О корнях уравнения $Z'(t) = 0$

Ян Мозж (Братислава)

1. Пусть ([7], стр. 94, 333)

$$
\begin{align*}
Z(t) &= e^{\alpha_0 t} \zeta \left(\frac{1}{2} + it \right), \\
\phi(t) &= -\frac{1}{2} \ln \pi + \text{Im} \ln \Gamma \left(\frac{1}{2} + \frac{1}{2} it \right) = \\
&= -\frac{1}{2} \ln \left(t/2\pi \right) - \frac{1}{4} t - \frac{1}{2} \pi + O(1/t).
\end{align*}
$$

В этой работе мы получим новое следствие из гипотезы Линдебёра: а именно, что функция $Z(t)$ имеет колебательный характер на промежутке $(T, T + T^\ast)$, $\tau > 0$, где τ — сколько угодно малое число, т.е. имеет в этом промежутке неограниченное (при $T \to +\infty$) количество локальных экстремумов.

Теперь мы перечислим результаты. Пусть $S(a, b)$ обозначает элементарную тригонометрическую сумму (ср. [4], стр. 34).

Теорема. Если

$$
|S(a, b)| < A(\lambda)\sqrt{ab}t, \quad 0 < \lambda < \frac{1}{2},
$$

tо уравнение

$$
Z'(t) = 0
$$

имеет корень нечетного порядка в промежутке

$$
[T, T + T^\ast \psi(T)],
$$

где $\psi(T)$ — сколько угодно медленно возрастающая к $+\infty$ функция.

Примечание 1. Конечно, корень нечетного порядка уравнения (3) есть точка локального экстремума функции $Z(t)$.

В случае (см. [2])

$$
A = \frac{35}{216} + \varepsilon, \quad \varepsilon > 0,
$$

мы имеем
Следствие 1. Промежуток

\[(T, T + T^{3/16 + \epsilon})\]

содержит точку локального экстремума функции \(Z(t)\).

В случае справедливости гипотезы Линдеблофа для элементарной тригонометрической суммы имеется место (см. [1])

\[|S(a, b)| < A(a)\sqrt{a}.\]

Следствие 2. В случае справедливости гипотезы Линдеблофа промежуток

\[(T, T + T^\phi(T))\]

содержит точку локального экстремума функции \(Z(t)\).

Примечание 2. Итак, в случае справедливости гипотезы Линдеблофа имеем число 100/\(\epsilon\) вследствие показателя 35/216 в (6).

Пусть \(N_n(T)\) обозначает число корней уравнения (3) для \(t \in (0, T)\). Следствие 3. В случае справедливости гипотезы Линдеблофа имеем место оценки

\[N_n(T + T^\epsilon) - N_n(T) > A(\epsilon, \epsilon)T^{-\epsilon}, \quad 0 < \epsilon < \tau,\]

где \(\tau\) — сколько угодно малое.

Обоснование для изучения корней уравнения (3) являются следующие обстоятельства.

(а) С вопросом о расположении корней уравнения (3) относительно корней уравнения \(Z(t) = 0\), связан вопрос о справедливости гипотезы Римана (см. пример, [3], стр. 34, следствие 3).

(б) В случае же справедливости гипотезы Линдеблофа, корни уравнения (3) связаны с вопросом о существовании кратных нулей функции \(\zeta(1-i\epsilon)\).

2. Основной доказательства теоремы является Формула 1. Равенство

\[Z'(t) = -2 \sum_{n < \sqrt{t}} \frac{1}{n^\sigma} \sin(\theta - t\ln n) + O(t^{-1/4}T^{1/4}).\]

Доказательство этой формулы помещено в частях 3, 4.

В части 5, при \(t < (T, T + H), H \in (0, T^4),\) формулу (10) преобразуем так

\[Z'(t) = -2 \sum_{n < \sqrt{t}} \frac{1}{n^\sigma} \sin(\theta - t\ln n) + O(t^{-1/4}T^{1/4}).\]

Формула 2.

\[Z'(t) = -2 \sum_{n < \sqrt{t}} \frac{1}{n^\sigma} \sin(\theta - t\ln n) + O(t^{-1/4}T^{1/4}),\]

где \(P_n = \sqrt{t}/2\pi\).

В части 6, исходя из формулы 2, в случае последовательности \(i\) определенной соотношением

\[\vartheta(i) = \pi(1 + \pi)/2,\]

(\(\pi\) — целое положительное), мы покажем, что имеет место Лемма 1. Из (2) следует

\[\sum_{x \leq x < x + H} Z'(i) = O(T \ln^3 T).\]

В части 7 мы покажем, что имеет место Лемма 2. Из (2) следует

\[\sum_{x \leq x < x + H} (-1)^x Z'(i) = \frac{1}{2\pi} H \ln^3 T + O(T \ln^3 T).\]

Примечание 3. Соотношение (14) является асимптотическим в случае \(T^4 = o(H),\) т.е. пример, при

\[H_1 = T^4 \varphi(T).\]

Наконец, из леммы 1 и 2 получаем следующее

Следствие 4.

\[\sum_{x \leq x < x + H} Z'(i) = \frac{1}{2\pi} H \ln^3 T + O(T \ln^3 T),\]

\[\sum_{x < x < x + H} Z'(i) = \frac{1}{2\pi} H \ln^3 T + O(T \ln^3 T).\]

Отсюда, в случае (15), следует утверждение теоремы.

3. В этой и следующей части мы приведем Доказательство формулы 1. Исходя из соотношения ([1], стр. 85, \(x = y = \sqrt{t}/2\pi,\) \(n = 2\pi x,\) \(m = [x])

\[\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} + \zeta(s) \sum_{n=1}^{\infty} \frac{1}{n^s} - \frac{e^{-s\pi T} (1 - \varepsilon)}{2\pi^2} \int \int \int \int \omega \omega d\omega,

\[\omega = e^{-s\pi T} \left(\int \int \int \int \omega \omega d\omega,\right)\]
где C_1, C_2, C_3, C_4 — отрезки, соединяющие следующие точки плоскости (w), соответственно,

$$
\begin{align*}
&\infty + i\eta(1+c), \quad c_\eta + i\eta(1+c), \\
&c_\eta + i\eta(1+c), \quad -c_\eta + i\eta(1-c), \\
&-c_\eta + i\eta(1-c), \quad -c_\eta - i(2m+1)\pi, \\
&-c_\eta - i(2m+1)\pi, \quad \infty - i(2m+1)\pi,
\end{align*}
$$

и $0 < c \leq \frac{1}{2}$. Полагая в соотношении (17), $s = \frac{1}{2} + it$, и, умножая последнее на $\exp(i\theta(t))$, (ср. [7], стр. 94), то получаем (а ($t = \sqrt{V}$))

$$
Z(t) = e^{it\varphi(t)}(1 + it) = \sum_{n \in \{0\}} \frac{1}{V^n} \cos(\theta - t\ln n) - \frac{1}{2\pi} e^{i\theta + \frac{i\eta}{2}} \Gamma\left(\frac{1}{2} - it\right) W(t),
$$

где

$$
W(t) = \left(\int_{c_1} + \int_{c_2} + \int_{c_3} + \int_{c_4} \right) \psi(t, w)dw = \int_{c_0(t)} \psi(t, w)dw,
$$

и,

$$
\psi(t, w) = \frac{w^{-1/2 + \frac{i\eta}{2}} e^{-\eta w}}{e^\varphi - 1}.
$$

(а) Положим

$$
\varphi(t) = \sum_{n \in \{0\}} \frac{1}{V^n} \cos(\theta - t\ln n).
$$

Приращение этой функции (пусть, например, $\delta > 0$) напишем так

$$
\varphi(t + \delta) - \varphi(t) = \sum_{n \in \{0\}} \frac{1}{V^n} \left(\cos(\theta(t + \delta) - (t + \delta)\ln n) - \cos(\theta(t) - t\ln n) \right) + \sum_{n \in \{0\}} \frac{1}{V^n} \cos(\theta(t + \delta) - (t + \delta)\ln n) = \varphi(t) + \varphi(t)
$$

Так как

$$
a(t + \delta) - a(t) = O(\delta/\sqrt{V}),
$$

то, при надлежащем выборе δ, промежуток $[a(t), a(t + \delta)]$ не содержит целого положительного, и, следовательно,

$$
\Sigma_1 = 0.
$$

(б) Далее, (см. (20)),

$$
W(t + \delta) - W(t) = \int_{c_0(t)} \psi(t + \delta, w)dw - \int_{c_0(t)} \psi(t, w)dw = \int_{c_0(t)} \psi(t + \delta, w)dw - \int_{c_0(t)} \psi(t, w)dw + \int_{c_0(t)} [\psi(t + \delta, w) - \psi(t, w)]dw = \int_{c_0(t)} \psi(t + \delta, w)dw + \int_{c_0(t)} [\psi(t + \delta, w) - \psi(t, w)]dw = \int_{c_0(t)} [\psi(t + \delta, w) - \psi(t, w)]dw,
$$

в силу теоремы Коши, так как функция $\psi(t + \delta, w)$ аналитична в переменной w $(\delta$ — сколь угодно малое) в области ограниченной контурам $C(t + \delta) \cup \{C(t)\}$. Отсюда

$$
W'(t) = \int_{c_0(t)} \frac{\partial \psi(t, w)}{\partial t} dw.
$$

Следовательно, в силу (а), (б) из (19) получаем

$$
Z'(t) = -2 \sum_{n \in \{0\}} \frac{1}{V^n} (\varphi(t - \ln n)) \sin(\theta - t\ln n) + \frac{1}{2\pi} \left(\delta - \frac{\varphi(t - \ln n)}{t} \right) e^{i\theta + \frac{i\eta}{2}} \Gamma\left(\frac{1}{2} - it\right) W(t) - \frac{1}{2\pi} e^{i\theta + \frac{i\eta}{2}} \Gamma\left(\frac{1}{2} - it\right) W'(t) = Z_1(t) + Z_2(t) + Z_3(t).
$$

Так как функция

$$
e^{it\varphi(t)} e^{-it\varphi(t)} \Gamma\left(\frac{1}{2} - it\right) W(t)
$$

применяется анализ вложенный в [7], стр. 85-88, приводящий к оценке $O(t^{-1/2})$, и, в силу [7], стр. 34, 260,

$$
\frac{\varphi''}{\varphi}(t - it) = O(\ln t), \quad \varphi(t) = O(\ln t),
$$

то получаем

$$
Z_1(t) = O(t^{-1/2}\ln t).
$$

4. Так как, в силу (21),

$$
\frac{\partial \psi(t, w)}{\partial t} = it w^{-\frac{1}{2} + \frac{i\eta}{2}} e^{-\eta w},
$$

83
то оценка величины $Z_4(t)$ получается способом [7], стр. 85–88, только в соответствующих местах нужно учесть влияние сомножителя $\ln w$.

4.1. На C_4 ([7], стр. 86), так как

$$w = u + i(2m + 1)\pi, \quad \ln w = \begin{cases} O(\ln u), & u > m, \\ O(\ln t), & u < -c_0, \ m, \end{cases}$$

имеем

$$\int_{C_4} O(\frac{1}{\sqrt{\pi}} e^{-\frac{w^2}{2}}) \frac{e^{-\ln w} \ln w}{1 - c_0} dw = O(e^{d(\ln w)^2}(\ln t)).$$

4.2. На C_4 имеем место $\ln w < A\ln t$, следовательно (ср. [7], стр. 86)

$$\int_{C_5} O(e^{-\ln w}) \ln w = O(e^{-\ln w} \ln t).$$

4.3. На C_1

$$\ln w = \begin{cases} O(\ln t), & 0 < u < \pi\eta, \\ O(\ln u), & u > \pi\eta, \end{cases}$$

и, следовательно (ср. [7], стр. 86),

$$\int_{C_1} O(\Gamma) e^{-(\ln w + A)\ln w} \ln w = O(\Gamma e^{-(\ln w + A)\ln w} \ln w).$$

(37)

$$\int_{C_1} O(\Gamma) e^{-(\ln w + A)\ln w} \ln w = O(\Gamma e^{-(\ln w + A)\ln w}).$$

(напомним, что $\eta = 2\pi\eta$).

4.4. Так как на C_2, $w = i\eta + \lambda e^{i\phi}, |\lambda| < \sqrt{2\pi}\eta$, $\ln w = O(\ln t)$, то оценки соответствующих частей интеграла заменяются следующими (ср. [7], стр. 87, 88)

$$O(\eta^{\gamma} e^{-\frac{\lambda^2}{2\eta}}) \rightarrow O(\eta^{\gamma} e^{-\frac{\lambda^2}{2\eta}} \ln t),$$

$$O(\eta^{\gamma} e^{-\frac{\lambda^2}{\eta}}) \rightarrow O(\eta^{\gamma} e^{-\frac{\lambda^2}{\eta}} \ln t).$$

Следовательно, в силу (28), (33), (34), (36), (37), так как (ср. [7], стр. 88)

$$e^{i\phi + it} \Gamma(t) = O(e^{it}),$$

получаем

$$Z_4(t) = O(t^{-1/4}\ln t).$$

(39)

Наконец, из (28), в силу (30), (39) получается (10), т.е. доказательство формулы 1 завершено.

5. В этой части мы приведем

Доказательство формулы 2 и одно следствие из последней.

Пусть $H \in (0, \sqrt{T}), t \in (T, T + H)$. Тогда

$$a(T + H) - a(T) = O(H\sqrt{T}) = O(T^{1/4}),$$

и, в силу (29),

$$\sum_{n < \sqrt{V}} \frac{1}{n\sqrt{T}} \sin(\vartheta - \ln n) \ln(\vartheta - \ln n) = O(T^{-1/4}\ln T).$$

Следовательно, из (10), в силу (41), получается

$$Z(t) = -2 \sum_{n < \sqrt{V}} \frac{1}{n\sqrt{T}} \sin(\vartheta - \ln n) \ln(\vartheta - \ln n) + O(T^{-1/4}\ln T),$$

где $P_G = a(T) = \sqrt{T}/2\pi$. Далее в силу соотношений ([7], стр. 260)

$$\vartheta(t) = \frac{1}{2} \ln\frac{\vartheta}{2\pi} + \frac{1}{4}, \quad \vartheta'(t) = \frac{1}{2}$$

имеем

$$\vartheta'(t) = \vartheta'(T) + O(H/T) = \ln P_G + O(T^{-1/4}).$$

(44)

Так как

$$\sum_{n < \sqrt{V}} \frac{1}{n\sqrt{T}} = O(T^{-1/4}) = O(T^{-1/4}),$$

то, из (42), в силу (44), (45), получается

$$Z(t) = -2 \sum_{n < \sqrt{V}} \frac{1}{n\sqrt{T}} P_G \sin(\vartheta - \ln n) + O(T^{-1/4}\ln T),$$

т.е. формула 2. Доказательство закончено.

Так как (ср. (12))

$$\sin(\vartheta(t)) = (-1)^{t}, \quad \cos(\vartheta(t)) = 0,$$

то из (40) получаем

$$Z(t) = 2(-1)^{t+1} \sum_{n < \sqrt{V}} \frac{1}{n\sqrt{T}} \ln P_G \cos(\vartheta - \ln n) + O(T^{-1/4})$$

(48)

Наконец, мы заметим, что для расстояния соседних членов последо-
вательности \(I_i \) в случае \(i \in \langle T, T + H \rangle \), имеет место (ср. [8], стр. 102, [4], (42))

\[
I_{i+1} - I_i = \frac{2\pi}{\ln(T/2\pi)} + O\left(\frac{H}{T \ln^3 T}\right) = \frac{\pi}{\ln P_0} + O\left(\frac{T^{-3/4}}{\ln T}\right).
\]

6. В этой части мы приведем доказательство леммы 1. Прежде всего

(a) формула (49) для \(I_{i+1} - I_i \) совпадает (асимптотически) с формулой для \(I_{i+1} - I_i \) (см. [4], (42)),

(b) формула для \(Z(T_i) \) (см. (48)), отличается от формулы для \(Z(T_i) \) (см. [7], стр. 281, \(i \in \langle T, T + H \rangle \))

\[
Z(T_i) = 2(-1)^r \sum_{n < P_0} \frac{1}{\varphi(n)} \cos\left(\frac{\ln n}{\ln P_0}\right) + O(T^{-1/4}),
\]

наличием множителя \((-\ln(P_0/n))\) в каждом члене суммы, и, множителем \(\ln T\) в остаточном члене.

В силу этого мы проходим к следующему заключению. Способ сведения задачи об оценке суммы

\[
\sum_{T < T_i < T_i + H} Z(T_i)
\]

к оценке величины \(W(T, H) \) (см. [4], (59)-(61)) срабатывает и в теперь изучаемом случае, если сделать подстановки: в суммах

\[
\frac{1}{\varphi(n)} = \frac{1}{\ln P_0} \ln \frac{P_0}{n},
\]

в остаточных членах

\[
O(\ldots) \to O(\ldots \ln T).
\]

В силу этого (см. [4], (59)-(61))

\[
\sum_{T < T_i < T_i + H} Z(T_i) = -2W(T, H) + O(\ln^4 T),
\]

где \(n < P_0 \)

\[
W(T, H) = \frac{1}{2} (-1)^{\tau} \sum_{\varphi(n)} \frac{\ln(P_0/n)}{\varphi(n)} \cos \varphi + \frac{1}{2} (-1)^{\tau+1} \sum_{\varphi(n)} \frac{\ln(P_0/n)}{\varphi(n)} \cos(\omega N + \varphi) +
\]

\[
+ \frac{1}{2} (-1)^{\tau} \sum_{\varphi(n)} \frac{\ln(P_0/n)}{\varphi(n)} \sin \varphi + \frac{1}{2} (-1)^{\tau+1} \sum_{\varphi(n)} \frac{\ln(P_0/n)}{\varphi(n)} \sin(\omega N + \varphi) + O(\ln^4 T) =
\]

\[
W_1 + W_2 + W_3 + W_4 + O(\ln^4 T),
\]

и (см. [4], (43), (50))

\[
\left\{ \begin{array}{l}
\kappa = \min \{ i \}
\kappa_{n+H} = \max \{ i \}
\omega = \pi \frac{\ln n}{\ln P_0}
\varphi = \kappa \ln n.
\end{array} \right.
\]

(a) Начнем с оценки для \(W_1 \). Имеет место (ср. [4], (70))

\[
\sum_{1 < n < M \leq P_0} \frac{\cos \varphi}{\varphi(n)} = O(T^d \ln^2 T),
\]

где \(M \) — целое. Однако, последовательность \(\{\ln(P_0/n)\} \) убывает и ограничена значением \(A \ln T \). Следовательно, применяя к сумме \(W_1 \) преобразование Абеля, используя (54), получаем

\[
W_1 = O(T^d \ln^2 T),
\]

и, действуя аналогично,

\[
W_2 = O(T^d \ln^2 T),
\]

(6) Теперь мы обратим внимание на величины \(W_3, W_4 \). Сначала изучим последовательность

\[
\left\{ \frac{\ln(P_0/n) \cdot \tan(\omega / 2)}{n} \right\}
\]

В силу (53)

\[
\tan(\omega / 2) = \tan \left(\frac{\pi}{2} - \frac{\pi}{2} \frac{\ln(P_0/n)}{\ln P_0} \right) = \tan \left(\frac{\pi}{2} \ln\frac{P_0/n}{\ln P_0} \right) = \tan X(n),
\]

и, следовательно,

\[
\frac{\ln(P_0/n) \cdot \tan(\omega / 2)}{n} = \frac{2}{\pi} \ln P_0 \cdot X(n) \tan X(n).
\]

Однако, последовательность

\[
\{X(n) \tan X(n)\}; \quad 0 < X(n) \leq \pi / 2, \quad 1 \leq n < P_0,
\]
возрастает, так как

$$
\frac{d}{dn} X \cot X = \frac{\pi}{2 \text{ln} P_0} \cdot \frac{1 - (\sin 2X/2X)}{\sin^2 X} > 0, \quad n \in (1, P_0),
$$

и ограничена значением 1. Так как аналогично случаю (54) имеет место

$$
\sum_{1 \leq c < H < P_0} \frac{\sin \varphi}{\sqrt{n}} = O(T^4 \text{ln} T),
$$

то, применяя преобразование Абели, получаем

$$
\sum_{n < P_0} X(n) \cot X(n) \cdot \frac{\sin \varphi}{\sqrt{n}} = O(T^4 \text{ln} T),
$$

t.e. (см. (59))

$$
\tilde{W} = O(T^4 \text{ln}^2 T),
$$

и, аналогичным способом,

$$
W = O(T^4 \text{ln}^2 T).
$$

Наконец, из (61), в силу (62), (55), (56), (63), (64) получаем (13).

7. В этой части мы приведем

Доказательство леммы 2. Прежде всего мы напомним ([3], (26)), что

$$
\sum_{T < \ell < H} (-1)^\ell Z(\ell) = \frac{1}{\pi} \text{ln} \frac{T}{2\pi} + \tilde{W}(T, H) + O \left(\frac{H^2}{T^2} \right),
$$

gде

$$
\tilde{W} = 2 \sum_{2 < n < P_0} \frac{1}{\sqrt{n}} \sum_{T < \ell < H} \cos (\ell, \text{ln} n)
$$

и, в силу [8], (51'),

$$
\tilde{W} = O(T^4 \text{ln} T).
$$

Так как (ср. (49) и [5], (23))

$$
\sum_{T < \ell < H} \frac{1}{2\pi} \text{ln} \frac{T}{2\pi} + O(T^{-1/2}) = \frac{1}{\pi} \text{ln} P_0 + O(T^{-1/2}),
$$

to, in силу (48) \(H \leq \sqrt{T} \),

$$
\sum_{T < \ell < H} (-1)^\ell Z'(\ell) =
$$

$$
= -2 \text{ln} P_0 \sum_{\ell < H} \frac{1}{\sqrt{n}} \sum_{T < \ell < H} \frac{\text{ln} (P_0/\sqrt{n})}{\sqrt{n}} \frac{\cos (\ell, \text{ln} n)}{\ell} + \sum_{\ell > H} O(T^{-1/2} \text{ln} T) =
$$

$$
= -2 \text{ln} P_0 \left\{ \frac{1}{\pi} H \text{ln} P_0 + O(T^{-1/2}) \right\} - R(T, H) + O(\text{ln}^2 T).
$$

Так как, конечно, имеет место (ср. (66))

$$
\sum_{T < \ell < H} \frac{1}{\sqrt{n}} \sum_{T < \ell < H} \cos (\ell, \text{ln} n) = O(T^4 \text{ln} T),
$$

tо, применяя к сумме \(R(T, H) \) преобразование Абеля, получаем оценку

$$
R = O(T^4 \text{ln}^2 T).
$$

Следовательно, из (68), в силу (70) получаем (14).

Литература

Поступило 30.1.1979