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Then, as § = 0 (mod 4) by (1.12), we obtain
h(—2p) = h(2p)§ -8 (mod 16),

which completey the proof of the theorem in this case.
The authors would like to thank Mr. Loc-Jeff Bell, who did some
computing for them in connection with preparation of this paper.
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To the memory of Viggo Brun

1. Introduction and statement of theorems. We study a class of
integer pequences o = #/x depending on a real parameter X = 2. With
pogsible applicationr in mind, assume the sequence satiufies certain general
conditions of the type introduced by Halberstam and Richert [3] (see
also Ankeny and Onishi [1]). These authors supply many interesting
examples of such sequences. The object of the exercige is to deduee, for
a guitable integer R > 2, that the sequence & contains one (indeed,
many) punmbers having no more than E prime factors.

In the first place we assume

Z 1 —:%?(Z)—I—R(I,I) i
aagflgd.l

u being the Mobins funetion. The function p is assumed to be multipli-
cative and to satisfy

(11) p2(l) =1,

1
yplogp 24,

A o<yi)<p, —L< D) s -

wepaL

2<w<2).

Tere and below the constants g, ¢, A,, g, ... are abgolute; this means
independent of the real variables X, ¥, 2, w. With the possible applications
in mind, however, I will be allowed to depend on X ag in [8]

Algo asgune, when & & o, :

(Aq) 1<a<y”; L<logy,

where the significance of y will appear below. The further. condition on
L ig added for our convenience.

The regults of this paper are stated in such a way thab they are
independent of hypotheses relating to the “crror term” R in (1.1). For
applications, however, some knowledge of the following type would be
needed. One could use, for example: '
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(Ag) for the function f(1) appearing in Theovem 1 (this satigfies O < f(1)
< 1) the number y = y(X) appearing in (Ay) has the property
‘Z aWFORX, z)| A, X log?X .

Iy

We are interested in results of this type: assume (Ag), (A.), (Agh
Then, if g < B— 0y, there exists a in of with ot most I prime faolors.

If it be required that repentoed prime factors of « should bo counted
onee only, then an additional hypothesis is vequired, og.

(A,) there exisis o constant ¢ such Hhal

Elogp Z 14X 4

WS <k
G moﬂ p?

@ = X f(log A0

Richert [9] (see also Chaplier 8 of [3]) proved a result of the type
deseribed above, showing that wo may tuke

& [Ig{ :3__}]/10,@3

go that, for all B, §,< 8, == 0.262 ..., while (in the porbaps mogt in-
teresting case) d§ == 0.167 ... Tn this work ecortain paramoters wero
chogen. 80 that d, should be an eementary function; if nomerieal in-
togrationy are invoked the author finds that an optimal ehoice of pava-
meters in this method leads to the permissible values

(1.3) 8o == 0178..., 0y = 0.136...

(1.2)

In this paper we deseribe o method which leads to improved values
for dgn. If B iz large (and vumerical work indicatos that B = 3 is large
enough) the method leads to tho value

J / 10;,

% = [1%{ 300 w*“ *”

for certain pogitive constants «, f (bo be deseribed). Tor B =2 fthe de-
seription of dp is somowhat different (see Corollary 2 bolow).

Preliminary pwuerieal estimations of e, # load to estitabions of 8,
from Delow which indicabe

(1:5)

(1.4)

80 << 0181, 8, < 0.068.

It iz hoped to report on w more acoweabo. compubation at o laber date,
when. digcussing some applications. -

Ay will hecome clear, the method used is an anslogae of Rossoer’s
version of Brun’s sieve (for which see o.g. Iwanice [4], [5]) in whick the
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weighting device of Kuhn 7], [8], Ankeny and Onishi [1] and Richert [9]
is introdneed ab initio. The “combinatorial” contents of Section 3 would
retain gome relevance to the “k-dimensional” context (in which the term
log (z/w) in (A;) would be multiplied by %). However, our analysis of the
resulting “main term” in the subsequent sections containg some features
peenliar to the context k = 1 in which Brun’s ideag appear to operate
best,
We work with parameters satisfying

(1.6) V<l i<U<l; 0<T<}
(1.7 V+REU =y,

where g 19 as in (Ag). The notation

(1.8) # =1/U

would aceord with that of [3], [9]. The parameter V, however, may be
positive, zero or negative.
A “weight” function w will be given by

(1.9) w(l) = W(1)> 0; w(p) = W(logp/logy),
where p ig prime and p < y. In the case when
(1.10) 3V+UK1,
the increasing function W is specified by

T—v it U<igl,

; t—V if I <t T,

(L11) W) = t—(1—TYj5 it T,<t< g, and i>(1-0)/3,

0 it 0<tgT, orif 0t (1-0)/3.
In the contraxy case when
(1.12) 3V4U>1,
+then.

Uv-v it U<tgl,

(1.13) W) =1tV it Ty<t< U, and 1>V,

0 it 0<i<T, orif 0K V.

Tor convepience introduce the notution

. "
(L.14) ol = 3 1+ D 1
pjﬂgU 2a syl

for the number of prime factors of o, Wllew multiple prime factors p
(ot @) arc counted multiply only if p = y¥. The principal result of this
paper ig then as follows.
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THEOREM 1. There owist functions H, h such thet h(w, g} -
if ¥>1 and satisfying the integral equations

(m, ) B O

i
@, §) == fﬂ( )ﬁ 5 > 0<es),
{1.15)
at dt
H(z, ) = fh S 1l e b8 (5320, 0<a<),
>8
iy
da
Ry, 8) o ke (30, 0 ml),
By
-y <18
18y <
iy -t
together with the continuity condition
(1.16) him, 1) = Hm h(z,s) (0<2<l).

s S

Assume (Ag), (Ap). Let q, denote the least prime factor of a, and p the
Mobins function., Then thers ewigis f(¥) with 0 < fll} < 1 (to be deseribed)

such that
3 s [ffe-em of )

(1.17)
¥ S ]“5”5?/

aert
rg U<
- '
ﬁgﬂmmwmmL
Ly
where v, yla), w, W are as described above, v, 18 Huler's constant, and

1
W (1)~
MW == — [ 2T
U[ 1=t 1

Yw o dt

[ k[ﬂ

ltt

—W(tyat

(1718)' ALY B
+?wm&guqum |

A 1

¢

The O-constamt may depend on the paramelor U introduced in (L.6).
Next, introduce the numbers ¢, 8 raferred to in (L4). 'With h ag in
Theerern 1 dofine

1

(1-19) P(t) = 5= k(1) (0<I< i)

and _

C(1.20) | v () = p(t) it 9(t) =0, : .
it pE)< 0.
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It will appear thal v i3 monotone and that w(i) < 0 for ¢ near enough
to 0. Thuy we can define

1/3 13

(1.21) a=[yt@a, §= fw

The nwaber 7y in (1.6) will be the unique zero of y:

(1.22} p(Ty) = 0.
We shall also see that A(f, 1) > 0 when 0 < ¢< 1[4, so that
(1.23) 0 < a< log(4/3).

The following two Corollaries of Theorem 1 follow by appropriate
choices of the parameters U, V.
4
lZf ) /logS.

COoROLLARY 1. Let
(1.24) Up = (1+3"Fe P gp =R—4dp, dp= 10g(3

~ Suppose the parameter g of (Ag) sabigfies

(1.25} §< gr—Nns
where '
(1.26) me>0, nNp=Np=@1L—Ug)RB —3)—dg.

Then the result (1.17) of Theorem 1 holds with
(1.27) S (W) = nplogd.

Obgerve that, in the notation used earlier, Corollary 1 leads to the
permisgible choice

(1.28) 8 = max{dp, 4+ Ng}.

We 1muy remark that beeause of (1.23) we have

Ay == lim Adp = {log(4/3) —a}/log3 > 0,

Jir-v00

whenee lim Np< 0, 8o that 8, == A > 0 for all large cnough R. Numeri-

FIEE-

enl work indicates that B > 3 is lavge enough for this statement to hold.
Thoe constraint y, > Ny, arises becange Corollary 1 sssumes there is

an optimal choico of the parameters U, ¥V satisfying 3V+U < L. ‘When

R = 2 it is advantageous to seleet equality in (1.10). This leads to:
Cororrary 2. Let U, be the solution U of the equation

(3¢f) =0

1 3 1-U
R . o —- log
(1.29) Ulog(U 1) +log (4(1 ——-'U)) —| o 508



302 G. Greaves

that satisfies k< Uy<< 1. Define gp by

(1.30) , gn = R—dp;  Ap = (1 -T)(E—3).
Suppose

{1.31) §<gp—"Ng Where 1p>0.
Then the vesult of Theorem 1 holds with

(1.32) M (W) 2= nplog(367).

Tn moking use of Theorem 1, the problem arises of determining
when 4 (W) > 0. In the Corollaries this question has been transterred fio
a corregponding problem of defermining bounds for the constants o, f.
Weo might contemplate veplacing the funetion W by w polynomial. This
remark shows that one attaclk on these questions cohsists of studying the
momentig

1 1
(1.33) b, (s) == [ a"hi{w, )dw, H,(s) = [orEw, )dx (s 1).
¢ []
The integral equations (1.15) induce difference-differential equations

tor h,, H, of the type more familiar in this subjoect, which wo analyso
uging 1d(‘)ch""3 due to de Broijn [2] The result is:

TupowEmM 2. For integers n define

1 gt
(1.34) Gp == mf w“exp{—w-mj Td’t} die i nz0,
K %

A et iy
(1.35) iy ﬁmoj m‘em}l—-—w—}—! Tdt} de i az=l
Let

Bn = 2n+x\(% +1) (Jn "jn+1)5 D, o= 2%“(”"‘[“1)(% "‘"';-JWI);
(1.36) . .
Ay =y ““"Gl,n(l)Bni g, = %""‘al.n{l)pfm
where
. 2w

(1.57) 6 (1) = Uf .
Then

A S, (3Y - Toy (D) +1}-HBohy (1) =L f n=0,
(1.38)

O,y {H, (8) -+ Ty (2) -1} D, (l) =1 i wzl,

where by, H, are as in (1.33) and
) 1
(1.39) - By a(2) = [ @ hy(®, 2)da,

4 -
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holw, &) being as in Theorem 1. For m = 0 the second of the equations (1.38)
should be rveplaced by

(1.40) (1 —2log2) {H,,(3) + hy ,(2)+1} + 2k, (1) = 0

{as vesulis from formally substituting i, — oo).

The significance of Theorem 2 ix that it provides a transformation
of, for example, the quegtion of estimating the constants «, § in (1.21).
Originally velating to the goruewhat recondite (2, s) in (1.15), this becomes
a question about the nombers 4, and j,. These arizge from two functions
of & single comploex variable, regular in a hali-plane, and satisfying a simple
difference-difterential equation.

As a resuls some (at least) of the computational guestions involved
aro reduced to problems not heyond the practicable reach of a (program-
mable) pocket caleulator. We summarise the results of such a ealeulation
in §8.

2. Avithmetical identities. The identitics of this section w:ll be crucial
in the sequel. Except where indicated, the exposition is independent of
the assumptions of § 1.

Levmma 2.1. Let A be squarefree, and suppose veal w(l) and w(p),
Jor primes p, are given. For real b define

: b if A =1,
2.1) A4, 0 =lep) i A =p,
0 if A is composite.

Suppose 1 divides A. Then

(2.2) > o {w(l — uwip) =s {Aﬂ,'w(l)—Zw(p)}.

Zid T PH
daadmoed 1
T’mof. Beeause 4 is squ n«etree the smm on the left of (2.2) becomeon

(0 2‘ () {w Zw Zw )}

dy| (A1) ol By

a0y = Swm) 3 wdd sl 3 v

nik d1I(Aﬂ) pl4f) dyl{A (I}

o

w{dg)

and (2.2) follows by the characteristie property of the M6bius function. .
The nexb piece of :uol;a,tum will be standard in thiz memoir. For
eqach squarefrec d write

(2.3) B R YION T NS TE RS F
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where p, is prime: For ¢ = 1,2, ..., I let By = Boi{P1y +ony Poy—q) Do, for
the moment, arbitrary. Let 9&‘ be the set of those d such that

(2.4) Py < By it i<I and ¢ 2.

Following Brun, consider

, fwi@) it dea,
(2.5) ta(d) = {0 otherwise.

Yet &,; be the set of those squarefrees d that huve

Doy Byy P By when 14 <j

(so that the label ¢ in (2.3) satisfies 72 2j). Conventionally, &, is the
set of all squarefrees and Fypyy is the st of squarefrees having py < By
for 1 < i < I, any refercnee to Byg,,y being vacuous. Then Brun’s methods
rest on the observations:

the sets &y, ..., Parey are disjoint; &, is the union of sety &, = FU
UV ooe UFyreny-

This is employed in the form

(2.6) M@ == Y E@— 3 D) Ed)
ﬁfj’ de.‘?"o lejugd-h de./:iu

where £ was the Mobius funetion u in Brun’s work, but in ours will be
a weighted analogue, of the type appearing in Lomms 2.1:

§d) = p(@) fw(1) = Yw(p)
pit
Lmwua 2.2. Define
(2.7) Sald, w) = Y ug(@) [w(1) - Y wm}. |
i pld

Then, with A as in Lemma 2., and using the notation introduced above,
we have

(2.8)  Zgld,w) = A{d, w(l)}—
~ ;’ > {4, ), wid z w(ps)],
i FA AN N 1:171.% LUQJ@VJ wtensd

Pl g e Pl
where . ‘
(2.9) () == ”p
U

denotes the product of all primes sivicily less than w.
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Proof. The d in &,; are procisely those expressible as

d = PPy - Poyd’; A" (py) _
with the product p, 2, ... P,y in &,;. Now use Lemma 2.1, with | = p, ... py

and A replaced by
. 4, = (Ar Pa “'ptjn(.?zj))r
so that A fl = (4, I(p,)). This gives

> #@ fo) - 3 w()

dﬂfﬂj

= 3 a4, mm)em- 3 el
PPy - IDME P o 1si2]
PPy Pagld

and (2.6) now yields (2.8)-

3. The inequalities of the weighted sieve. It will become clear in this
section Why it is desirable to specify the function w as was done in § 1.
Meantime the reader may, if he prefers, regard this choice as not yet
having been made. The assumpbions (A,) and (A,), where relevant, are
supposed to hold. '

‘We ghall use the identities of § 2, with

(3.1) A = {a, (g},

where IT(y) is as in (2.9) and y is as in (Az).
Our object is to choose the functions B, and w in such a way that

(3.2) it pg(d) = 0 then & <y

(3.3) if Zg(d,w)> 0 then », p{a) <E

where v, i3 a8 in (1.14), and |

(3.4) By, w)> 0.

Here Zg(A,w) is as in (2.7) and Sg(y,w) is the “main term”
.5) Sl ) m%‘pg(dﬂ—ffl{w(negw(p)}-

The réle of U in (3.8), is simply that w(p) = w(l) if ¥ <p<y
In this paper we follow Rosser’s (see [10]} and Iwaniec’s [4] work
on the unweighted sieve by specifying in (2.4)

(3.6) Pu< By ifand only i Phpus.-P1<Y.
Tt then follows easily by (2.5) that (3.2} is satistied.
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In the current section we describe some choices -of w that satisfy
(3.3) for a suitable integer B, when e satisfics (A,).

To satisfy the conclusion of (3.3) we might seek, via (2.8), a suitable
lower pound for A{4, w(1)}, A being defined in (2.1). To this end we
deseribe conditions (Lemma 3.2) which guaranteo that the sum of the
other A terms in {2.8) is not negative, exeopt in certain cirenmstances
when (Lemma 3.1) the desired conclugion », y(a) < B follows for other
TeASONS.

To this end we consider only functions w satislying

w(l)>0;  w(p)z

2 the condition p,, = I.%M whenever Légj—1

(8.1 0 if p <<

(3.8)

for each j=
implies

2/
D wpg) <w(l

=1

Because of (2.1) the only 4 in (2.8) that can now assume negdmve
values ave those with the label j = 1.

We ghall achieve control over those possibly negutive values by
borrowing an idea from [9]. Suppose in addition

(3.9) for primes p the fanction w(p) is non-decreasing,
(8.10) U, V satisty (1.6), (1.7),

(3.11) w(p) <logpflogy—V if logpllogy < U,

(312)  w(p) =wd) it U<logpflogy <1

where we normalise (a8 in §1) to

(3.13) w(l) = UV,

congistont with (3.7) because of (1L.6).. Note the consequence
(3.14) w(p)<wdl) forall p<y.

Limvma 8.1, Suppose that (3.1), (3.6) and the seven conditions (3.7)—(3.13)
hold. Then :

(3.15)
(8.16)

the staiement {3.3) holds,
again under the hypothesis in (3.3) we have
(A, w) < w(ga),

where q, 18 as in Theorem 1 and Xy is as in Lemmao 2.2. _
Proof. The oasy case is when A4, .w(1)}> 0. Then from (2.1),
(3.1), (8.11) the least prime factor g, of « satisfies g, > y¥ (this being

A weighted sicve of Brun'e iype 307

trivially true if 7 < 0) and all other prime factors of satisfy p = ¢V
I there wore B or more of thege others, multiple factors being counted
multiply, then we should have a > y®U*7 contrary to (4,), (3.10). Thus

7,,v(@) < R ag vequired by (3.15). For (3.16) observe that, in the present
case, (2.8) reduces to

Zﬂ(Av w) = A{Ar 'w(l)}:
while, hy (2.1), (3.9}, (3.12),
- A{A, wl)) < w(g,)-

Now congider the contrary case when

(3.17) A4 o)} = 0.

Beeauge of (3.8), (2.1) the identity (2.8) gives

(318)  Zp(d,w)< — > A{{4, H(py)), w(l) —w(p,) —w(ps))
Lrpeld .
P2ty
v<olp;

where we have explicitly written the consequence of the definitions (3.6).
Lot @y << @y <<-v..< @, be the prime factors of A. Becauge of (2.1)
and the hypothesis in (3.3), viz.

Zg(d,w)> 0,

the inequality (3.18) requires that at least one value of A4 in the sum
iy w(l)—w(p,) —w(p;), where necessarily p, = ¢,. If now p, = @, for
4> 2 then this valae of 4 may be paired with one arising from p; = @,,
oy = 5 this latter value, by (2.1), is w{€,). Then the sum of these values
is expressible ag w (1) —w(p,), which is not negative because of (3.1),
(5.14). This proves that since Xy(4, w) >0 thers is in (3.18) a summand
with p, = @5, P, = @,. Consequently

Y < @Qs,

o that y < pjp, whenever p, < py, p,9s1 4. Thus the eondition y < pip,
may bho omitted from the eonditions of summation in (3.18).
- Now it follows that

(819)  Zgld,w) < — 3 A{(4, H(py), w(1)

Prpgld
ny<Py

— M w)—w(p)}
pld

the last equality being that special case of (2.8) in which B, = 0, because
of (3.17).

—w(Py) *W(Pn)}
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Tence, because of (3.19), (3.11), (3.13),
MU ~logplogy} < U~V

pla

where we may extend the summation over those p > y7, taking a.ccou_n'_h
ever of the multiplicity with which they divide a, because the added
gummands ave negative. Thug, using (4,), we find

UV =z Uy, ;(a) -9,
with », ; a8 in (1.14). If now v, ,(a) > R we should obtain,
U~V > U(R+1)—g,

a contradiction of (3.10).

(3.19). The right side is
wig,)— D) fw(l)—w(p)} < wig)

p0 4
becanse of (3.14). Thiz completes the proof of Lemmen. 3.1.
The next lemma ghows how to satisfy o key hiypothesis of Lemroa 3.1,

Tmymwma 3.2. Suppose an increasing function m satisfies

(8.20) 0 mii) < Am(t) when 0<KAKL, 05t

(3.21) m(}) = 1, |

and that for } <<t 1 the value m(t) is then specified by

(3.22) m(}+38)—1 = 8{t —m(}—5)} (O<s<P.
- Suppose the funotion w satigfies (1.9) with

(8.28) WH < W)m)  (0<t<1),

Then (3.8) holds,

Proof. Of the conditions granted in (3.8) we noed use cmly_ Py 5 By
and Pyy-1y = Byy—yy (which noed not be distinet)., By the choice (3.6)
of B theso imply

C(8.24) | PPy, Py, BiPe Py <Y,

where pg > Py > ... > By 88 In (2.3).

It may happen that p, < y'%. Now (3.20), (3.21), (3.23) imply Wt)
<1W (1) when 0<¢< . Then the last of the conditions (3.24) yields
the conelugions required in (3.8). :

Lot ug write log p; /logy = t,. In the remaining ease when y* < p, <y
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write ¢ == }+-38,. Then the first condition of (3.24) says 3%, 1435, <1,
1e. 3 < +—8;. By (3.20) we now have when 2 L4 2f that
mi}—s
m(t) < 7&—%—;8—11-)- )
whilo (3.24) gives

ta“‘l"tg;"‘{"‘---'{"tzj g 1 —tl = 3(&"‘"31).
Congequently

m(Ta) + m(tg) +... +m(ly) < 3m(} —s8,);
while by (3.22)

3m(}—s,) = L—m(}+388;) = L-m(ty),

so that the eonclusion required in (3.8) again holds.

We now gpecialise our funetion w to that deseribed in §1.

Lemva 8.3, Let W be as described in (1.10), (1.11), (1.12), (1.13).
Then the hypotheses (and conclusions) of Lemmas 8.1 and 3.2 hold.

Proof. Deal with Lemma 3.2 first. With < U< 1 as in (1.8) the
funetion m(#) will be given by

-V t—(L—-TY/3 . 1—-U 1

mt) =11 U<t<L; mB =% mit) =0 0<t< (L-0)3,
where 3V*-U < 1, so that

U3 —-1/12 e
U-v* T.30—-(1L—0) 4

It is straightforward to verify that (3.20), (8.21), (3.22) hold.

When 3V U< 1 take V* = V. Then (3.28) follows directly from
(1.11).

When 3V 4T > 1 take T* 5o that 3V 4+ U = 1, 50 that ¥ > V* > 0.
Now m(t) = (i—V*)[(U—V") whenever V* <t < U, and m(}) = }. Then
(8.20), (3.2L), (3.22) again follow straightforwardly and (3.23) follows
from (1.1.3).

I remaing to verity that the hypotheses of Lemma 3.1 hold. Of
these, (3.1), (3.6) are definitions nnd. (3.8) i the result of Lemma 3.2.
The remaining conditions (3.7), (3.9)~(3.13) follow at once from (1.11)
and (1.13).

m(3—0) =

4. Analysis of the main term. We proceed by applying results from
the theory of the unweighted sieve (see [4], [6]) to the “main term”

6 — Acta Arithmetica XL.3
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Sg(y, w) defined in (3. 5) Of thiq, the “unweighted part” is
= Z rald

where ug is as i (2.5) and we denote

{4.1) “(y, 1

8 (2, 8) = 3 ) wld)y(d)d,

0 pemey<. Lyt
Py P2 I}J,Jfﬁle‘;ﬂJ‘Q‘
. .l $ .
S+ (a,8) == ] ) pldyy(d)/a,
: 20 meppge <py et/ .
P J’)ﬂj..gf?lj_]-ﬂzi'llﬁ2f | £
when 232 2, 8> 1, & being expressed as in (2.3). The specification of #
was given in (3.6).
Lovmva 4.1, The main term sotisfies

(4.2)  Sgly,w) = w(1)8(y,2)—

»(p) ¥ log(y/p)
= 3 -y P (L, 2EUR )
r:‘fgp;y ¥ 2 g £p
- 3 w(p) D) (-, ),
pyE el

where
43)  I.(9,p) = ) RAS IR )
(4.3) (¥, 2) o n

PP 1 e <Y
Pp e p2j'_ 12123)-~<1/ 1T 22452

y SH*( y Iog{y/(pl---zﬂr)})‘
Py Dy logp,

Proof. Use the recurrences

(4.4) §(2,9) =1 3 2 g ( b ")
» i ¥ P 08P,
, wm) #  log{z/py)
(4.5) 8+ (e, 8) y (? R
mmllﬂ » P '
;ﬂlﬁﬂ

for 22 2, s> 1. These give tirstly

8y, 1) = {0 g (v/ log( 'u/:m))

S, 2)— §' X
~(y, 2) Z o ogn

: : Mgy <y
Hence the coefficient of w(l) in (4.2) is a8 stated.

~ implies p,
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The conditions of summation in (3.5) give (see (3.24)) that p, > y'*
= p;. Now multiple application of the recurrences (4.4), (4.5)
gives that the coefficient of w(p) in (4.2) is also as stated.

We shall use the following estimates of 8% (g, s).

Luyya 4.2, For 8 = 2, 222 2 we have because of (A,) that

S (,5) = H (-5 )}{GHT >+0(10§;)}
w<al/®

where G (8) = F(s) and & (s} =
for 8*(z, s) homs good if 8= L.

Here the functions F, f satisfy the well-known (see [6], [3]) difference-
differential equations

= f(8) are as described below. The estimale

- 4a d
(4.6)  ——{sT(8)} =fls~1) (s=1); ey =TE—1) (s=2),

with boundary conditions

(4.7) Fls) =1+0(67), f(5) =1-+0{™) (s31).

A superficially rather special case of Lemma 4.2 would be a con-
sequence of the principal theorem of [4] on the nnweighted sieve, where
some trouble was taken to obtain an error ferm considerably superior
to that quoted above. As stated, the result can be established by the
somewhat simpler technique described, also by Iwaniee, in the “half-
dimensgional” context in [57. ‘ ' ’

The paper [4] describes how techniques 1nt10duced by de Bruijn [2]
may be unsed to infer

(4.8) sF(s) =26 (1<8<8),
(4.9) 8f(s) == 2g’°10g(s —1) {(2<8<4),

yo being Ruler's congtant. We shall again use de Bruijn’s ideas in our
proof of Theorem 2.

Tn what follows we take advantage of the faet that the weight function
w(p) specified in (1.9) has the property

(4.10) wip) =0 i p<y’,

where 7', is the absolute constant specified in (1 22). This implies that
jn (4.2) the suffix r is bounded:

(4.11) 7 = 0(1).
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Lemma 4.2 gives the following estimate for the quantity in (4.3):

@\ 1 r{Py - P
412 z - { ( — _71’____) ZEMIA AT
(4.12) (¥, 2) n ) Z ” "
q<n :2?*-:]1,.-(‘1’er 1< o TP

D e 1)2j_“13)§j=;y if 2525

X,Igfn,r(105.:{@//(391---1%)}  ~-|-0 L”f |
! Ing 10{;‘”"2} l

(3.24)) that

For the conditions of summation imply (via

Yipy - P =P,
g0 that the O-term i indecd ug stated.
To malke progress wo doal with
hip, 2, 5,Q)

- T P(Dy v D)) G( log {y /{py - p,)} )
?
PPy <Py 1 <o <py<elif Po---p log p,.
(4.13) P ﬂ:j_wzjasmrsmj@
Hp,z, 8,8
- T PPy Dy) G( Jog {y/(ps - 2,)} )
Py Py \ logp,

Py <<t
Py v Py apﬂ_lﬂulﬂla’!j—-lﬁ;r

for 222, s 1, r > 1, wheve the function ¢ ay be G = F or ¢~ w= f
(see (4. 6)) or G( ,) = 1 for all . In each cage these satisty the recurrences

& logz 1 G)

W E

"
Togp
(4.14) <ty Pt P 1 &Py
H.(p, 2,8, G} = 1L (?"Q By (-'pi e ’ Bl LB 1, G’),
i P Py " logp,
wya
for 222,821, r=1.
Weo cat'l'malte thogo (uanbitiey i;l ternig of
ko(w, &, @) = Gt(l”f"«“f Bt AN ) [ d‘b‘
o, <w 1SS iy e v Fo |
(4.,15) &yt e "i--D‘l;j,...'ﬂ Dﬁ”.v..,llf Lendfar
. ' Lol = @y = e oty Ty A
K,,(m,s,Gi)-::- f- G( r’;: 1)]-](w‘i
' <18 Y o

Bt +w3j_n+ﬂw2j~_1<1ﬂ:~l<ijw Iy

®
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where 0 < @L< 8 These patisfy the recurrences

) » 1 da
B, 8,6) = K,,_l(l o L)
—&r &y "y
w<zy<lia
(4.16) - L
W, 8, Q) = f k,_ ( ) G)
a<my<lia - $1 T Fr

5ml<1

when 0 < e <1< 5. ‘ :
It is immediate that for the functions & specified af (4.13) we have

(417) 0< ke, 5, <1, 0< K (z,6,6)<l if O<ogl<s.

We shall often use partial summation in the following form (cof.
Lemma 8 of [5]): "

Levwma 4.3, Let B(w) be positive, continuous and monotone in the
interval w << o< 2 where w>= 2. Then, becaouse of (A,),

logzllogy
- Bl ———2
logw 2 (logy h7=<

WS lopwflogy

B, = 11121;3:{3 ( loge ) B(log'w }
logy logy

Ag in §5 of [B8] it also follows from (A,) that

ats H (1-‘%@“)"1%?5; {1”.*0(10;)}'

wEg<

where

The proof of the next lemma is by induetion on ».
Levma 4.4, Wik b, H,, kr, K, as defined in (4 13}, (4.15) we have
Jor 222, s=1 that ‘ _ .

hip,z,8,0) = ?(P) {7 (10;;*19 8 G’-) -1-0( L )},

_ (@) [, (logp (WL )
‘Er('p?z,‘g’@) = ) {.Tf,.(logz ,, S:G) +’0 logp }.

Proof. When r = 1 the result is Luvmlly true since for example
{4. 13) (4.10) give

r(P) G(Iog(ylp)), (0,5, 6= G(l ;w)

(p, % 9,0 =226 =E
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Also, use of the inductive hypothesis and partial summation gives, from
(4.14),

Z“r(?: 2,8, @)
I
- P g ( lgp | logs m],,a) +o(——"—»)
v D1 logz —logp, " logp, logp
p<pp<el/d :
2 L d L
o [ m( L g8 of L)
) "’vl ! logp

<13

where we have unsed (4.17), Loemma 4.3, and (lor the O-term) the fact
that

@19) ACE AP TEY
pep <yt Pa

because of (4.10).
The other hall of the induetive step follows similarly.
Now proceed to the last result of this section.
Imyyms. 4.5. The expression in (3.D) satisfies

Saly, w)

Aot 5 e 2

gy Mi<p=yt

1y, (08P (w)")_ (w(l})l_
24 plogp Z( ](ng L&) 0 Vaey )i

ﬁ{b‘

Proof. For the first term in (4.2), Leramas 4.2 and (4.9) give

(i.zo) 8 (y, 2) - “ I(

<y

) L' llog‘”:'/}

where wo bave uged (4.18).
Tor the second torm wo sh,nihwly find, when ¥ < p, < yY, that

o )= AT (- 5 B () o s )

a<p

logy | (og(ylp) [ L" )}
“— I ( )} logp, {F( logp, ) 'O(log”*’y

o<y

the O-terms being as stated because (seo (L.6)) U< 1 is an absolute
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eongtant. Consequently

1 y(p1) ( y  log(y/p) )
121 1) — PiT g+ (2 DS
vy ulfﬂéqu'{w{ }= i By P’ logp,
y(q)) v logy w(l)—w(p,) (log( Y.
- gL Y R
=g ( q H,,l,z.:%{,,u logp, P rip) ¥ logp, )}+

w(1) LM
+0 ( logusym) H

where at the last step (4.19) has again been used.
For the remaining term in (4.2) we have, from (4.12) and Lemma 4.4,

w ={[ T 2ol 2 o) o gy ol

a<p logp
where (4.17) was used to estimate the O-term.
Consequently, and by (4.10), (4.11),

(e22) 3 w(m) D)

(=12 (y, p)

Pravan =l
1
x{n(lw (q))} 2 1ogy wiply(p)
o<y ¢ /i S lgp  p
v oyl lﬂgp (-y L1.’5
X{é(l)krmM,LG +0{ o))

where we have used L <logy as given in (A,). ,
The result of the lemma now follows from (4.20), (4.21), (4.22) and
Lemma 4.1, on again invoking (4.17).

5. An identity for the leading term. This identity, which appears
in Lemma 5.2, involves & guantity ariging (see Lemma 6.1) from the
sumg over primes p appearing in the estimate (Lemma 4.5) for the *main
term™ Sg(y, w). Introduce the abbreviation

(8.1) oy (@, G) = T (0, 1, @)

for the quantity' defined in {4.15) and appearing in Lemma 4.5.
The following representation of the functions G* is very convenient.
Levprs. 5.1, Let Gt =F and G~ =f be defined (as wsual) by (4.8),
(4. 7) Define
' day - .. du,... X
I,(8) = f f i hbele o Y

szl r=1.
Uy, vee Uy W,

L €U St < ene Uy
Upbtlp 3+ o 'l"l-quB
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. Then

F(s) =26 D 1,(s)

r oddl

(8 = 1),

roven
i

whore p, is Hulers constant (as in (4.8)).

Proof. By the change of variable u; == sv; we have

d'vl sue d’!}r,,__]

81,(8) = il
(#) Uy ver Oy W,
lle<u,.< <<
Vpok eee b ‘ulwl
Henece, for # > 2, o
a4 dy ... do,._,
v s, (8) m=— . .
Uy vnn Vpy Uy,
1,’3<U,r_..1< 1 2 Tl
Oploes -l vlml J,’.Ar
1 . dey ... dz,..,
s —1 B PR
Y(a-T) <pp.1:< o 1 T=2%r-1
Fpaytw +”1"‘1
I,,(b‘ ’“l)

if 8 > 1, where we seb sv; = (8—1)z;. Bub I, (&) == 1/ for s > 1L and I4(2)
=0, whenece 8I,(s) = log(s—1) if 8 = 2. Also I,(s) =0 il r > s. Hence
the‘ expressions of this lemma for F and f satisty (4.6), (4.8), (4.9), which
gpecily JF, f uniquely. This proves Lemma B5.1.
Weo will define the functions h, H of Theorexo 1 ag follows. For in-
togers 4z 1 define

(5.2) hy(, 8) = j j oy .. dag,
&,

(0= s 13 8)
XLy ..imzk’ur .

where the oty of conditions #, are given by

B Wy e < 0y L M8
Byt togyy e Ay £ LA G2 By
_1 < By~ Bygpmy e o bty
mzrc< U,
R L PR TR o 1 A

(5.3) By
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B Bygyg < e <y < 1,

Bbysy + gty <1 G F,
1< Sy + Bt A8,

Pgppn1 << U,

& Bygy oty +u = 1.

{D.4) Ryppnt

Then, on uwying the change of variable

&Ly == (1_%)?/; (6= 2); = (L—a,)u,
We Rec
e dx @ 1wz
5.5 hasg::f__l T 1
65 s = [ (e
:221<11'E
dt tw
- 4} T t‘—‘l
-1 F l(t—l’ )
gt

if 0<s<<1<s and similarly

dt 4 ‘
(5.6) hzk—l(m: 8) = f h’zkwi’.( —1’ t’_l)

gtz t—1

if k>1 and 021, s=0, the trivial extension to 0= $<1 being
made for comrenience Also hl(m, )iy agstated in Theorem 1. Now gpecily

B{m,8) = Zh%(m,s) <oKLl e)
(5.7) =
Hiz,8) = D) hyalo, ,8) (0<e<1;s>0).
fiz1 .

Sinee # > 0 these smmmations are finite. Then the relations (1.15), (1.16)
ghated in Theorem 1 follow ab once.

Now proceed to the main result of this section.

LmMA B.2. Let T (x, G~ be as in (B.1). Then

- 1
Z (=1 R, (2, @) = 26" {W — iz, 1)},

el .
where h{m, 1) 48 as in Theorem 1.

Proot. When 2 ia an appropriate set of mequsmhhes denote by {2}

the value of
dzy duj
™ H [
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where 4 denotes the region deseribed by the inequalitios % together
with the equation
(5.8) Dot Xy =1
1l =1 _
Begin by inserting the reprosentution of Lewnma 5.1 into the ox-
pression (4.10) for k.. This shows

%, (i, GCy = I (%, 1, )
T !

= 2(3?0 27 f rar f‘
>k <

= L e Y
femy mod 2 Qb gttigge g b orn + @< I Banddecy

-1
« [ ] %!1 _%‘j*

1ty -
Cpbneet 0y o (Lvigy oo oo =i~ 0 H2

r
] “““ dw,
L IEV:
&y

B = By T vl )
1 : .
= ¥y Z Byt Dypy by S LI 25 <0,
]
tarmods] T < Uy < ..ol Uy

in the notation described above; this follows on substibubing mw == .
Next, invoke a combinatorial identity analogous to (2.6), This shows

(3.9) > (=1, (w, 40

ral

W ows o< ...
e 3 oS
i1, ol o< 7 < . Wy a'
farmods -

where, here and below, the subgeript & denotes thal the variables in
braces {...}, are subject to the further restriections

@ o= S W)
B < < U]

3!1129-‘{«:173}._1 ""I"« X "|" w_‘_ x‘:‘, 1 i[
1 < Bty Byppany e o bty

(5.10) j <, k,

Next, employ many times a further identity. This states: for 0w
sw< 1 wo have

(3.11) ‘m = By < Wy < s < < W
T Uy < Uy < W
a<-f
= ﬁ {wmw“'l'ﬂ'l'l'{:wu»&up{:-“{wl‘( W}.

icm
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To sce this, one may observe (for example) that, on the right, 8 of the
variables @, %y, ..., #,,5 0ay be chosen to be the u; on the left.
The terms in (5.9) not having a label % thus sum fo

2eM

gl f-lr=g4-1
godd il

(5.12)

{~1)t+! (j) {0 =@y < oo. <y}

= 26" E{m =By < - <8

gl
nt?t'ld.

For the terms in (5.9) having a sulfix % observe first that the von-
ditions of summation imply

(5.13)

For if @y, < #, then (because 1ty < %)

toy < By, -

1< 3wy + @ypey be o T8 < m2k+“‘+m1+u2+ulg2“"{‘{'2“} w= 1,

where (B.8), (5.10) have been used.
Consider first the contribution to (5.9) from. the subregion in which

the condition
(5.14) . Uy < gy,

is imposed. Fox each fixed % this comtribution is

T o< < Wy

B Uy < Uy < By

> (#1)'“[

by
—26"°
>l >l
{ear ood %

(5.16)
. k

7 1 ¢ _
= —20 "y (—1)* (t) {2 = 0541 < -0 < Doty
=l t+r—2£c+ss+-l

#odd Lz
by the identity (B.11) applied to the variables w4, 2, (i > 2k). For the
restrictions implied by the sutfix & apply only to & for 4 < 2k. Computing
the alternating sum of binomial coefficients shows that the expression
(b.1.5) is

_—261’0‘5 2 {m .“_"’.: wﬂ-}*ﬂk"!“l < ---< wl}k-

gl
sodd

(5.16)

Similaxly the remaining contribution to (5.8), where {5.14) is fg.lma,
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8 (because of (5.13))

Z (— 1)1‘ 1—1\
[ ]
fermod 2

Yo il & —1
w3 (i)
awl f H‘F#ﬂf! l'a'] -1
ao0dd

e g, <

(5.17) —2¢"
& =< 16y <.

\aJJ_
.o'< 'u2< w2k<u1 ’E

b == ws,}nk‘( .-.<m1

<

&L o= mﬂc-i-l o
By, < Uy

L
¥, o Wy
= Qg 0 i

3
]

' the summation over ¢ this Hime reducing to 0 except when § = 1.
The egpresgions in (5.12), (5.16) sum to

2¢” w[Z{wmaH1< < Byt ZZ

L= I a>2l
s0dd godd

(5.18) o= Ty < o < )]

The suffix % has the significance described in (5.10). Henco a further
uge of the combinatorial principle previously employed ab (2.6) (5.9)
shows that this expression (5.18) is

@ By << e
=1 Sty - Bygeay - oo 0y €

26?000

L if 2g<s|

Tt 8> 1 the summand is 0 bedause the inequaliby with label 2§ == 8 —1
givesn

L2 oA gy - By > @y deu o By iy @ = L

Thus (5.18) reduces, because of (5.8), to
260 {w - @y < @y} == wlwy == (L —2).

This provides the first torm on the right of Lemma 5.2. The other is
provided by (5.17), gineo the implied oquation and inequalitics are as
Higted in (5.3).
6. Theorem 1 and its Corollaries. The firat step is to apply partial
summation (Lemma 4.3) to the resull of Lemma 4.5, uging also Leamm a 6.2,
Levwa 6.1. Let Sgply, w) bo as in (3.5). Then '

satr, 0 = 20| [ 1= L2 om0 ()

<y

+ where M (W} i3 as in Theorem 1.
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Proof. For the sum over p > ¢ in Lemama 4.5 a direct a.pphcatlon
of Lemma 4.3 gives, because of (4.8),

wl)—w@) )F(logy—logp)
ity Plogp logp
2 [ F Wy -w a +o( L )
T logy 1—1% t logy f|’

W being related to w by (1.9). For the gum over amaller primes p we
similarly obtain '

w(p)y(p) Z‘ 1y (1%1’,1 aw)

“plogp
1/2
& L
r+1 -y 27
logy‘ Z( TR L ET) 5 +O(Iogy)l’

where (4.10) hag been used. Because of Lemms 5.2 this expression is

W) {L t O(Té—y-),

pyi?

26"

logy 3

d
e h(t,l}}—t—

where i is a8 in Theorem L.

The required result now follows from Lemmsa 4.5.

We can now complete the proof of Theorem 1. By Lemma 3.3 we
ean invoke the conclusions of Lemma 3.1. Hence

D w(g) = ) T4, )+

acsl as
oy, pla)<nR

Here Zg(A, w) is ag given first in (2.7), so that we may write
Zy(4, w) = w(l) ;’;s(d)f(d),

with

> wimw(L}),

- w(@F(@) = pald)(1— )

g being as in (2.5). Thus

a8 required in Theorem 1.
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Now invoke (1.1). Becaunse of (3.1), (3.2) we obtain

D wig) = 22/» )f(d)

ae.a aes dla
v”’{](a)i,R
= w(l) Y p@f@ D 1
d aesf
us=0mod &
> Xlgly, w)—w(l)| D n(@f@
desy

where Sz is 28 in (3.5). Theorem 1 now follows using Lemma 6.1
Proceed to the infercnce to Gomllfuy 1. When W iz given by (1.11)
we have in Theorem 1

(6.1} (W) 2= H* (W),

where

(82) (W) = - =

1/2 1/4

- [ ‘“ f—’—V—d} +a—L0-1),

becauge of (1.19), (1.20), (L.21). Equality holds in (6.1) if (L —-U)/3 < T,
where Ty iz as In (1.22). Accordingly define g5, Ug, V5 by the “Lagrange
multiplier” equations

(6.3) M W) = 03 9r = BUp+Vpg,
o Ur S
i B a
. == —— 3+ A= [ e,
(6.4) IR 1/[ iy ta | ”f s
‘ Y

The solution of {6.4) is

1
A= —logd, T 18 Be A
R

go that Uy, is as.in (1.24). Thus

: Un o 1/2
- dt g . it
— ] = == U — USRS Sp— — et
Irlogd =0z “[ | wa=r s ] 3 K
- 142 ‘ ‘ 14
With (6.2), (6.3) this gives
_ o
0 = A*(W) = —gplogd+a—g[3 -+ ————
R

1/4

where .#*(W) is given by (6.2) with V =
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wherein
ur g 8 ‘ 3
e == | —— L = Rloge 3 341 .
,f 7 o Ty | ~ e o os )
Consequently

1
g =R~ Toss [log(4U 5 /3) —a],

g0 that all the requirements of (1.24) are satisfied.
We choose U, V, %y, g 80 that
(6.5) U="Ug yg<gg—np=RU+T;

thue (1.25) holds as requmed Then (6.2), (6.3) show, because V = Ty —1n5,
that
(6.6) (W)= M*(W) = nylog8,
as required in (L.27). These choices are consistent with the constraints
(1.7), (1.10) of Theorem 1 provided
>0

and

123V4U = Uz+3(gp—RUz)—395.
Beeause of (1.24) this says

log3 36t

1 4Ty,
—1 .
log3 og( 36" )
Beeauso of (1.26), this completes the proof of Corollary L.

The proof of Corollary 2 i shorter. When equality holds in (1.10)
and W is as in (1.11) we have in Theorem 1

H(W) = A+ (W)
(L—0U)[3. Accordingly define

3ngp = UR~—1+3R(1 UR)——~—3—~ Iog(chR),

i.e.

1
> (B-3) @70 -

¥ Usy Vo by the oguations
M (W) =0, gp=RUs+V,, Vo= (1-T,)/3.

The first two of these are precisely (1.29), (1.30) re&pectiﬁely. When
(1.31) bholds choose U, ¥ so that

U=Uy, "g=RU+YV;



3. Greaves

324

then V< Vy—ng. Now (6.2) shows
M(W) 2= M*(W)—}—anog(Seﬂ),
and the stated result follows.

7. Proof of Theorem 2. Wo commence the study of the moments &, (s)
introduced in (1.33) by defining

by n{8)= f @™ h; (2, 8)da,

el ]

(7-1)

where h; is as in (5.2). The recurrcnces (6.B), (5.6) induce

t i
a” {. hiﬁl(tfl ) t*"l)“t'_—l'

£>0 gect

hia®) = |

s<l i 14
. ntl 1 1 1 )
_ f 1—1L\" @ f(m)hf_x(wyt—'l)—d—( m)dw,

AR t—1 2o\t 1. i1 dw \i—1

d<tifagi
so that '
(7.2) k@ = [ (FE) Ben -0 2,

< 1 t t

: &
<t 2%

for 8> 1 initially, then for s =1 by continuity.
We need. the following bound for % ,.(s).

LEMMA 7.1, There exist <1, 0> 0 such that

T () < 0B (s +1) 6™

We can deduee this result from the argument of Lomma 3 of [4].
Because of (7.1), (7.2), (1.1} it follows that

T, o (8) < Ja(8)

(s=1, n=0).

when 821, nz0,

where

. . , .

(7.3) Ja(8) =1y gi(8) == Jies(t=L) s

a<i X

netitaqd

the unnecessary change from 3 to 2 in the conditions of inbegration maroly
making the problems. harder. However, on writing ji(s) == L{s4-1), (7 3)
gives the recursion studied in [4]. Thus it follows that

Lw) < flwe™  (wz2),

which implies the regult of our lemuoa.
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We may now define

T(s) = 3 koals) (s> 1)
‘(7_4_) tg_in
. Hn(s) = Z ki,n.(s) (s = 0),
iodd
>l

_convergence being assured by Lemina 7.1. This does not contradict (1.33)
because of the following consequence of Lemma T7.1:

LemmaA 7.2. The funotions defined in (7.4) satisfy (1.33) and the re-
cureions

1in it -
(15)  Hy(9)= f(l“?) (1) +ha(8) (530, n>0),
gt
a<it
1\» dt
06 o = [(1-3) B G (631, 530,
. 7 st ’ B . .
where
(7.7) Iy (8 = dads,
O-Caym) < 4 .
13y <lfg
Tyrp -t u=1
Also
(7.8) H,(8) < (s+1)e~*%; R (s) < (s+1)e~%

Proof. The equation (7.7) for %, ,(s) is an agsembly from (7.1). and
(1.15). The inegualities (7.8) follow from (7.4) and Iemma 7.1. For (1.33)
argue from (7.1) that, for « =0 or 1,

D == [ D} 2w, sde
i

=1, nz=0),
{mamod2 @>0 t=emod? .

the interchange of order of summation and integration being permissible
hocause

ZI < M Fs+1em <1/(1—p).
i

~ Similarly, from (7.4), (7.2),

1\ at
f(l—-—t-) Tt 1) - =

s<i <t ieven
= 3 hyra(8) = Hyls) ks (o),
teven
[+

which i§ (7.8); (7.6} follows similarly,

7 — Acta Arithmetica XL.3
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To continue with the proof of Theorem 2, introduce the funetion

we_t
- sm—uf——dt
A
X

which is analytic in the indicated domain. It is eas}} to verify (e¢f. [2])
that it then satisfies

dp ' (Re(s) > 0),

0

(7.9) J(s) = f exp

a;—q{sJ(s)}—}-J(s 1) =0 (Re(s) >0).

Hence

E;'ZE {2 TN ()} + SO (g 41) == 0 (Re(s) > 0).

Algo from (7.9) we see

fos)

1 {3 T 0’ 3 6—‘

(7.10) Jt{e) = (—1) Dfm exXp —-swumf Tdtl do.
Henee

(111) (—LI@ (1) fn! = j,

where j, is as stated in (1.34).
To 2 similar way we may write

(112) = (FLMOD! (a21),
(7.13) -g; {0 (g)} — st I (s L) =
0 0 )
(n e ]V i _ " ..fi.....k..'
(714) I (s) = (1) ufm oxXp1 — sz -{! ; dt}dm,

although the intogral defining I (g) does not converge if n = 0. From

the point of view of classical amalysis, we have introduced a function

I — T and its derivatives I™ (n 3 1) withont intreducing a function I.
The oequation

a .
= BI(E)} —Is-1) - 0
does however have a solution

Is) =1  (uil 8).
This fact will be used later.
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Trom the integral representations (7.10), (7.14) it is evident that
(718) JW(s) = 0(1) (=1, n=0); I = 0(1) =1, n=1),

where the O-constant might depend upon n. We shall also need

(7.16) liml_ IR = (—1)%m!  (n=1),
§—0"

(7.17) linl I E) = (—1)"n!  (n=0).
8-+l '

We may deduce these from standard results on Laplace transforms, or
ad hoc as follows., Rewrite (7.9) as

T(o) = = +H ),

where
fil8) = f g—<s+1)maf°\-«1+exp(wf—t—dt)} dw.
0 =% .
Then fy(s) is analytic in Re(s) > -1, because
~ et e [ 1 et
Ly i
[~ . it = [m . l (),
] € =

which implies
exp\wf —t—dtl = 1 O(677).
T

Now (7.17) follows; (7.16) can be proved by a similar method.
Tror brevity, write for ¢ = +£1 : '

1 it e =1, m=0,

(7.18) Epa8) = {IM() it s =1, n>2l,
JMs) it e = —1, n20.
Thus
[ d =1 L el .
(719 ud}-{s K, . (8)} = es"K, (s-1-1) (8> 0).
Form the functions

(7'20) a’n,s(g) = Hn(‘s) "i'"'?hn(s). : (S = 2).



328 G. Groaves

Becanse of Lemma 7.2 they satisfy

§—1

(7.21) .S 6y o(8) = ——s(

7 ) Oy, s (6~—1) (8 > 3).

For fuwrther brevity omit the suffices n, ¢ ad lib.

We shall continue the functions e into s > 0 by requiring that (7.21)
hold for s > 1, if & 5 2, s % 3. The continued o will have discontinuities
at 1, 2. Note that because of (7.5), (7.7) '

(7.22)  H(s) = H(3)+h(s) =H(3) 52 i 0<s<2.

For 2 < s< 3 (7.21) requives, beeause of (7.20), (7.5), (7.6),

—-a(s;-l) a(s —1) = ski(s) —e(j—«m—) {H (3} B, (2)}.
So for 1< s< 2 we define
a(s). = H(8)+ky(2) ~e(s +1)"* s ki (s +1).

For 2 < #<3, (7.7) shows
; 1 A —1 at
B(f) = — = f Py = 1 — 1) J " .
1 " %
D<alff<u Oy /(- 1)<
-l .-1,‘15 RN
Thus
; a"
(7.23) a(s) =H(3)+k(2)+e T de  (L<s<2).
t<pl-1]§ -

For 1 <8< 2 we now require’
& —1\" & ~1\"
[ =22,
so define

(1.24) ale) = -1 (0<s<1),

The equation (7.21) now holds for s> 0. With its adjoint (7.10)
wé obtuin '

d
mj;{s"'”lf(s)a(s)} = {8 —1V K (&) (s 1) | a6 K (8- L) a(s)
for 8> 1, ¢ 22, s # 3. Because of (7.156), (7.20), (7.8) this intogratoes to

2ﬂ+11r 2){a(2+) ~ (2 ~)} +K{ (1)a(l-+) cft”K (1) a(t) dt.
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Thug, and by (7.19), (7.23)@7.24—),
Y2,

2n 1 S (2) lh(z) _ f 1“_’% d

o

TE(L{H(3) + F (2} +

. FE (1) —lm LK () =0,

]

the limit existing because of (7.16), (7.17}, (7.18).
From (7.8), (7.22) we also have

B(1)—h(2) = f(t 1) {H () oy (2)) — ‘:t

1

1

= {H(3)+ %, (2)} f (L—y)Pdyy

1/2
1% e
= (HE)+ 5 @)} [ g—do.
Thus
2“+15K(2)h(l}—i—{H(SH—kl(Z)+l}[K( —2"eK (2 J ]

= lirh " K (§).
f—04

But (7.19) gives
2K (2) = K/ (1) +(n+1)E (1),

and the notation iy as described by (7.18), {7.11), (7.12). Because of (7.18),
(7.17) this completes the proof of Theorem 2.

8. Numerical approximations. For applications of Theorem 1 and
ita corollaries it will be necessary to obtain satisfactory bounds for the
numbers «, §. We outline an approach to this question which, although
not the best possible, iy easy to implement. Numerical results already
obtained indicate that Theorem 1 does, as was claimed in the introduetion,
repregent an improvement upon. earlier regults of its type.

The first stage is to obtain approximation to the numbers i,,j, of
Theorem 2. This amounts to estimating the derivatives at the point
$ =1 of the funetions I, J defined in (7.9), (7.14). The author has deve-
loped an algorithm for this which takes advantage of the fact thut these
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funetions, being analytic in the half-plaln@%e(s) > 0, are representable
as sums of their Taylor series.

Next, uge of Theorem 2 gives numerical values for I, (L), Together
with a rather eagier calculation involving the term 1/(1 %) in (1.18)
this leads to numerical values for the moments

1 14
iy = f P (£) @ == A7 f (1) dt,
0

0

where for convenionce we have writlen

p(B) = p(t/4)

the function p being ag in (1.19). Thege numerical approximations are
believed to be correct to within a few units of the rounding crror imposed
by the machine employed.

It is now possible to derive a lower bound for the positive constant
a defined in (1.21), as follows. By differencing the p, we reach numerical
approximationg to

(0< i< 1),

I

f = f (L — 1) () .

Then observe

o

'fqv(t)dt = | Z(“;)t‘(l—t)““%'(t)dﬁ

0<i<1 <liml
>

ol
Pyt ()=

» 1
= E ("‘:) max {O , f t*'_(l £ g 8) dﬁ] i
1wl H

In the numerical work based upon this inequality, care mugt be taken
that the effect of the velatively small crrors in the sssumed values for
s, 088 not beecome too large. In practice this limits the value of » which
may be wused if uwseful information is fo follow.

Similarly, of course, we could obtain lower bounds for the positive
mmber f in (1.21), but this iz not what is required, Ingpection of the
proof of Corollaries 1 and 2 shows that what is veguired is a lower bound for

(8.1) | f (1 - __:'_) p (B dE

0<i<l
Plt)>0

where, because of (1.11), (113}, ¢ == 4(1L—T7}/3 > 0 for Corollary 1 and
¢ =4V > 0 for Corollary 2: '
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We nse the estimate

£
. )
(8.2) E (@) max
1e=1

for the quantity (8.1). It is not now as clear ag in the case ¢ = 0 that
this estimate is from below, though this holds for sufficiently small ¢
because of o continuity consideration. Our claim that it holds for the
values of ¢ actually nsed therefore rests meanwhile on the observation
that the estimate (8.2) increases with = for all values for which it has
been computed, together with the fact that it can be proved to tend to
the desired gquantity (8.1) as n->oo. _

To obtain our bounds on the numbers dp described in the introduc-
tion, we nse Corollary 1 (see (1.28)) when B > 3, since our computations
then indicate Ny << 0. For B = 2 we use Corollary 2. Corollary 1 remains
applicable when B = 2, but only for a somewhat restricted range of g,
because we find not ounly A,< 0.056 but also N,> 0.074.

In this way we find §,< 0.068, d,< 0.106, and é;<C 0.131 for all
integers B > 4. It is hoped to report on a more definitive cormputation
of ¢, # when dealing with some applications of Theorem 1 in a subsequent
publication.

1

[4 .
0, (1 — w) HL—1)" (1) cltl
[

Note added in proof, 21. 10, 1981. Since this article was written the author
hag undertaken s computation of the constants e, 8, T, using a large computer and
methods more refined than those deseribed in Section 8 above. It was found that

a = 0.1505528..., £ = 0.87695..., T, = 0.074368...
The values of a, § lead fo
8, = 0.068734..., &, — 0.089995..., dy, = 0.124820...

The value of 1/T, = 13.446... means that the method used attaches weights w (pg)
to the eleven largess prime factors p; (1 < p; < 11) of some of the unwanted o in w.

A more extensive table of values of 8z has been supplied in the author's article
(introductory to the present paper) Rosser's Sieve with Weights, in [H. Halberstam
and C. Hooley (editiors), Progress in Number Theory. I, pp. 61-68, London 1981].
The author's algorithm for the caleulaticn of the numbers jy, é,, of Theorem 2 will
be described (for the numbers j,) in [G. Greaves, An Algorithm for the Solution of
Uertain Differential-Diffevence lquotions of Advanced Type, o appear in Math. of
Clomp. 35 (1982)]. The methods vsed for the more accurate computation of a, £ have
heen outlined in [ Greaves, An Algorithm for the Hausdor(f Moment Problem, sub-
mitted to Numerische Math.].
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