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for p=1(mod 8} a prime

by

Proner KAPLAN (Nancy, France) and KeNyegra 5. Wrrams* (Oftawa,
Canada)

1. Yniroduction. This paper is a sequel to the paper [4] of the second
author and should be read in conjunction with it. For the prime p = 8111,

we consider the ifdeal clags number R(—2p) of Q(]/:—B"g?) and the ideal
clags number A(2p) in the narrow sense of Q(]/E]B) It is well known that
h(—2p) = h(2p) = 0 (mod 4). Let my, = R+8V/2p >1 be the funda-
mental unit of norm -1 of the real quadratic field Q(I/L_?E), 80 that

(1.1) R2—2p8% =1.
Clearly B is odd and § is even. Our aim is to prove the following theorem.
THEOREM.
8
(1.2) W —2p)+ 5 -h(2p)+p—1 = 0 (mod 16).

This theorem establishes a conjecture of the first author given in [3],
p. 28b. '

Tt is known (see for example [1], p. 600) that ezactly ome of the
three equations z? —2py?* = —1, -2, +2 is golvable in integers & and. y.
Wo sot B, == —1, —2, +2 accordingly, so that

V:—2pW* = I
hag rational integral solutions ¥, W. The following congruences involving
h(2p), h(~2p) snd b(—p) modulo & are known (see for example [1]):
(1.3) h( —2p) = h{—p)- 41 (mod 8),

(L.4) h{2p) == 0 (mod 8) « h(—p) =0 (mod 8) and p =1 (mod 16),

* Temoarch supported by grant no. A~7233 of the Natural Sciences and En-
gincering Research Council Canada.
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{1.5) h(—p) =0 (mod 8), p =9 (mod 16) = H), = ~1,
{1.6) h(—p) =4 (mod 8), p =1 (med16) = B, = 42,

(1_7) h( __p) m= 4 (mod 8)’ P = 9 (]].’l()d 16) = E_p = —2,

Tn fact (1.5), (1.6), (1.7) ave parts of Lemima b in [4], and (L.3) follows
from (7.5} in [4], a8 h(—p)+h(—2p) = %, and Sy =1 (moed 2). We
will reprove (1.4), and then make usc of it to prove the theoremn.

Next we eongider (1.1), written in the form

(B A-1HB ~1) == 2p8%
As GOD (B~-1, B—1) = 2, thore cxist positive integors ¥V and W
quch that one of the following four alternatives holds:
B41L == p(2W), |BA+1 =2W,
R—1 =2V B =1 = p (273

where W ig odd. The last alternstive is impossible, as then W2 —2pV? =1
with W< B and V< 8. The three first possibilitics give respectively:

[R 41 == 2p W3,
|R—1 = ¥

R+1 = V3
B -1 == 2pW2;

(1.9) —2 == V2—2pW? R = LpV2 § = VW, V =8 = + 0 (mod 4),

== 9 (od 4),

(1.11) =1 = V2—2pW?2 R == 1-4-2V%

Woas L (maod 4),

8 =2VW,

S = 2 (mod 4).
We note that (V, W) is the smallest positive selation of Ve 2p W2

= B, and that

(1.12) 8 =0 (mod 4) < By, = —2.

2, Evaluation of F_ (w). In {hig seetion we make use of the following
¢lags number formulae of Dirichlet (seo for exanple [2], p. 196):

21) W(—p) -~V ﬂ(“;fl’),
(2.2) il/ )”( - )
(2.3) . B (2p)logn,, = 23 E%(%’)

o).
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One finds eagily from thoe definition of F_(z) given in [4], (1.9), that

NP
Fo(w) = (=170 ﬁ’ (1+o'e),

Il

where @ == (1 —M‘)/ﬁ—— exp (2mi/8), o = exp(2wi/p), and the minus (—)
indicates that § is restricted to thofse 7 satistying (f/p) = —1. Hence we

have

(24) (~1) V(o) == 6%,

‘whore

2.5) P j §1 -—-1"‘ 1gtn gt °“'L‘( 1)t il i
=R 2w

" Using the familiar Ganss sum (expressed so that the case n = ¢ (mod p)

is ineluded)
- 1 n\? 1/n 1
; 2 P 2\p 2’

g S

Oolleefzing terms on the right-hand gide of (2.6) having the same
residue modulo 4, we obtain

wo obtain

(2.6)

(2.7) 2078, = Ty + Ty T +T5 0,
‘where
N (=13 f4k —j . .
2.8 T, o . o
(28) f %4:.3_3( =) G -0,1,2,9)
Now

ATy E;() 2 ““%')"I“C:) 2.«;(;3)
S Sap- S,

Taoen 1,
BO

(2.9) T, =0,
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and

T, 3%2216“3:(275“1) ___21(—41))

Jiaml FLwa]

BO

(2.10)

by (2.1). In a similar manner, using (2.2) and (2.3), we find that

(2.11) [/ - —uh(—2p)  h{2p)logn,,
' ' Wap Wop
(2.12) © g L T 2p)  h2plogny,

| ' 4/ 2p 4.'/210

Putting (2.9}, (2.10), (2.11), (2.12} into (2.7), we obtain (a8 «® =1,

wto® =iV2, o—a® = V2) _
(213) F_ (@) = ghpoitim(omraemmis—g)=it,
(2.14) T (@) = gfoi( 1) smle,

Making uge of (1.83) we obliain

(2.1B) TP () = (—1)@-Dieylanis,

3. Proof of the theorem. Wo consider four cases according to the
values of h{—p) modulo 8 and p modulo 16. As in each case p is fixed
modulo 16, we need not mention the subscripts L and 9 nsed in [4], and
we omit them.

From (7.9) of [4] we deduce, proceeding as for (7.13),

(3.1) - 4h(~2p)
= (L—a*[Y(0)Z' () ~ X (0)Z(0)+ Y (—~u)2 (~w)

Oaso (i). p ==1 (mod 16), h(—p) == 0 (mod 8).
(med 8) by (1.8).) From §6 of [4] we have

o ¥ () Z ()]
(Heve h(~2p) 20

32) ¥(w) =24, Y'(0)=20-+4Fo--2H0'—4l40°,
' Z(w) = 2DVE, Z'(0) = 2L+ Ao +2(L —4D) o,

and |

(3.3) A4 DL =0 (mod 4).

—2pD% =1,

(3.10)
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¥rom (2.5) of [4], (3.2) and (3.3) wo deduce

(3.4)  P(0) = $[Y(0)+Z(0)VD]
(3.5) A4 =1 {mod 2),

= A+DV3p,
D=1 =0 (mod 2).

Using (3.2} in (3.1), and then applying (3.3) and (8.5), we find
{3.6) h(—2p) = 4AL —8DI —8lAD = 4Al = 44.D (mod 16).

By (3.4) and (2.13) we bhave
(3.7) F.(0) = A+DV3p =

ml)(h(—p)-m(—-zp)w— 1318 ﬂ?gp)fs.

Now (3.3) shows that 4-+DV2p is » unit of norm -1 of Q(V¥2p);
but 7,, is the fundamental unit of norm 41 of @ (V2p), so that h(2p)/8
must be an integer, proving that #(2p) = 0 (mod 8), which is (1.4) in
this case. Now by (3.4) and (2.15) we have

(3.8) (A+DVEpf = (B+6V3p)ens,

As (3.6) suggests, we consider the coefficients of }/55 modulo 8 in
(3.8). We obtain

(8.9) 24D = ﬂ;?_) RMen-LY (229) 8 (mod 8),

where we have used h({2p)/4 =8 = R —1 = 0 (mod 2).
Then, from (3.6), we obtain

h{(—2p) = h(2p)§(mod 16).

This completes the proof of the theorem in this cage.
As 8 = 0 (mod 4} if and only if H, = —2 by (1 12), {3.10) can be
oxprefsed in the following equivalent ways:

(8.11) Rh{—2p) == 0 (mod 16) < h(2p) = 0 (mod 16) ox H, = —2;
(3.12) it B, = —2, h(—2p) =0 (mod 16),
- it B, = —1,2, h{—2p) = h(2p) (mod 16).

COase (i), p = 1 (mod 18), h(—p) =4 (mod 8).
4 {mod 8) by (1.3),) From § 6 of [4] woe have

Y () = 2BV,
(6:3) !Z(w) = 20,

§ we Acta Arlthmetlca XI.3

(Here A(—2p) =

Y () = 20 +4F o+ 2(E —4B) ?,
Z'(») = 2L+ 4 Mo -+ 2Lo? — 410w,
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?.53‘1.‘:4) 2B —pC* =1, B4+E =0(mod 4), M =1(mod2).

From (3.14) we have (2B)*—2p0* == 2, g0 that B, = 2, and algo
(3.15) B o= () w1 (mod 2).

Trom (3.13) we have
(3.16) F_{w) = BY2-1-0Vp .

Using (3.18) in (3.1), and then applying (8.44) and (3.158), wo find
317 B(—2p) = —4CH+-8BM 4-8LBO = ABC -8 (mod 16).

From (2.14) and (3.16) we havo

(BYS+OVp = (B-+8v2p)rent.

As § iz even, we obtain by considering the coefficients of 1 and Va2p

(3.18) 2B = RAOPA (m0d 8),
(8.19) 2B0 =: ﬁ%@l REeni-1 & (mod 8).

From (3.15) and (3.18) wo deduce that RM™ = 3 (med 4), so tha
h{2p) = 4 (mod 8), proving (L.4) in this case.

Then, in (3.19), wo have R~ w1 (mod 8), and so by (8.17) we
obtain

(3.20)

h{—2p) = h(2p)-§— -+ 8 {(mod 18),

which completes the proof of the theorem in this case.
Case(iii), p =29 (mod 16), h{—p) ==0(mod 8). (Eere hr(—2p) ==
4 (mod 8) by (1.3).) From §6 of [4], lg'bting p =1 16k4-9, we have

8.91) Y(0) =24,  Y'(0) = 2B(1—*)+4(2b+1) 4o+ 4Ho",
Z(w) =2Diy2, Z'(0) = AL(L - w?)--8(2k--1) Do? -+ 4Pe’,

and

(3.22) A*—2pD? = ~1, D+ ==0(wodd), H =0 (mod2).

From (3.22) we see that ¥, = —1 and A ==D =1 (mod 2). Then,
ag before, (3.1) gives .

(8.28) h(—2p) = 4AL+8DH —(16%-+8)AD = —~4AD+8
' o = 4 AD (mod 16).

(8.80)
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By (2.15) we have
(3.24) (Fof{w)) = —(4 +DV§1;)2 = ~(R +SI/EE)M””‘",
which gives the two congruences

A2 9pD? = RMOOVA (mod 8),
and '

9AD Eﬂzﬁlme)M—lS {maod 8}.

© AsA and Dare odd, 42+ 2pD* = 3 (mod 8), so that h(2p) = 4 (mod 8),
proving (1.4) in this ease. Then we have, from (3.23), '

(3.25)

h{—2p) = _h(Zp)—g(mod 16),

which completes the proof of the theorem in this cage. :

‘Case (iv). P = 9(mod 16), h(—p) =4 (mod 8). (Here h(—2p) =0
(mod 8) by (1.3).) From §6 of [4] we have ' '

Y(w) = 2BiV2, Y'(0) =2B(l—0?) +8(2%+1) Bo®+4Ha?,

3.26 .

B26) 1 Ziw) = 204, 2'(0) = 20(1 —0?) + 42k +1) 0o + 4Po?,
and )
(3.27) 2Bt —p0? — —1; B+J =2 (mod 4).

From (3.27) we dednce ﬁhat'Ep = --2. Alsc we have

{3.28) B =(—1 =0 (mod 2).

Now, by (3.1), (3.26) and (3.27), we have

(3.29) h(—2p) = —40H —8BP -+ (16k-+8)BC = 4B(+8 (mod 16).

TFrom (2.13) we obtain '
Bl/i-{-O]/E = (ml)(h(—ﬂ)'l-h(“'ﬂ’p)—4)lﬂ( RB-- Sl/z_p)h(w)fa,

which ghows that k(2p) = 4 (mod 8). This proves (1.4) in this case. Squar-
ing (3.30) and equating coefficients of ¥2p," we obtain

2BC = 7"_*_(21’ ) grem-ig(mod 8).
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Then, as § = 0 (mod 4) by (1.12), we obtain
h(—2p) = h(2p)§ -8 (mod 16),

which completey the proof of the theorem in this case.
The authors would like to thank Mr. Loc-Jeff Bell, who did some
computing for them in connection with preparation of this paper.
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1. Introduction and statement of theorems. We study a class of
integer pequences o = #/x depending on a real parameter X = 2. With
pogsible applicationr in mind, assume the sequence satiufies certain general
conditions of the type introduced by Halberstam and Richert [3] (see
also Ankeny and Onishi [1]). These authors supply many interesting
examples of such sequences. The object of the exercige is to deduee, for
a guitable integer R > 2, that the sequence & contains one (indeed,
many) punmbers having no more than E prime factors.

In the first place we assume

Z 1 —:%?(Z)—I—R(I,I) i
aagflgd.l

u being the Mobins funetion. The function p is assumed to be multipli-
cative and to satisfy

(11) p2(l) =1,

1
yplogp 24,

A o<yi)<p, —L< D) s -

wepaL

2<w<2).

Tere and below the constants g, ¢, A,, g, ... are abgolute; this means
independent of the real variables X, ¥, 2, w. With the possible applications
in mind, however, I will be allowed to depend on X ag in [8]

Algo asgune, when & & o, :

(Aq) 1<a<y”; L<logy,

where the significance of y will appear below. The further. condition on
L ig added for our convenience.

The regults of this paper are stated in such a way thab they are
independent of hypotheses relating to the “crror term” R in (1.1). For
applications, however, some knowledge of the following type would be
needed. One could use, for example: '



