L24+0) —B (428 —B(2*+2T) —
—-2(8 4191,

Xy = dazy = da[ —B(L - —2(B+ ) —§(B+- -2+ 1) —
‘ ' —5(& 491,
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X, = daw, = dal —2({+ ) =28+ ) =5+ ) -8+~
—B(L°+ 0],
X, = daz; = 4a[ =5+ =8P+ 1) 28+ —2(2+ 7 —
—8(L°+91.
Now substitnte thege 2-coordinates in (2.1} and we geb the correspond-
ing y-coordinates as ¥, == 12aV/( —33a) ) {L - 16Z, -+ 12, - 48, -+ 202, + 85,1
and ¥,, ¥,, ¥,, ¥, as conjugates. Here the {}* is inelegant — wo
expect it to lie in Z[Z]. Trial and error is hopeless. We could give the
final answer here, bhut the way it comes about is inferesting and we men-
tion it.
Let X = 1+164, 128, + 44, 4208, -- 85, We expect X' {o belong
to Z[Z]. In case it does not, we still have the vV —33 outside to fiddle

with. It may be that (—2X)? or (£3X)Y" or 4 (11X, ete. may lie in
ZfL]. Trying for XM* gives:

XHAQA+L+ L G-HLTE) = (@bt el el to ot o 5.

Equating eocffmlen’m wo get the following system of Diophantine equa-
tions:

) 2(f+ ot aGt+a) = 141,

) A+ 2005+ 0,6, 03054 0,6;) = 1241,
(i) G+ 2(010 k6,6, 0,054 036,) = 20+,

) ) =

)

)

!

(e

(
O 2(0,0, 0,6 - 6,0, 50, 84,
02"}‘2(5102+(’104‘|"0205+0335) = 41,
Ci-+2{6 0 a0y + 640, +€,6) = 16 4 4.
Here (i) implies that A is 0dd = 1 +24. Then (ii) «ivy (Vi) imply thaf,
respectively, ¢, ¢, ¢, 04,05 are odd, so that ¢} = 1 (mod 8), and then
{i) gives 1 +1+2d = 25 (mod 8), i.e. d = 4y, say. Thus A = 148y and
all ¢; are odd. We now subtract equations (ii), ..., (vi) from equation (i)
and get the following set of equations:

{61 — )2 +( ey —05)2 4 (04 — 65)2 + (€ — )2 ¢f = —11,

(63 —6)* + (01 —65)2 (05— 05)2 (03— ¢} ‘[“04 = 19,
(210)  (ey—~e,) +(c, —05)24 (e —65)*( )B4
(61— 03)*+ (00— 6,)2 4 {65 —€5)2 - (e — 05)‘-[—03 = —3,
(¢ “—02)24‘(02"‘03)” (65 —04)* + (0, —65)2 +-¢f = —1B,

-
H

z [Errpn—
Gy~ e — 7,

which is clearly impossible for ¢; € Z. So now we introduce the various
faetors in X and try. Tt turns out that l/ 11, works. Indeed, the systent
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(2.10) is simply replaced by one with the right-hand sides mmltiplied hy
—11. Trial and error now gives the following solution:

6 =17, ¢="T ¢=3, o¢=1L, ¢ =35.
Binee there is 2 unique solution {up to the sign), this gives
—11X = (T4 + T8+ 386+ 114, +BL)Y.
This may be directly checked.

We have proved the following

ProrogrTioN 3. The y-coordinates of the 1/ —11 division poinis on
(2.1) are

¥y = 12a(3a) 2 [T(L4 N+ T{(E+ D)+ 3 (B + )+ 1S ) +
+5(°4+ 171,
Yo = 12a(3a) P [5(0 4 0N+ T(E 4 O) -+ 11{E ) + 7 (S + N+
+3(+ M1,
Y, = 12a(3a)P [11({+8) 438+ )+ TP+ 8 +5(8+ 00 +
+TEH],
Y, = 12(1,(30,)”2[3(é'+ EOF5(E+0) T+ O+
+11(5°+ %),
Y, = 12a(3a)P[T({+ 8- 1(P+H0)+ (8P4 -F3(8+ D)+
+T (0],
Now let P be the ¥ —11 division point {X,, Y,). Then the remaining
9 proper ¥ —11 division points are --P, +£2P, 2-3P, +4P, 45P. We
further need to know which is which. A simple caleulation involving
addition of points on (2.1) finally gives the following
TEEOREM 2. Let X; and Y; (j = 1,2, 3,4, 5) be as found in Prop-
ositions 2 and 3. Then the proper V —11. division points (10 n number) on
the elliptic eurve (2.1) are (X;, LX,). If Pis the point (X, ¥}, then 2P =

= (X,, —X,), 3P = (X,, T), 4P = (X;, T}, 5P_ = (X3, X3}, and of
course for any point (x,y) one has —(z,¥) = (&, —y)

3. Proof of Theorem 1. Let N, be the number of points on the pro-
jective curve

y? = 2°—33-32=%¢ 117 -7-162
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in the finite field of p elements. First of all, ¥, i equal to 1 plug the number
of solutions of the congruence

(3.1) y? == 2®—33-32a%2-11%-7 - 164® (mcd p)
(the 1 coming from the point at infinity)

= 1+ YL+ )} = p+1+ (20108
(the © mentioned in Theorem 1).

But by a well-known theorem of Deuring [3] we have

p-+1 it g is not a noerm from Q(l/_:lmi_) to @,
Ny =

p+l—mw—m if p = Norm(n) = n7.
Let @ = (e+-dY —11)2, ¢ = d (mod 2). Then p = mm = (¢*-- 11d%) /4,
ie. 4p = ¢+ 118" and n+% = ¢. Hence Deuring’s theorem gives
+1 it =12,6,7,8,10 (mod 11

(3.2) N, = b » ,6,7,8,10( )5

p+1—¢ otherwize, where 4p = ¢ +11d%.
Equating (3.1) and (3.2) gives
0 it p=2,6,7,8,10 (mod 11),
—(2a|p)-e otherwise, i.e. if p =1, 3,4,5, 9 (mod 11)

where 4p = ¢+ 11d2.

(33) ©=

Here the problem is the sign of ¢, Le. the normalization of w and #. Deuring’s
theorem also fells us that the correct sign = or —m is that for which
multiplication of points of (2.1) by the a with the correct sign has the
game effect as hag the Frobening automorphism

Tp (@, 9) = (&, y*) (mod p).
We try the action of the Frobenius map on the ¥ 11 division points.
We look at each of the b cases p =1, 3,4, 5,9 (mod 11) in turn.
Oase 1. p = 1 (mod 11). Let P = (X,, ¥;). Then f,(P) = (X¥, ¥¥)
= (X, (3a|p) X;) = (Balp}(X,, ¥,). Bub f,(P) = aP by the very defi-
nition of & with the eorrect sign. Tlence (m—(3a|p))P == I. But P is a

e+dV —11 = 2(3alp) (mod ¥ —11), ie ¢ = 2(3alp) (mod 11).
Cage 2. p = 3 (mod 11). Again let P = (X,, ¥,). Then f,(P)
= (X, Y1) = (Xs, (3a[p) ¥s) = (Balp)(Xy, ¥y) = (3alp)bP  (sec The-

orem 2). Hence as above = = 3(3alp) (mod ¥ —11) giving ¢ = 10(3a|p)
{mod 11). ' :
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Case 3. p = 4 (mod 11). Here ¢ = T(3a|p) (mod 11) similarly.
Case 4. p = 5 (mod 11). Here ¢ = §(3a|p) (mod 11).
Case B. p == 9 (mod 11}). Here ¢ = 6(3alp) (mod 11), i.e.

9 1
1 3
—{2aip)e = (6|p){ 4 (mod1l) accerding as p = { 4 (mod 11).
3 5
b 9
Henee by (3.3)
. 0 if p=2,6,7,8,10 (modI1l),
"~ le  otherwise where dp = ¢*--11d2,
with
¢ = (6|p)- (mod 11) according as p= {mod 11),

[ SEVLR S

1
3
4
b
9
141}

i.e. (¢]11) = (6{p). This completes the proof of Thecrem 1.
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Hogsle OHeHKH KOPOTKRX TPHIOHOMETPHUIECKHX CYMM

flz Mosze (Bpatmcnasa)

ITpodeccop A. A. Kapauy@a momecTn B raure [1], ctp. 89, B HadecTBe
IpuMEpPa, CIEAYIOWYO Teopemy : 044 enpasedausocmil sunomessl Junbeadfa
HeoHLO0UMD 11 B0CMAMONHO #yNOAHEHUE CAdYIoue20 Yoaoeus

1) XAt = 0(/alt), 0<a<i, > 0.

lsn<e

Tleppan (ueTpWRWANEMAA) UACTL 3T0H TEOPEMH ARNAETCA HOBEIM
PesyIEIaToM B Teopuu Agera-§ynrnunm Pramana.

TIpenmaracuasn paGoTa MOCBAINEHA AHATHAY MATNLHEHINNX BOIMOHHOC-
Tell KPOICIIHXCA B 3TOM HAIPABICHHH.

1. Ilyers ([5], cTp. 383)

1 i 1
= —— — ] =
(2) B(1) p tln-rc—}—Imln_F(é1= -} 3 7,)
1 ] 1 1 1

Hexona ma apulnmMeHnoro JyHKIHOHATbHOr0 ypaBHenus ([5], c1p. 82, 85)

1 1 :
B)  tl) = D S ale) D O+ 0,
nET Ny

e ([5], erp. 81)

Zs—l,n.l _ Do ap il 1/2 i(t-].n[a,)J’ 1
@ 2 = e (n ) "“(T) ° ll+0(7)}’

n
(5) s =o+it, 0<o<l, 2my=t a>h>0, y>h>0,
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