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COROLLARY 3. For k = Q(§), { a primitive I-th voot of 1, the order of
x 4 divides A, for x such that x(J) = —L or y = z,. :

We would like to point out that Theorem 4 has been proved indepen-
dently by R. Gillard [B].

Addedinproof: J..F. Jaulent has recently obtained results similar to some
of those in this article.

— Théorie &' Twasewa dog tours mélabeliennes, Séminaire de théorie des Nombres
de Bordeanux, exposde No. 21 {1680 —81).
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On the rationality of periods of primitive forms
. by
Kazuoyuxkt HATaDA {Tokyo)

Tntroduetion. In this paper, we give a new proof of the algebraic
property of the periods of primitive forms F of Neben type. We also study
p-adic Focke series attached to the F, which take algebraic values.

Let I be o finite index subgroup of 8L(2, Z), w+2 = 2 be a rational
integer, 8,,,(I") be the space of ecusp forms of weight w +2 with respect
to I, g, be the representation GL(2,R)—» GL(w+1, R) given by

a b
of(c 3}
= H{ez+ )", (ox-+d)* " (az+b), (ee+d)"*(az+D)%, ..., (az +b)*)dz

(de, = (de, ede, z*de, ..., #°d2): the C¥™' valued differential form on

the upper half plane H), g,lr be the restriction of g, to I, Ind g,lr
I'$ B2, Z)

be the induced representation of o,lr, P ba the seb congisting of all the
parabolic élements in SL(2, Z) and Hban(I', oylr, B) (resp. Hp(SL(2, ),

Ind g,lr, B) be the parabolic cohomology group with the coefficients
I{8L@.7) S
in a commutative ring B. Nowlet j, (Hpnr(eulrs 2)) (vesp.ja(HE(Ind g, 0, Z)))

denote the image of the whole domain: Tmage (f,) (resp. Image ( 4,)) under
the cancmical hemomorphism

Jat H}’nP(Pa Oplry &) “"H}’r\l"(r’ 0wl ry R)
(resp. jut HB(SL(2, 2), Ind gulr, Z) > Hp(SL(2, 2), Ind ol R)))
o I} ELEED It SL{2, 5
which is induced by the natural inclusion Z=+R. In §2, we prove:
TemorEy 0.1(Y). (For details, see Theorems 2.2-2.4 in §2.) Let 8h
be the map of Shapiro:

Hi(SL(2,2), Ind gulr Z) » HYT, eulrs 2).
IteLE,2

1) This theorem has some spplications to cengruence properties of eigenvalues
of Hecks operators. (Cf. K. Hatada: On the divisibility by 2 of the eigenvalues of Heoke
operators, Proc. Japan Acad. 534, (1877), pp. 37-40, and K. Hatada: Congruences
of the eigenvalues of Hecke operators, Froc. Japan Acad. 534, {1977), pp. 125-128.
Also of. K. Hatada: Higenvalues of Heoke aperators on 3L (2, Z), to appear in Math.
Ann.) L . :
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There extsts o canonioal Z-Tinear map shpZ Qid:
g1 (H;?(Ind Qulr Z)) — s (HJIDnP(le.Z": Z})

induced by the map sh. This mop shpZ @id is o surjective isomorphism.
We use this theorem for the proof of cur main results.
For a positive integer N, let I'y\(N) (resp. I',(N)) be the Iecke’s
congruence subgroup of SL(2,Z) defined by:

ab 1 r . a—1 =d-1 =¢ =0 (mod N)
(0 d)EIl(N) (resp- LolH)) w{(resp- 0 = 0 (mod ).

Every element f of S,HZ(I W) has a Fowrier expansion f(z) - S} U, g"
el
(g = exp(2n)V —12)) with complex numbers u,. We denote by @, the field
generated over the rational number field @ by all the coefficients 4, .
a b

For every g = (c d) eSL{2, Z), set tgt = (»-«z _“2) and

Flowo[81(2) = F(az-+b) f(oz -+ @) (oz + &)™,
Let

Fiz) = Yo (@ =1, ¢ =exp(2n/ —12))
Bk
be a primitive form in Sra (D) (in the sense of Atfkin-Lehner [1],
Li [11], Miyake [18] and others). It is well knowin that for every auto-

morphism o of the complex number field €, we can define a primitive
form F%(z) in 8, (I (X)) by ' '

lf""(z) - 2“: T
nesl

In §3, we prove the fellowing main vesulbs.
THEOREM 0.2. Let T be a primitive form in 8., (I (N)).
(i) There.ewist complen constants of and of depending on the I'" such

that
i1 o T fos .
()" ( [ Tl @] (0) ' (=14 [ ﬁ‘f’lw,,_z[tgt](z)z’dz)eg)}
. L0 } _ 0

for all 1e Z with 0<1<w and all g ¢ SL(2, 2).
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(ii) For every automorphism o of the C, we can choose the above oF
ag follows. o . ‘

(2} ¢ =03 if olg, = o'lg, (0 ond o g Aub(C)).
(b) (65) = iy for all o e Aut(C) where J denotes the complex conju-
gation. ' o '

i00 : B i : :
(©) ({657 (] Pluys (8110 £ (1Y [ Flogs [tgt](=)#de])"
. o0 . 100 o
= (e} (of Fype fgl(2)dde -k ( "'1_)”1! Folypaltat) (z)zldz)
for all g & 8L(2,Z) and all 162 with 0<I<w.. o _

This Theorem. 0.2 iy equivalent to the Theorem 1 (i), (i) and (iii}
in Shimura [24]: We shall give a new proof of Theorem 0.2 along. the
older lines of Shimura [21] and Manin [15] uging the ERichler—Shimura
isomorphism and Theorem 0.1..In §4 we investigate p-adic measures
associated with primitive forms, whieh take algebraic values, nsing the
following funetions #§F(w) (v e QU{icc} and leZ with 0 <T<< w):

foo iea
P (w) = (c'f)"l(f Pla+a)dde = (—1)* | F(z—w)z‘dz).
0 . 0

For details see Theovems 4.3 and 4.4 in §4. These are generalizations
of the original constructions of p-adic measures in Manin [15], [16] for
I' = SL(2, Z) cage and Mazur-Swinnerton-Dyer [17] for weight 2 case.
" Roughly speaking our method of the proof of Theorem 0.2 (i) (for
g = 1) is as follows. First we construct a surjective isomorphism @ from
Sy (T4(2)) to Hp(SL(2, Z), Ind guirs R) by some integral of cusp
forms (Lemma 2.1). Let 8B (1()) be the subspace of 8ys (To (W)
consisting of those forms whose Fourier cocfficients at » = ioo are all
resl numbers and <UF, UF, ..., U (resp. (U7, U7, ..., Ud) be a
Z-busis of 82, (V) &~ (j, (Hp(Ind gylrs Z))} (resp.V 185+ (L)
NG (j, (Hp(Ind gy, Z))). Using the fact that Hpnr(l's eulr; Z) is stable
under a1l the Hecke operators on I', Theorem 0.1 and “Multiplicity one
theorem”, we show that there exists a complex number ¢ {resp. o7)
and a vector (ay, @z, - -y o) (T68D. {B1y fs; -+ -5 Ba)) with all the coefficients
in the @ such that

(021) F =of (o,UF +a U5+ .. YUY . _
‘ . (vesp. F = oy (B UL +F U5 + -0 HPlZD-
Then we analyse the action of Hecke operators Ty, 4(p) on & certain. co-
eycle € Zp (SL(2, Z), Ind gulr, R), expressed as seme integral of F(#)
from ioco to o(ioo} (¢ eSL(2, Z)), whose cohomology class is equal to
the @& (F), by changing the variable of the integral. In this way we deduce,
from (0.2.1), Theorem 0.2 (i) using the fact that there exists a prime p

with a, % 1+p*"* and p =1 (mod N).:. = . L DU
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The origin of Theorem 0.2 seemns due to Shimura [21] where the
case of the diseriminant function A(e) of weight 12 for I' = 8L(2, Z)
wag computed. Manin [15] obtained the theorem for any eigenform of
any weight in case of I' == 8L(2,Z) using the continued fractions of
rational numbers. Damerell [3] investigated the values of L fumctions
of imaginary quadratic fields by a different idea. Birch, Manin, Mazur
and Swinnerton-Dyer ([18], [14], [17]) investigated periods of primitive
forms of weight 2 on I',(X) in relation to “Modular S8ymbols” and “Weil
Parameotrization”. Recently Shimura, using totally ifferent methods
{(not using the Eichler—Shimura isomorphism), obtained almost all the
results on the rationality in (23], [24]. (Our point in this paper ig to do
things along the older lines of Manin [157 and Shimura [21].) Razar investi-
gates also the above Theorem 0.2 and obtainy partial results in [19] and
Theorem 4 [20]. Roughly speaking the distinetions between Razar's
and ours are the following.

(i) Razar uses the Bichler—Shimura isomorphism ¢ itself instead
of the @.

Let I be T4(N) (or I{N).

(i) He proves that a certain Q-subspace Z of the parabolic cocyecles
Zparlly 04lr, @) into whose complexxflca.mon the space 8, (") is mapped,
is stable under all the Hecké 0perat01s on I'. And ho applies “Multiplicity

one theorem? to the space 2 Z RgR. On the other hand we utilize the result
that the space

Ind oylr Z))
I 852, Z)

_71(HP (BL(2 ,Z),
is stable under all the Hecke opelators on I’ through the isomorphism @
and apply “Multiplicity one. theorem” to its complexification.

(iii} He expresses the coefficients of the Bichler cocycle (& Zhp(T,
gwlr; R)) corregponding to a primitive form F as a pole of some multiple
differential. This relates to the theory d(weloped in. Weil {26]. We make
no use of this technique.(iii) in this paper. N

(iv) Our technique in deducing Theorem 0.2 (i) (¢) from (0.2.1) is
our own.

The author would like to express his gratitudo to the referoes for
their valuable advices on the improvements of this papor and especially
for their pointing out the msuiftmlency of the proof, of Theorem 0.1,
given in the earlier version.

' The main results of this paper were aunouncecl m a. Proceedings
of Ja,pa.n Academy Note [8]. "

.l. Notations and prelm:u_naxy results
%* a Dirichlet character (Z/N2Z)* - C*.
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Sy N, 1) : the subspace of 8,.,(I1(¥)) consisting of all the cusp
forms f with f((az-+b){(ce+d))(ez+d)™"* = x(d)f(z) for every (a g)

& Iy(N). It is well known that 8, (I\(N)} =
rung over all the Dirichlet characters (mod ¥).
I'(N): the principal congruence subgroup of level N,
I': a finite index subgroup of SL(2, Z).
1.: the r xr idlentity matrix (r: a positive integer).
mooo. .
SL (2 Z) = I'(1) = | I'g;: the left coset decomposition with g, = 1,
Fe=l
and m = the cardinality of (I\T'(1)).
R™+Y™; the real vector space consisting of the (w+1)m d1mens1ona1
real column vectors with basis indexed by the pairs {{I'g;, u)} which are

the elements of the product set (IN\I'(1)) x ([0, w]1NZ).
Zw+hm. the lattice of the R®*)™ with respect to the standard basis.

~1 0 11 0 —1 -1
I E A R i AR

dz,: the Ol valued differential form Y(dz, 2de, 2%de, ..., 2°dz) on
the upper half plane H.
For each cusp form f eSwH(I‘), put

}f (2)dz,)og : ew(B(F(2) dey)o (tg:t)

@x"s‘u!‘f-E(-N"x), where ¥

! (z)dzw g3 ' " [ eo(Bf(2) dey)o(tgst)
D(f)(z) = | (fle)dou)ogs and  D(f)¥(2) = { ewlt) (f(z ) de)o(tgst)

(£(2) Bg)om eu(BF(2)deJotznt)

which are C™ V™ valued ditferential forms on the H. Here (f(z)dz,)og
denotes the pull back of (f( )dz,,,) by g eB8L(2, Z). _
fw: the representation SL(2,Z) - GL((w+1)m, Z} given by

T(@D(f) =D(flog (e Suw(l), geSL(E, Z),
which is isomorphic to Ind (ouip)-
rteLE,%)

RB: » eommutative ring with a unit element 1.

Now we give the definitions of the Richler eohomology group
HL (T, oulry B) and the parabolic cohomology group Hp(I'(1), 7., B)
(ef. Bichler [6], Shimura [21], [22]). By an R-valued parabolic cocycle
of 7, (resp. g4ir) We mean 2 Imap

£: I(1) - BwHim  (regp, 31 I' = ¥
patisfying the two conchtxons‘

#(gg) = 2(8) + 7. (8)x(g)  (vesp. x(hh') = g(h)- ¢, (h)x(h’))
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(g and g’ eI'(1), k and b’ eTI') and

£(3) € Mgy — (7)) BETH™  for every y e P
(vesp. x(y) € (Lpp—0u()}BYT  for every y e PnlI).
A coboundary is a coeycle x of the form
(g & I'(1))

(hel))

ig) = (1(w+1)m ““ﬂw(g))xo
= (Lypg1— Qw(h))xo

where %, i3 an arbitrarily fixed element of B®™+™ (resp. R¥+Y). The para-
bolic echomology growp Hp(I'(1), my, B) (resp. Hpnr(I') gylry B)) is the
guotient of the group Zp(I'(1), Ny, R) (vesp. Z3.r(T, oulr, B)) of all the
R-valned parabolic cocycles modulo the subgroup B(I'(1), ,,, B} (resp.
BYT, o,y R)) of coboundaries. The natural injection Z -+ R induces
s canonical homomorphism ‘

VK 1'{11,(1’(1), Tho s Z) _}H}'(F(l)r News R)
{resp. ja: H;nr'(ra‘@wlm z) ‘*H}nﬂ(ra Qwlry B)).

(vesp. x(h)

@t Syia(l) = Hpar{T) 0ylr, R): the Bichler-Shimura isomorphism
for 8,,,(I) (cf. Bichler 6] and Shirours [21], [22]).

HN, 2) =9 [ B o (TN, eulney ZI)) 854l 1L ().
HE, 2" = ¢~ (fa{Hbarn (14 () gulrys Z)) AV ARE L (1),
8 Supe (L)) = 8y (14(N),  f (&) =F(—7).

Aut(Cy: the group of the antomorphisms of the complex number
field. : o -

For every (g’ Z)EGL(Q,R) and every fe S, (I (N)), put

b )
Flute [(a ﬂ)] = (ad —bo) 0 ((an - ) [(oz -1- d)) (o 1 )7
For every g e Z Wjﬂ"l‘ (g, N) =1, we choose an clement ¢, € 3L(2, Z)

. -1 . I :
guch that arqw(g g) (mod X). We recall the actions of the Ilecke

operators Ty, (n) with (0, N) = 1 on 8, 4(I(¥) (ct. Hecke [91):

T ()2 ~w”’f’~'2mm[ ( )](z) (F & Baa P,

sl
ad=n
bsthd .
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In particular o
AT uatne = 3 gl (2 )] @ (Feunat, -

©oal
ad=mn
Izh<d

For the proofs of our theorams, we need the following lemmas.
Lmvma 1.1 (¢f. Theorem 3.52 in Shimura [22]).
) If w+2= 2, Sw+2(1‘1(1\7' )) has a basis consisting of eusp forms of
which the Fourigr coefﬁcimts af # = joco are ralionel integers.
(i1) Let f(z) 2 n,q" {§ = exp(Bn¥ —12)) be a cusp form in
Tl
8., H{F )} with alt wu, € Q. Then for each positive n & Z with (n, N) =1,
FTyea(n) has also zts Fourier coefficients at 2 =ioo all in Q. Hence

BT e (1) = (MTyppe () for all b & Spys(I1(T))
and

w-|-"('”')(Sw-{-z( I(N))) < w+2(F1(N)) ‘

TeEOREM 1.2 (Wichler [6] and Shimura [21], [22]). Let  be o cusp
Jorm in 8. (") and 2, be a point in the wpper half plane H. Then the map
given by

L]

f,zo) PngRef f(z)dz e RV

&g

is @ cocycle i Zpar(L, 04\ r, R). The cohomology class ¢(f) of the e(f, #)
in Honr() 0plr, R) is uniquely determined by f (and independent of the
choice of #y). The map [+ @(f) is the Bichler—Shimura isomorphism which
s an R-linear surjective isomorphism.

LEmwma 1.3 ((8.3.1) and Proposition 8.5 in Shimura [22]). Let ¢
be the isomorphism given in Lemma 1.2 for I’ = I\(N). Then the group

o™ (b ryon (T (XY, €l ryys )

i8 stable under all the Hecke operators T, ,(n) (with (n, N) = 1) acting on
Sw+2(1—'1 (—N)) ’

Levma 1.4, The cohomology group H(N, Z)" (resp. H(N,Z)") s
stable wnder oll the Hecke operators T, (n) (with (n, N) = 1) on Sy, (T (V)

Proof. This iz 2 consequence of Lemmas 1.1 and 1.3. w '

Lumyma 1.5 (Proposition 8.6 in Shimura [22]). Regard Ha ({1}, 4y, B)
(resp. Hpnr(I'y 0ulr, B)) as o vecior space over R. Then we have: The group
31(H1 (L), %y Z)) (resp. gz(HPnI(I’, ewlry &) 45 a lattice (i.e. a disorete
subgroup of mawimal rank) of the Hp{T'(1), 0y, B) (re3p. Hpnr(T's gulr, R))
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and Ker(j,) (resp. Ker(f,)) i finite. Hence the map j, (resp. j,) induces
the following R-lnear isomorphism: '
J1®id.: Bp(I(1), 9y, Z) @y R =~ HE(I(1), 9, B)
(IGSP- j.e@id': Hi’nl”(rs @w]I‘! Z) ®ZR ﬁﬂ}’nf’(ri @w'l") R))
Lumma 1.6. Let I be the group I'\(N) and ¢ be the isomorphism for
Suis (I} given in Theorem 1.2. Then the group

‘P_l(jﬂ(Hll’nI'(r: Qulry Z)))
is stable under the map s :

Proot. Let f be a cusp form in rp“l(j2 (Hpar(L; guiry Z))). Then there
exigts a real column, vector 9 in. R¥™! guch that
g{foc) :

Re [ f(2)dey+ (Lot —0u(®)% & Z°  for all g in I'y(N).
foo

By changing the variable of the integration,

(o0}

[ flw(—wrai—ay .

U={o0

glico)

Re [ f'(s)2*dz = Re

igt(ieo) tgtiizc) -
=Re [ (—1*f(wwdu =Re [ (—1Ff(e)e*de (gel).

U=joa {0

Wamely we have:

glioo) igt{feo)
Re [ f(9)ds, = au(hRe [ fle)de, (gel).
doa 1c0
Note that g,(t)* = g,(t) =Xy, and tgte I(¥) for all geI}(N).
We obtain: . ‘
#lico)

Be [ f(2) 0+ Rt — 0u(®) eu(t)U

i tgt{ioo .
= 0wl [ 610t Ly~ o tg) ) € 2 for all g & Iy().

Namely we bave f* € g7 (§y (Hpnr(T; oulrs £))). w

Lmyma 1.7, The cohomology group H(N,Z)* (resp. H(N,Z)") iz o
lattice in S0y, (T (V) (resp. V —18%, (1, ().

Proof. By Lemma 1.5, it is sufficient to show that H (¥, Z)* (resp.
H(N,Z)") spans S5, (T1(N) (resp. V —18%,(I}(¥)) over R. Let I'
be I'(N) and {a,, #q, a4, ..., 4y be 2 Z-basis of whlijz(H}”nI’(Ts wlry Z)))
From Lemmsa 1.6, we have: : y . _ _
(L.7.0)* o+aje H(N,Z)Y . and o—of e H(N,Z) _
for all j e Z with 1 < j<2d. Let f be a cusp form in 8,,,(I"). Then f is

icm
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2d
written as f = 3} o0, with some (e, 0y, gg, ..., o) € R, We have
i=1 : .

2d
(L72 HIH) =F = DY dola+a) it FeSE, ),
i=1

ad
(L7297 J(f =) =f= Y iy(m—a) # feV 18%,(I).
Fe=1

(1.7.1)* and (1.7.2)* prove Lemma 1.7. m

Lemma 1.8 (Proposition 3.58 in Shimura [22]). Let J be an dement
of Spis (T2 () which is a common eigenfunction of all the T, ,(n) with
{(n, N} = 1. Then the form f belongs t0 8,4, (N, ) with a unique character L
of (Z|NZ).

TEROREM 1.9 (Multiplicity one theorem. Atkin-Lichner [1], Cassel-
man [2], Deligne [4], Li [11] and Miyake [18]). Lef

P(e) = N aexp(2nV/ —Ine) (@ =1)
’ P}
be a primitive form in 8y, (I1(N)) and k(z) be an dement of 8., (I} ()
satisfying b|Ty,q(n) = a,h for all the positive imtegers n with (n, N) == 1.
Then there exists & complew number ¢ such that h = k.

Proot. By the proof of Proposition 3.53 (namely the above Lemma 1.8)
in Shimura [22], F and & are contained in the same 8,,,,(, ) with some
Dirichlet character y mod N. Then this lemma is a direct consequence
of Theorem & in Ti [11]. m

Now let B be a commutative ring and Vy, be the R-module congisting
of adl the B**! (the space of column veotors) valued functions f on SL(2, Z)
such that f(xy) = @,(x)f(y) for all xe I’ and y eSL(2, Z). (Of course
we set (f)(y) = r(f(y)) for # e R 2nd y e 8L (2, Z).) From the definition
of 7, we obtain easily :

/F(g.¥) Flga)
Flg2¥) Jlgs)

(1.10.0) f(gfz}') == yp{¥) f(.?a) for all fe Vg, and y eSL(2, Z).
F(gmy) 7gm)

Hence there exists a surjective R[I'(1)] isomorphism between the
BIT(1)] modules: ¥y and the B-module R**D™ with the action of (1)
to the left through the #, (=~ Ind (p,l)). Namely

Ty ray

Fg)
VR __)_R(w}-l)m, f s f(.?z)

()

(1.10.1)

2 — Acta Arithmetica 3.l
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LEmva 1.10 (Shapiro’s lemina, see e.g. Lang [10]). Let R be a com-
mutative ring. Then the map

sh”R: H”‘(T(l), /) R) +Hn(1—" QWIP’ 'R)

snduced by the compatible maps I'=~S8L(2, Z) and Vg3 f — f(g,) e B
(g1 = 1), 45 @ surjective isomorplism.

We need only the case of » = 1 and set sh = sh'Z.

Lievwa 111 Tet p be a vational prime with p =1 (mod N). Se

T(p) ={ = (g Z) |g is an integral malriz. ad—be = p.

b=mo=ag—~1 =0 (mo(iN)}.

Then we have:
GT(p)G™* = {GyQ™ | ge T(p)} = T(p) for every & eSL(2, Z).

Proof. Tt is easy to see that GgG~! is an integral raatrix with the
determinant p. Note that g = l,(mod &) and that I'(¥) is » normal
subgrowp of I'(1). Hence GgG" = GG =1, (mod N). m

LmvmA 1.12 (Deligne [5]). Let i, be an eigenvalue of T,.,(p) acling
0t By (3 (V). Then we have:

1) < 2p%tDR  for every Archimedean absolute wvalue |-|.
For our purpose, it is sufficient to know only
|4, —1—p¥*Z 0 for every sufficiently large prime p.

2. Eichler-Shimura isomorphism and Shapire’s lemma. We study
Theorem 0.1 in this section. Our main regults are Theorems 2.2 —2.4

m
below. Let I be o finite index subgroup of I'(1) and I'(1) = U Ig; with

g1 = 1 be the left coset decomposition. Let D(f) (fe Su,,f.n(l‘)) 7, and
2, be sueh ag defined in §1 for the I.

Firat we prove:

Levma 2.1, Let W be a (w--1)m dimensional Mml columan weetor. Lor
each cusp form f im 8,.5(I"), the map

L]

r(1)sg - T(g) =(Re f D (1)) (L sy~ (8] 2] € BT

i a parabolic cocycle in Zp(l"(l),nw, ) Its cohomology class P(f) in
Hp(I'(1), n,, R) is determined by f and. independent of z, and .
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Proof. The proof goes in a similar way to that of Theorem 8.4 in
Shimura [22]. For every z e H, put

(21.1) () =(Re sz(f)(u)) +9.

Since the differential form D(f)(«) is holomorphic on the H, @(z) is inde-
pendent of the ehoice of the path of the integral. For every elements g
and g' of I'(1), we have:

(2.1.2) P(gs) = Re [ D(f)(w)+%

53 L]
=Re [ D(f)i(w)+Re [ D{H{w)+U

U=z L-50)
=TRe [ D(flog(u)+Re [ D(f)()+¥
u=zo 2
= 'rl'w(g) !P'(z) +T(g)1
and

P(g'ge) = n,(g'g) F(2)+1(g'g)
= (&) P (g2) + T(g") = n,(8") (10(8) ¥(z) +T(g)+T(g"

Hence T{g's) =T(g')+n,(g"1T(g) for every g and g’ in I'(1). Namely
T iy a cocycle in Z*(I'(1), n,, R). From (2.1.1) and (2.1.2), we observe
that the change of W (and hence the change of z,) affects T only by an
addition of an elemnent of the coboundaries B'{I'(1), 5, R). Let s be &
cusp of I' (viz. s e QU{iec}). It is well known that for each g e ST.(2, 2),
gls) iz alse a cusp of I Hence ¥(s) = lim ¥ () exists when the limit is

g

taken along a geodesic line (¢f. p. 233 in Shimura [221). Let w e I'(1) be a
gtabilizer of s. Then
Y’(s).= V(m(s)) = Hm¥(n(2)) = ny(m) ¥(s) + T(xm).

fos
Hence T becomes a parabolic cocyele in Z3 (I'(1), 7,, R). m
Hence ¢ defines an R-linear map: 8,,,(I") — Hp{I'(1), n,, R).
We nse the following three theorems for the proof of Theorem 0.2.
THEOREM 2.2. Let R be the field R of the real numbers or the ring Z
of the rational imtegers.

(1) The image, under the map sWiR given in Lemma 1.10, of the co-
homology group Hp(I'(1), n,, R) 4s contained in the cohomology group
H%’nF(Py lem R)

Let shpR be the rvestriction of the map shiR given in Lemma 1,10 to
the Hp(I'(1), 1y, B)-
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(ii) The composite map shpRo @:
Sw+2{F) — H}’(P(l): Heas R) ﬁE.%’nJ‘(I’! Culrs R)

18 the Hichler—-Shimura isomorphism ¢ for 8,,.. (1) (given in Theorem 1.2).

(iil) The map shpR: H(I'(1), 1y, B) = Hprp{I) oylp, B) s a sur-
jective R-linear isomorphism.

TmaorEM 2.3. The map P given in Lemma 2.1 is an R-lincar iso-
morphism. from 8,.,(I) onto the Hy(I'(1), n,, R).

TEEOREM 2.4 (Theorem 0.1 in the Introduction), The dimage wnder
the map shpR of the Jl(HP(F( Y% Z)) coincides with the ,(Hh () gulp, 2))-

Firgt we prove Theorem 2.2.

Proof of Theorem 2.2 (i). It is easy to gee that

L1}, y, B)) « H\(T, ylry B)

by Lemma 1.10. Let & be an clement of Pnl™ and r: I'{1)s g > r(g)
& B¥F™ be a parabolic cocyele in Zp{I(1), 5, B). We may assume that
for cach g e I'(1), #(g) is an clement of ¥ by (1.10.1). Since the cocycle ¢
is parabolic, there exists an elemont b, in Vy such that r{m) = (g,(=} -
—-1(w+1)m)h,,. Then we have:
(SR () (7) = {r(#))(g2) = (r{m))(La)
= ((Ww(ﬂ;) '—l(w-l-‘i)m) h:r:)(]-i’.) = (%(ﬂ) hn "'hn) (12) == hﬂ(:’t) ”kn(ln)
== (Qw(“) _lw-i-l){h’u(lﬂ)) = (Qw(n) —lwu-i-l)Rw+1 . o

Proof of Theorem 2.2 (ii). Let f be an element of 8., (). By the
definition of @, B(f) is the cohomology clags of the cocyele {I'(1)

- Re f D ()} By (1.10.1), Re f D(f) corresponds to the fanction b, & sz
guch Lhdm

sh'R(H}

ungzg .
fg(gy) == Ro _] Fluw)duylog, for every jeZ with 1<ji<m.

=20

Then by Lemma 1 10 shpR(B(f)} is the cohomology clagg (== X;) of the
cocyele {I's g v hy(g,)}. Sinee frg(g1) = Re f f (#)dz,, the cohowology

clags X, ig equ.a.l to @(f) by Theorem 1.2. Hence g = (BhpR)od. m
Proof of Theorem 2.2 (iii). The map ¢ = (§hpR)oP is surjective
by Theorem 1.2. Hence the map sheR is algo surjective. Op the other
hand, the map shpR is injective by Lemma 1.10. m
Proof of Theorem 2.3. By Lemma 1.2 and Theorem 2.2 (iii),
the map @ = (shpR) " 0¢ becomes an R-linear surjective isomorphism. m
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For the proof of Theoram 2.4, we need the following three lernmag.

LeMMaA 2.5, Let I'(1) U I'g; be the left coset decomposition and
for each § € Z with L < § < m, K be the (w+L1ym X (w—+1)m integral matrizn:

elgi'g) 0 0 0
0 oulgi'gs) 0 0
0 0 . 0
0 b 0 097

Bet my(g) = K 0, (8) K, for all g e I'(1).

(1) For each geI'(1), the following two representalions from I'(1)
to GL{(w--1)m, Z) are isomorphic to each other.

Ind (Qwia—ll“y) E"?::a'
1 t 1o

(il) For eachj e Z with 1 < j < m, let sh be the isomorphism of Shapiro

(¢f. Lemma 1.10):
BIQ), Tod eyl i), 2} = HNG T30 ol oy s B)-
oy Topirwy
Let v be the canonical isomorphism induced by the above map in (i):
e " (P(l)ﬂ 77:;5 Z) _"HI(F(l)a Ind (Qw‘g._ll"g-)’ Z)
wtrgptrw 7 Y

Then the composite map sh""oz- 18 given by:

The cohomology dlass of a coeyele {I'(1}3 g > T*(g) e 2™}

oy
il Ny cohomology class of the cocycle [g7'Tg;> g > the (w+1)
components of the T (g) from the ((w -+1)(j —1) +1)-st one to the ((w -I—l}) j)-th
one
Proof of Lemma 2.5 (i). We may assume ¢ = g; for some jeZ
with 1 < j < m. Normalize the representation

. def.
77&';) = Ind (Qwi -1 )

- oy T,
oy lf’ﬂj)Tf(l) (i

as follows:

(£l [9;1(2) d2o)0 (07 '01)
{f|w+2[gj}(z)dﬁw) (Q‘j 0,)

(.ﬂw+2 [gj](z)dzw) (g7 ‘78)
(f|w+2 [9;1(»)d=,, ) (9'_-; 17:8)

73 (&) | {F - u[gjl(z)dzw)o 7gs) | = | (Flwselgs] (z)dzw)o( 9:8)
(fiw-[—z[gj}("‘) dz ) gj gm.) (flw—}-z [gg‘](z)dzw)o (gj gmg)
{g e I'(1) and fe8,..(I). Then we obtain:
(g = K@K, (gel(1). m
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Proof of Lemma 2.5 (ii). By the definitions of 5, ny and sh®,
(ii) follows directly {cf. the map (1.10.1)). =
m

LeEvMA 2.6, Let I'(1) = | I'g, and j be an infeger with 1< j<m,
: =1

Let 6; be the isomorphism

HUT, gylr, Z) — H' (g Iy, ewlgju Z)

1 P”j H
which 48 induced by the compatible maps,
07 g = I's p - gy
and
ZM-H - Z'UJ-I-I: ¥ - Qw(gj)—lx'
Then we have the following commutative diagram:

sl . ”
EI(F(l)r 77:;5 Z) R Hl(] ’ 9w|.£'r -‘6)

N
Lr a1y
o5 Tags ol g, o Z)

Remark (2.6)'. It is easy to see that the map 6; induces the (surjec-
tive) isomorphism

6;: Hpnr(T, ulry Z) “*H;ng;ml
since “an element y of I' iz parabolic” < |Tr(y) = 2] <= |Tr (g vy,
=2 « “grlvg, I8 parabolic”.

Proof of Lemma 2.6. Let Z®*+™ he the latfice of the R+
with respeet to the standard basis, O: I'(1) — Z¥*¥™ be a cocyele in
ZI(1), %y, Z) and p; denote an element of g7 'Jg;. We compute:

8;08h Mo ¢, (0)

= the cohomology class of the cocycle {g;'T'g;2 v, > g,(g) " x (the
firss (w--1) components of the ¢ (gjngr;‘l))}.

—1
l"{/j(gj gy, ewlﬁflfﬂj’ Z)

Note that

G(Qj?jgj_l) = (l(w-l-l)m ‘“W:;(Q;Vfg’fl))a(gj)“1“"712(9;)0(7’5)
gince € is a cocyele. Now let ¢, (g,) be the first (w-+1) components of the
O(gy) and ¢(y;) be the (w-+1) coraponents of the ¢'(y,) from the ((w--1) X
%(§—1)-+1)-st one to the ((w-+1)j)-th one. Then wo have:
8,05hMo 1, (Q) ' ‘
= the cohomology clags of the eocycle {g;"ll‘gj CRIRES
oulo) " ((1u:~t~1 — 0y (857497 N e (g)) - 0w(gy)ey (?’j))}
= the . cohomology class of the coeycle {g}‘ Tgs 9y 1+

((Liors — 2w ()} 2l e () -+ 5 ()}
= the cohomology class of the cocyele {g;'Iy,; 2 v = ¢;(y)}
= shie 4 (0). m '
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Lrama 2.7, Notations being as in Lemmas 2.5 and 2.6, the imags
under the map sh® of she Hp (I'(1), ny, Z) coinoides with the Hp, (I, oyirs Z).
Namely

$heZ (Hp (T(1), %, Z)) = Hpar(Ts tulrs 2)-
Proof. Let v be a cohomology class in Hp~p{I' eulr, Z). Set
% = (sh®)" (v) € H'(I(1), Ny Z)-
By Theorem 2.2 (i), it is sufficient to show ueHu{I'(1), ny, Z}.
By Theorem 2.2 (iii), there exists a cocyele ¢ in the Z*(I'(1), #,,, Z) whose
cohomology class is equal to the class » snch that C(v) = (Lggraym —7e{T))E
with some {w--1)m dimensional real column vector
X =P, 2], ol 6@ e, B, L ey,
We shall show that there exists a (w-+1)m dimensional colmmn vector
D =y, P,y v, o B "'J_ygm)l cees Y5
with the coefficients in Z such that
(2.7.1) B orrym — (DD = Lpsiym —70(0) ¥ = C(7).
Put ¢*{g) = K7'Clg) (ge I'(1), 3 = E;'¥ and
F=Ye Al D A, o 2
where K, & GL((w+1)m, Z) is the matrix defined in Lemma 2.5. Now we
fix an arbitrary j e Z with 1 < §< m. For simplicity, set
=g, =gz, -, ¢7=g"
where Iy, = Igp" and I'g® # Iy if &  j. Then we have ¢" eg; Iy
and 7" (¢ Iy, Let b be the integer with 1<b < m such that
Iy™ = I'y, and «* be the cohomology class of the cocyele 0% in the
HYI'(1), 5y, Z). From Lemma 2.6, we obtain that the cohomology class
§h®op, (4*) = 8,08hP0 i (u*) = Bosh @ (u) = 6;(2)
is a parabolic cohomology elass with Z-coefficients. Hence the (w--1)
components of the vector O*(¢") from the ((w+1)(b —1)-+1)-st one to the
{(w-+1)b)-th one arve equal to '
(2.7.2) (Lpps — 0 (&) (6, &5 ooy ED)
for some (w-+1) dimensional vector Z® =&, £, ..., S_ﬁ?) vith Z
coefficients. For each integer ¢ with 1 <s< 1, let j () be the integer with
L <j(8) < m such that Igy, = Iy, and set
G OO P CR
Note that j{») = b. Since
O*(r) = K'0(r) = 1{1_1 (1(w+1)m “ﬁw(r))x = (l(w-l‘l)m —’?:(T))?) € Z(w+l)m,
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icm

we obbain:

(2.1.3) 39 —0y(1)39 =B;, 3P —0,(1)3V=1,, ...
ey B = g (0137 = By, 37—, (0B - B,
for some vectors By, By, ..., B, in Z¥". Replacing the cocycle
{Fysg 0" (gl by {FM)2 g 0@+ (Lpyaym—nelg)) L) for some
vector I e Z¥+Um (namely replacing 3@ by 3% — %, for each @ = £ with
lg e r—1), we may agsnme that By = Bye= ... o= B, - 0. Then we
obtain from (2.7.3) that 3 —p,(z)'3" == B,. Reeall " ¢ (4™ 11y"
and note that '
U*(T") = (1(w+1)m -+ "‘?:;("7)+ 'I"W;Z(T)T_I)(l(w-}al)m - '*‘7;‘::(7‘))3
= (l(w-{-l)m —‘??:i("’r))S .
By (2.7.2),
(2.7.4) Lus1 = ew(1") 37 = (L1 — 0w (v") E®.
By (2.7.3), set
FUE . gw(‘b‘)""i f=L0) (e Zw+1)
for all 4 € Z with 1 <4< r—1. Then the BY® satisfies
B0 — 0o (2)F00) = (1,3, — g ()"} BV
o (Lypr — 00(7")) 39 == B, by (2.7.4).

Replace the 3% by the Y@ fop all 4 eZ with 1 <i<r. Do the
above procedure over again for each orbit Ig(ey with 1 < § < m. (Here

n
T'(1) = le I'g;.) Then (2.7.1) is proved since we ¢an write K7 '%) using the

vectors {Z*} obfained by the procedures. :

This argument in proving (2.7.1) is effestive for any parabolic element a
(e P) in SL(2, Z) if we replace 7 by the ». Hence there existy o veetor
9, € ZWHI™ for aach m e P such that

O(W) [ (I(w - Lym "'""'l'w(n))g]n ¢

?E[e_nce the € becomes a parabolic cocycle in the Zp(I'(1), n,, £). Numely
it is proved that w e Hp(I'(1), n,, Z). Lemma 2.7 is proved. m
Proof of Theorem 2.4. By Lemma 2.7,

2 (SHpZ (HR (T (1), 10yy Z))) = o (Brar( T e 2))-
It is easy to see fo8hpZ = shpRoj,. Hence

shpR (jy (B (I(1), s 2)) = a(Hbo(T, gulry 2))- @
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Remark 2.8. It iz well known that SL({2, Z) iz generated by $,
and §,. Bince §, (0) == §,{0) = foco, the following map iz an R-linear injection
by Theorem 2.3.

Syia(T) = RO f s Re [ D(f).
1]

And every cohomology class ut in the HL(I'(1), 7, B) has a representative
€ in the Z3(I'(1), ny, B) with €(s;) = C(s,). Furthermore we can also
show that for each cohomology eclass 4 in the Hp(I'(L), 5, &), there
exigts o cocyele €, in the Zp{I'(1), 1, Z}, with €(s,) = E(s.) and j; (the
cobomology clasg of tho €) = ji(u).

3. Proof of Theorem 0.2. We use the same notations in §1 and § 2.
From Theorems 2.2 and 2.4, we have:

0= (12 (HE (L), %oy ) = 97 {12 Fprrd L @ulrs 2)))
and

5 o [BH T, s Z)) 0(—1f=DSE, (1) = BN, 2)%.

Leb U+ = (UF, Uy oor, Uy (esp. U™ = (U7, Uy y +oey UsD) be aZ-basis

of H(N,Z)* (resp. H(N,Z)"). By Lemmag 1.4 and 1.7 the basis U~

(resp. U*) becomes a C-basis of 8,.,(l1(H)) since we have
Bus(T(W)) = 82, (T0()) @n Y =185, (1)) -

For each positive integer n with (n, N ) =1, there exists a dxd
matrix 4+ (n) (resp. A~ (n)) with the coefficients in Z such that:

HOFIT ppa (1), UF 1 Tra()s ooy UF 1D ppa(m)) = A5 (¥ (TT, UYy oy Uz)

(resp- : .

E(UflTww(ﬂ): U;]Tw‘*,z(%),' veny UgiTw-l-z('n')) == Av(%}t(Ul—: U, Uz

by Lemma 1.3. Let F(z) = } a,0" (¢, =1, § = exp (27r1/—:]tz)) be a
n=1

primitive form in 8, ,;(7}(¥)) and o be an element of Aut(C). Tt is well
known that F|T,,.,(n) = ofF° for all positive integers n with (n, N) = 1.
Now consider the following linear equations. :

(BA)F: (@, @y ooy B5) AT (1) = (a50F ) a7wfy ooy 00F)
for all positive n € Z with (n, §¥) = 1.
(31)5: (@) @5y «vey 37) A7 () = (@787 5 G307 5 -y G5 )

for all positive n € Z with (n, ¥N) = 1.
By the Multiplicity one theorem (Lemma 1.10), the space of _the
solutions (3.1)F (resp. {8.1);)is one dimensional over Cior every o € Aut(C).
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Note that every matrix (A*(n)—ajl;) (resp. (47 (n)—agl;) has the
coefficients in the field Q% = Q(af, aZ, a7, ...). Henee the equations
(3.1) (resp. (3.1)7") have a non trivial solution

(@, 2l y ooy ®F) = (g Gy onvy ) (TESP. (B, 27y «ony B7)
= (81, Bay «+vy Ba))
with the eocfficients in the @¥. Since the A% (n) (n € Z) has the coefficients
in 2, the vector (af,af,...,27) = (af, of, ..., af) (vesp. (@7, ,...
xz) = (B, B2s .-+, B)) becomes a non trivial solution of the equations

(3.1)F (resp. (3.1);) for every o e Aut(C). Namely there exints o wnique
complex number ¢} (regp. ¢7) such that

(3-2)} T = of 3 (a§UF + 0T + ... +ajUF)
(resp.
(3.2)7 B? w0 X(BIUY + B30 + .0 +85UZ))

We shall show that (3.2)F assert our Theorem 0.2 (i) {c). Then it is easy
to see, from (3.2)%, that

e = ¢b (vesp. ¢; =¢;) if Flgp = 0'lgp (0 and o’ e Aut(C))
and . :

(6) = ol (vesp. (67) = —ozy) :
for the complex conjugation J and any ¢ e Aut(C) since (UF) = LT,
for all t & Z with 1 < # < d. This is a proof of Theorem 0.2 (i) {a) and (b).

Now we shall prove Theorem 0.2 (i) {(c). For each g e I'(1} and
o € Aut{C}, aet

( gliec) tgt(dea)

(20%) —1( f D(F) 4+ [ D(F)E))‘L

io0

W, g, o)*

glioo} tgt{oo}

— (@ (f pEx [ D

Vi )ff))

Since each U (rvesp. Uy) is a cusp form in &~ (jl( (L) 5 7y Z)))
there exigts a (w+1)m dimensional real column vector B (rosp. By
for each jeZ with 1 <j< d such that

&lioo) .
(3.3) Re f 1m1),,, nw(g))B*’ g bt hm

for all ge 1"'(1) Sinee U} & 8p.,(1y(¥)) and Uj el - wlSw‘H(I’l Y
changing the variable of mtogrsntmn from 2 to' —Z, we have:

_ glieo) igt('ico) ’
G| (Uf (&) dayjoh = Lou(t) [ (Uj(e)deyjoitht)
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for all g and he I'(1). Hence

glio) g(ioc) tgtlion)
(3.5) Ref D(UF) (2 %(j D(UE)(e) £ f (2)
for all geI'(1). Set
[74 3
B(o)" = Y af(Bf —(Bf)) and B(o)” = DBy —(BY).
J=1 i=1

By (3.2)} and (3.5),

a glioo) d s(wo)
W(F, g, o) =12:a}’(Re‘f U 2 (Re D (T7)).
i= oo =

By (3.3),
d © o glioe)

(3:6)F W(F, g, 0" =Y a(Re [ D (T} + (Losum — (&) B | —

glico) .
- Sglme o [ DO+ [Liam = ol8)| B7) =
J=1
- 2 a;(l(lD+1)m “ﬂw(g)) ((B;_)B "'-.B;")
Feal

= (Lurim = ho(@)} B0} - (g € T(1)).

In the same way, from (3.2);, (3.3) and (3.5), we obtain:
(3.6)” W(F, 8, 0)" = Lwspm— ()} B(0)” (g€ I'(1)).
We shall prove below that ' '
B (Lwym— (@) B(o)* =0 for all gel'(1) and o e Aut(C).

Let K, be the matrix defined in Lemma 2.5. Set

(@) = Ei'ny(@) K.  (ge I'(1),

E7'B(a) = YA gy A1y oovs Moy Args Aips ooy Ay evey Matigy o y A}
and

EB(0) = A0y A1y vy A Aa0s My +ves s ooy Amor ooy Am)
for an arbitrarily fixed o e Aut(C). From (3.6)*, wo have:
(3.8) E['W(F,g, o) = (1(w+1)m—ﬂ:u(g))Ki—lB(ﬂ)i— (gel'(1).
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Proof of (3.7)*
Case 1 (weight w+2 > 3). Let & be an infeger with 1 <k < m and g
be an element of g7 ' (N)g,. From (3.8)%, we obtain:

B(ico} fgi(ica) "
(3'9)d: ((20:{: ( f I’!w+2[gi~](z)d :[391u(t) f Fi'w-l-z[tglnt](z) dzw)) -
g(wO) b tgt(ioo)

(@7 [ Plonlnd@dmentt) [ Fllnt)(e)ds,)
o 100

= (lw+1““" gw(g))‘(lﬂf,,, lﬁfn Ai,zr Ty Affw)

for all g e gi' (V) g,. Pub the left side of (3.9) == M (F, gy Now sob

g =(3 ﬂ in (3.9)% Then g(icc) = 4o and

. 1N ‘
(3.0 0= (t=aal(5 1)) 220 -

Using the definition of the represe n‘oa.tlon 0w, Wo solve (3.10)% directly.
Then we obbtain easily:

(3.10.1)* Afn :;:Aflngfz.—_-—_-; :;:;L;c‘«;wl::.-()
Ovly 4f, and 47, remain unknown. Now we shall show that Ay =i 0.

Lot p bc an odd rational prime with p =1 (mod N) and aj s 1-4p©*+.
Such a prime p exists by Lemma 31.12. Put

1L N » ) ) ‘ p 0
vﬁ*(w) for weZ with 0<u<p—1 and ”ﬂ“(o 1)'

Note that »,gv;" € I'(N) for all g e I'(pN) and all u e Z with 0 < w< p.
Put u(g) = »gv;’ for every u e Z with 0 < u < p. We need:

Levwia 3.11. Let p be an odd prime mth p =1 (mod ¥) and g be on
element of I'(pN). We oblain:

. I
(BILL*  My(FIT,,,(p), g)* = p+ ( 2, ) ML (T, uig))*).

ol

Proof of Lemma 3.11. Recall

BT (D) (2) == p° Zﬁ salv] () == p" zrww,ztt«ruﬂ(z)
Henee e o
2 g{ioc)
ME(F!TwMI-z (13): g)d: = pwlz 2(((20:*: ._1( f I’lw-s 2[""u9'k]( )dﬁw
Unall

tgt(ioo)

eult) [ Floultngitl@ o))"~

alix) . t!*(fw)
~(202)7( | Pl @k gt [ F“l_w+2[tv¢,gkt1(z)dw.,,}))-

foo Yoo
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By Lemma 1.11 and the fact that the group I'(¥) is & normal subgroup
of I'(1) with I'(N) < I'y(¥), for every x e I'(1),

» pe)
D Plyal w31 = Flypalx,]) = 0, 3 (B, u[0,5] — F, ufzn,]) = 0,
==l

U=

#
2 (Fluppaltrxt] —Fly o[t t]) = 0

w=10
Z(r°|w+2[tv xt] — Pl o[, t]) =
=i}

Replace the variable z of the integrations

g(ico) glieo)
[ Flusslgwm)iz)de, and f Bl laa}(e) da,

(resp.
igtlica) tgl{ioa)
[ Plonltootl@de, and [ Pl [igw.4](@)da,)

by #;1(z) (resp. tv'(z)). Note that v (ico) = b t(doo) = do0, y,g(ioc)
= “"ltg"“"ul(/lﬁ Oo) = ‘M(g (7" 00) and t"’ugt(@‘ °°) = t"'ug""u lt(z OO) tu(g)t(i’oo)
(g e I'(pN)). Then 'we obbain:

My (-FITw-]-z(P); g)i

2 u{g) {00}
= 2(((201 - ( f Flopi2l921(2) Qw(i’u)“ldzwi
w=0
tu(g)t(mc) '
£0u(t) f Flyaltt) ) 00051 25, ))

u(g) (oo}

(e[ ] Plenlod@ ot +

tu(gidon)
:‘:Qw(t) f Fﬂ|w+2[fgkt](z) Qw(t'pv:lt) dzw)))

oo
=Pw+1 (Zp’ O () M (T 'u,(g))*) )

We continue the proof of (3.7)*. Note that F|T,,,(p) = a,F and
I°|T o (p) = aF?, From (3.9)% and (3.11.1)%, we obtain:

(3'12):i: ( p(1w+1 Qw(g )'— (2?w+19w( ) (1w+1'_Qw(u(g)))))
Xy Meay +oes M) =0 (g e I(pH)).
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N g =( = %) Then we have:
ow set g = o 1) :
1 —Nufp ‘ ‘ o
-1 (_pN (1 _Nzﬂfé)/p) for w e Z with 0 "«<~ UL p 1,
vy (g} =
Ve D for w = p
N 1 ,
the (1, w-+1) component of the g,(g) = p“N"¥,

the (1, w-1) component of the g, (v;" (g)) s PUTINY

(3.13)
the (1, w-1) component of the g, (v 'p(g)} = p~ N,
the (1, w-+1) component of the p,(¥7") = 0.

Now compute the first component of the vector of the left side of

(3.12)* using the results {3.10.1)* and (3.13). Then we obtain:
(—ap N+ (PN + 7)) 2.

Namely p*NY( —a +pw"'1+1)ﬂ.=‘=

Trom (3.12)* and a5 %= 14+p¥t, we obtaJm AE, = 0, Hence we have
HaEe, A1, ony AE,) =0, “Sinee % is an arbitrary integer with 1 <<k < m,
we have Kle(aYE = 0. (3.7)* are proved for the case of w--2 = 8.

Case 2 (weight w--2 = 2). Set B(0)* = K 'B(o)* ='(AF, 2F, ..., 15)
(mamely “(iF, A, .., A5) = (Ao, Ao, - A55)) amd 7, (= 7)) = 7 which 18
the representation defined by 7 (g)D(f) =DH{f) o g(f e 8.{I1 (W)}, g e (1))
Let p be an odd prime with p =1 (mod ¥)and a; # 1L-+pand », (0 < u < p)
be the same as defined in Case 1. (Buch a prime exists by Lemma 1.12.)
By Lemma 1.11 and the fact: I'(N) <] I'(1), every element g of I'(1) induces
the permutation g on {0,1,2,...,p} whick is defined by I'(V)g 'v.g
= I'(N)vguy - Hence there exist y (%, g) e I'(V) for ueZ with 0 <u<p
and g e I'(1) such that g™'v,g = y(%, g) We have

LSO

yi
2 (Flalgpd —Flolngy]) = 0
. W0
Recall

Zﬂ’fz[«:u] = Zﬁ’lnif%ﬂ

F\Ty(p) =
. Wea () e}
Hence for each j e Z with I <j<<m, we obbain:

glic0) D vygliz)
[ ((B1Tsm)@dlog = 3 [ FLigle)de
200 Ul vy, (§00)
b BP(hE)YE, (o) - 7 gy(u,g)ieo)

= [ Fugles = ST putge

#,, o0y wwl  foa

icm
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and, in the same way,
tgt{too) D gr(e.g)i(ioo)
[ APIT @)@ deog, = 3 [ Flligtle)de.

ga=ion =0 10

Hence wo obbain:

il
WI(FITo(p), g, 0)* = Y W(F,g.v(u,g), o).

Az

a, ' and T|T,(p) = aiF’, by (3.8)%,

%
- 2(1,”; -1 (g"}’(’“:

4w 0

Since F|To{p} ==

@1)* aj(ly--n(g)}B(o)* 2))B(o)*.

Since p(u, g) & I'(N) e« I'y(N), we have 5(y (u, g)) = 1,,. Flence by (3.14)%,

(318 (ap—1—p) (1o —n(@)B(0)* =0 and (L,—n(g)B(a)* =0
(geI'(1)).

In (3.15)%, set g = g, for each j € Z with 2 < j < m. The first row vector
of (1,,—n(g))is (1, 0,...,0, =1, 0, ..., 0) where —1 is the jth component.
Theon the first component of the left side of the vector (3.15)F is equal
to A —iF, which 15 0 by (3.15)*. Hence we obtain: &t = AF = ... = 1%
(rosp. &y = A7 == ... == Ag). Bince n{g) (g € I'(1)) is a perinutation matrix,
we obtain: '

(In—(8) B(o)* =0

3 '7) 18 proved for the cage of w2 =2.
By (3.6, (3.1)% assert that W(F, g, o)* =0 for all ge I'(1) and

all ¢ e Aut{C). Bet g = (0 —1) in W{F,g,o)*. Then we obtain

AL 0
Theorem 0.2 (ii) (e).
Now consider all the automorphisms ¢ e Gal(C/@ ). Then Theorem 0.2
(i) follows from the Galois theory, Theorem 0.2 (i) (a) and Theorem 0.2
(i) (c). m
Wa pive two corollaries of Theorom 0.2, I‘m' leZ with 0 <1< w,
wa@Q and oeduli(0), sob

for all gel'(1).

foo 100
Ph () (“L‘:lz)—l(f F"(z«_{wm)zzdz:};( —Lyt f F"(@——w}zidz).
1] 0

COROLLARY 3.16 (0of Theovom 0.2). For all we Q,1sZ with 0<I<w

and ¢ & Aut(C), we have: :
(R ()
For the proof we need:

=Rl eQp  and  (PR(2))" = By, (a) € Q5.
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LEMMA 3.17. For zeQ, le Z with 0<I<w and o e Aut(T), sel
Hi, (@) = (057 [ 7 (2)efde£(—1 | F°(2)2de)

We howe:
Hi () € Q5 (HE (@) = HE(2).
Proof. This is a divect consequence of W(F,g, o)t — 0 (3.7)%,
since the set {g(éco)| g e [(1)} coincides with QuU{icc}. m
Proof of Corollary 3.10.

and

Pt (o) = 3 (;) (—oVIHE (). m
VT

Let » be a primitive Dixichlet character, m(y) be its conductor and
‘ miy) ——
G(v) be ity Gauss sum (= D vy(n)exp(2nV —ln/m(p))). Set FRp(z)
P =1 . .
= Y p(n)a,qg", where ¢ = exp(2nV ~12) and p(n) =0 il (n, m(yp)) # L.
=1

n
Let Q(w) be the field generated over @ by the values which ¢ takes.

CoROLLARY 3.18 (of Theorem 0.2) (cf. Shimura [23], [24]). Take
the superscript on ¢ as in the formula p(~1) = £(—1)"*. We have:

400 ) ioa
((ei‘*‘(}(y:))“lf ey z‘dz)a = (a;EG'(fp"))“lf F @y (2)dde e Q5O (v°)
1] [} ’

for every L e Z with 0 <1< w and o € Aut(C).
Proof. It is well known (see e.g. Lemma 9.4 in Manin [12] or Weil
[256]) that

& (y) " . b
x = —nFle+—-1.
R TP (=) (“ )
Hence
: oo
(G(?P“))'if (F* @ ¢°) (2)d'de
L]
foo
b
= (m(y")~ Z ¥ -—b)flf‘"’(www) diz
b (modnm(y™) o . ("J’.)

= (m(y)” )~ F( )'d,

) 3w )( of e e

()Y~ fclf"’ (z«- m(bmp“)') z’dﬁ) .

Now CQorollary 3.18 follows from Lemmsa 3.17. m
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4. On p-adic measares, In this scotion we shall generalize the results
on p-adic measures in Manin [16] to the case of Neben-typus primitive
formig, Let &7 be o primitive form in Sut2(¥, 1), p be a rational prime,
L be o finite extension of @, and 4, (> 0) be a rational integer with
(A py ~= 1. Tut

2

PE) = Yt (o a = epen/ i), oy =[5 7
tmd ) K N o)

A== dop i p23, A=ddA,if pe=

and  Z, = proj-im(Z |(4p™))
m

Following (8.4) Ai.n Manin [156] we call o finitely additive function y. of the
open and. closed subscts of Z% with values in the field I a L-miessure u
on Z. The following proposition is & generalization of Lemima 9.4 in
Manin [15]. Let @, be the set of rational numbers whose denominators
divide 4p™ for all m = 1. ‘

ProrosIrioN 4.1. Let # : Q L be a function with the fouéwiny
properties: for some A and BelL and all v e Q, |

=1

X #((@+T)[p) = A xR(@)+ B xR (pa).

T §

R(w-1) = R(®) and
Let y be w Dirichlot characier which takes i3 values in L and o denote a root
of the equaliop g¥ == w(‘p)(Ag-»k Bpwp(p)}, with ¢ % 0. Then there ewisis

a L{g) valued moasure p on Z7 such that for all non negative m e Z and all
acZ :
p(a4(Ap™)) = o™y (Ap™) R (al(Ap™)}+ Be ™y (Ap™ ) & (a ( 4p™).
Here (Ap™) denotes Ap™Z 4.
Proot. By (24} in Manin [15], it i3 sutficient to show
#lLym) = | 5'1

dorid
s (mod dphiy

#(Lymia)  (for all oeZ and all 0 < m e Z)

where I,,, donotes a-- Ap"%,. Wo compute as follows.

-1 )
’;2 ,M(C& o} a’]j[)m}’ﬁ },(Aﬁrn-i-:))
s )
:n:_-"l
o Z (Q""mwjij)(dﬁ°n+1)9?‘((a ol Apmk)[(lljﬂm'ﬂ)) +
Towsq

- Ba ™ P Ap™ )R (a -+ dp™h) [(Ap™)))
= ¢y (Ap™ {4 < B{al(4P™) + B x R{ai(4p™ ) +
+a™"p(dp™**) By x R(e/(4p™))

3 = Actn Ariiimetica X101
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= o~ (4p™) X (p(p)Ag+v(p)'Bp) % (a/(4p™) +
+o ™™ Yp(4p™ ") B x & (a[(4p™ "))
— o™y (Ap™ @ (0] (Ap™) - Be~™ 'p(4p™ )R (a[(4p™ 7))
= u{a+(4p™)). =
It is well known that Fj, [wy] is a cusp form in Sy, (¥, 7) and

satisties T,y slon] Tpia(n) = @ F]w+2[cuN] for all positive neZ with
(n, N) =1 (see e.g. Proposition .57 in Bhimura [22]). Setb

foo

Bis (o) = Fh (e~ [ FloraLeonle-t o) ldet

4o

(—1)2 [ B [y )(e —a)dde)

for € Q,leZ with 0<I<w and o e Aut{C). Changing the variable
of the integrations in this formula we obtain easily:

0
[ B (2)2 (1 + Naw)de £

B (2) = Fo (=12 ()™
. —~1f(Nz)

A —Lywtt f F7(2) 2" *’(1--Nmz i)
1/ (Naw)

By this and Lemma, 3.18,
(4.2.3) PE (o) = (P (@) € @5

Multiply the following two formulas by # (0 <1<
from 0 to feo.

w) and integrate them

a,F(s) = D p'F((z0)[p)+ 27y (p) F(p2)
and .

p--1 . : I
@y sy l(2) = 2 p“1F|w+2[wN]((z:i:v) /P) 4 9"y (p) Pl sLoog1(22).

Pen
Then we obtain easily:

p-=1

(4.2.4) a,BE (@) = Y 9'P5 (0 +0) fp) + 25 (p) Pk (pe0)
: T
and
o~ ol
(4.9.5) @B () = 3 P (( - /p)~}—p“" 2(p)P (W)
Pom
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Wo fix an embedding ¢ of the algebraic closure Q (= @) of Q into Q;,
once for all and identify the cloments of @ with those of (Q)‘ by this ..
For each 1 e Z with 0 <1< w, lot uif {resp. i) be the p-adic measures
on Zj, constructed by Proposition 4.1, (4.2.4) and (4.2.5), which are
defined by:

(42.6)  pi(a+(4p™)) = o "Pii(a/(dp™)) ~p ‘”x{:p)ea "IRE(a f(4p™)
. (Qz = 27,0~ 2"~ (p)),
(4.2.7) A (a+(dp™) :
= " (4™ B (@ Ap™) — "y (p) &7 g (™) B (af( Ap™ )
(@ =@y~ — 2Py} 2 (2))-
In these formulae, we may put @ == g5, § = 8oy ¢, =20 and §; = p~ %
for 1eZ with 0 <1< w. The following theorem is 2 generalization of
Theorem 3 in Manin [16].

TEROREM 4.2. Let I be an integer with 0 < 1< w, m be a non negative

integer and v be_a primitive Diricklel characier mod Ap™. Then we obtain:

A m 400
(4.2.1) ;;@%7 of F&yp(s) 'dzw-m f V(=) dp ()

where the superseripls + on of ond dui® ave mkm -as in the formula p{ —1)
= (=1
(4.2.2)
fzo .

Ap™y(4p ér - .

LA [ (Whenalond )19 = ez [ v -0 @)
" | 7

where the supersampts + on of and diF are taken as in the formula p( —1)
s o (L )ETE

Proof. The proof goes in & similar way to that of Theorem 3 in
Manin [16]. Wo prove (4.2.2). ((4.2.1) is proved in the same way.) By the
proof of Oorollary 3.18, : T

x(dp™) 3

S P~ ~b) P (b/( Ap™)).

the left side of (4.2.2) ==

& (mod 4p"h
On the other hand,

o i —aydit@) = 3 ¢ (—wiF (e +(4p™)

zj a. (mod 4p™)

Ny (—a) (@ (AP R {a /(4™ —

« (mod dn’"’)

— P () B ™ (AT YR [ (Ap™ ).
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Since ffi (-1} =f§f’i () and ¢ iy primitive,

v agiE@) = D v (—a)E ™ (4p™ B () 4p™)
z* a(moddpm)

4
= @”’“p“" (4p™)

F v (—a) P (a(4p™). m
) @ (mod ApH)

In case of pt &N, wo have dyx(p) = 6, (sce e.g. Proposition 3.56 in
Shimura [22]). Hence wo may assume g == §. The following theorem
is & generalization of Theorem 4 and Lemmw 8 in Manin [16].

THEOREM 4.3. dssume o == § and ovd,o<<1.

(1) dpt(a) = (—d)~aduf (@) (0 <I< W),

(i} it (a) = (~d)"aldjiz (a) (0 <T< ).

(iii) Let Agp be prime to N. Then we have:

(£31) & L(Ve) = (=1 (a)  on 2

Moreover let v be @ Divichlet character: Z% — L(g)*. Then we have:
(4.3.2) f qp—l(_«a)a’cw(a) = (—1 NN [p(a) a3 (a).
zy Ly
. For. the proof of Theorem. 4.3, wo need: _
Luywa 4.4, For ¢ eQ, leZ with 0 i< w and asAut(C}, aai

@) = ¥03)7|] i Flosalion (0o
(- gy f 1’°|w+2£wN1<z>z’dz)

Then HE,(z) (msp H“( ) in Lemma 3.17) és contained in the finitely
gmamtﬂd Z-module -

= 222((05h)—1(f -E’in4 o[y1(2) ' de

fe=0 Jual
EYEETUS f -‘ ﬁwyw.,.,,[tgjt](z)z’az)) .

Proof. By replacing the variable 2 of tho integrations by —N—%,
we obtain : ‘

. k ~ i) B
HE, (@) = (=18 o [ Bl
. s . .0 '

1{(Nw) _
+{ ml)w-1+1 J‘ B (u) uw—ldu) .

0
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Lot ~L{(Nw) = by [dyy by_2[@y_yy «ovy bifdy, Be[dy = 0/1 be the smecessive
convergents obtained by the continued fraction of a rational number
~1)(Nu). (We may assuthe —1/(N2z)>0.) Set- "

2 = b.’a . ("'1) -lbfc—-
NG (~1 M

Tt i well known that all the g are eloments of SL(2, Z). Then we have:

) L <E<n).

- 1i{ Ny H(Nw)
(4.4.1) [ () (=17 [ B (w) e e

n i

n gplies) . ' -ty tlivo)
. )"( f lﬁw(%)%w""ld’wj:( __1)111-44-1 f ‘.E""(fw_}u“’""du)
Fat g0y tept(0)
n deo : ..
)J (f 7ol () (b;a (=) (B ~ 1)) e ok
g

0

()Pt f 1oLt ) [+ (=10 *dkzﬂ—l)k-ldk_l)‘dz)-

Here nge the binomial expmnamm. Note that .

(( __1)Ia»-1)w-1-i(( ___1)?c-1)!——1‘ {( ‘_l)l_a)w—l—-i( __1).1(( _‘_,1)I¢—1)1~‘~1‘l( 1)w—l+1 |
__:,_( 1)'H _’H'I B

Wenee the loft side of (4. 41) ia wntmmed in the mﬂdule (eZ)MZE. m
Define an  equivalence relation ~ between the  sequences

{datiml 4y € Q) by L
A, ~ B, < ord (4, —B,) = +o when m > --oco

Proof of Theorem 4 3 (ii). (The proof of Theorem 4.3 (i) iz almost
the same a8 this. We omit it.) It is easy to see

. !
i).ij;:u(m) = 2 (;) (mm)l—fﬂfﬂ(m)'

=0
We compube as follows.

i {a--(4p™) = &~y (4™ B (0l 4p™) —
. ”_pw*alx(:p) Quﬂlw HEZRE ’)x(«dpm"“l)[’* (a.,' Ajp’"“]))

1

Z()e“ g 4p™){ —0i(Ap™) (ol 4p™) -

Fuald
] . )
-2 (;) POy (p) oy (Ap™ ) e f(Ap™ ) (0 (Ap™ )

Fm0
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By Lemma 4.4 and the assumption ord,e < 1, for j & Z with 1 <j <1,

ord, (o™ mp™ 4 (4p™) —a(Ap™IE (af(4p™)) = + o0
and
ord, (o™ (Ap™ ) | —a /(A HG () 4pm 7)) > 4 oo

when = — -0,
Hence we obtain

At (w+(Ap"‘)) ~ g~ x(Ap’"’)ﬁfI (a/(,{]pm))(ma)ldmzm
—p"x(py e ™ (AP NEE, (af(Ap™ ) (~a) 47
= jiy (a-+(4p™)) X (—ay 4™
since we have HE (i) = P (y) (y e Q). Namely we have
dif (o) = (—d)"'adaf (o). =

Proof of Theorem 4.3 (iii). (This proof goes in a aimilar way to that
of Theorem 4 in Manin [16].) Let ¢ and @' be rational integers with Naa’
= -1 (mod 4p™). There is an integer U such that Naa' — Udp™ = —1.

[ 2"

Put g == Na Apm)’ which i3 an element of the group [I'W(¥), We
compare i (a' +(4p™)) with i (a-+(4p™) and show that
ord (s (o +(4p™)) — (1) Vi (84 (4p™))) - 4o

when m — 4 o0. We have

) ica foo -
(4.8.3)  ofPE (o (dp™) = f F(z)dzF F(z)dzs
@f(Ap™) —a’[(4p™)
B(—AP’"‘G“]‘N”]‘) . tsi(dpma“‘lN“l)
. { F(z)deT P(2)de
B(0) tet(0)
—dApMa—1--L
= [ (Plunlg)e) (Fae-+ Ap™) deF
1]
'Apma“.lN“l

F

0

(Blgsaligtl) (e)( —Naz + Ap™ iz

—dmmﬂ_lN"l
~ f 2 (4p™) F (2) N¥a" 2V de =
J _
zfpma"lN—l
F=1" [ g {dp™) T (e) NVa¥e dz.

0

icm

Periods of primitiva forms 39

Here replace the variable z of the integrations by —§"2"'. We have:
(4.3.4)  the right side of (4.3.3)

ino

= (=1 Wy () [ (Flysaloy]) () dect
ad— lp—m
(-1 [ (Plyaloy]) @) d)
,,M-ipv—m

= (L) Ap™) By (o) dp™) of
From (4.3.4), wo obtain:

(4.35) (0 H(4p™)) = ¢ (0! [(Ap™) — e~ Py (p) P’ [ Ap™ )
o~ (=LY (g (Ap™ B (@ dp™) —
—g ™y (4™ By (al Ap™ )
= (P (a+(45™)).

(4.3.8) implies (4.3.1). By changing the variable of the integration of the
left side of (4.3.2) by —1/(Fa), we obiain from (4.3.1):

J‘ w—l ( -"-ﬂ;) f&kdﬂg: (a) = f!p—l (N—ulawl)( _N—la—l)kd”g;( *—.N"lﬂ‘;"l)

P *
zy 2,

= (=1 (N)N* [ p(a)e *dfi (a).

*
Zy

Theorem 4.3 is regarded as a p-adic anaylogﬁe for the usmal complex
functional equation satistied by the zeta functions associated with the
functions # and F|,..[eoy] (of. Hecke [9], Shimura [22]).

Note added in proof. Weexplain precisely the method printed in the parenthe.
ges afi linoy 8 and 7, page 24 of this paper. (i) Replace 3@ by 3@ B, for each weZ
with 1 « @ < »~1. Then By (resp. B, is changed into g,(r)B,.., (resp. 0) for each
weZ with )} < w < r—2. (i) Carey out (i) induetively (r—1) times. [Henee, for each

. pe1
wed with ¥« o« -1, the oviginal 30 (resp. By) is replaced by 30 — jz’ 0PI~ %8y
: gy
(resp. 0).]
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An additive problem in the theory of numbers
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1. Yowodaction. Vinogradev {(of, 57) proved that every sufficiently
Inrgoe odd integer N can be writben as

N iz p(u ..]..p(z) + p(-"]),

where 9% are odd primes, Here we shall prove
frosoreM. Let k be an integer > 2. Let &;, 8, «.., 8, be positive numbers
satisfying 8, + 8-+ ... 48 == 1. Then every sufficiently lorge odd integer N
cam be writlen as Co
N oo g 4@ )

where w“) w plipl || pf® ewith some odd primes p{’s satisfying pP < N
for §=1,2, ..,k and for i =1,2,3.
In L-mt, we shall pro‘ve using Hardy-Littlewood’s circle method

3
S ([ ]t
Noanll) 4D gn® =1 =l
1
((Ir. -1 ')9

S w!ml( g _]_",1) )H(l.” Tﬁ"%—"i")?)’

X At W \E-L FAt
Py N) == Z (log 7 ) (log wﬁw) (log -7;—) ,
Ny thyth v ‘

S(N) rk(_N -+~O(N2(10gl\T )4,

whore

P runs over primos, k'8 are positive integers fmd Ais s suf.ﬂomntly large
constant. We rawark that there are sma:],ler N's which oaxmot be written

a8 in our theorem.



