84 A. Rényi and P. Turdn

[8] — Probability methods in some problems of analysis and number theory,

Bull. Amer. Math. Soc. 55 (1949), p. 641-665.
[9] X. II. Hybuawc, Beposamnocmisvie
Mar. nmayr XI 2 (68) (1956), p. 31-66.
[10] W.J. LeVeque, On the size o
Amer. Math. Soc. 66 (1949), p. 440-463. .
[11] A. Rényi, On the density of certain sequonces of integers, Publ. Insb. Math.
Belgrade 8 (1955), p- 157-162.
[12] L. G. Sathe, On a problem of Hardy on the distribution of integers having
L J. Indian Math. Soe. 17 (1953), p. 63-82, 83-141,

wucen, ¥ CIexu

Memodul & meopun

f ocertain number-theorelic funetions, Trans.

a given wumber of prime factors, I-IV.

18 (1954), p. 27-42, 43-8L. :
18] I.J. Schoenberg, On asymplotic distributions of arithmelical funclions,

Trans. Amer. Math. Soc. 39 (1936), p. 315-830, formula (28), p. 326.

{14] E. C. Titehmarsh, The theory of the Riemann wela-fundtion, Oxford 1951,

[15] P. Turén, Az egész szdmole primosstéinal szdmdrdl, Mat. és ¥iz. Lapok
41 (1934), p. 103-130 (in Hungarian).

[18] — On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9 (1934),
p. 274-276.

[17] — Uber einige Verallgemeinerungen eimes Satzes von Hardy und Ramanuwjan,
J. London Math. Soc. 11 (1936), p. 125-133.

[18] A. Wintner, Prime divisors and almost perviodicity, J. Math. and Plys.
91 (1942), p. 52-56.

BUDAPEST, MATHEMATICAL INSTITUTE
OF THE HUNGARIAN ACADEMY OF SCIENCES

Regu par lo Rédaction le 20. 2 1987

icm

The inhomogeneous minimum of quadratic forms
of signature zero
by
B. J. BrcE (Cambridge)
1. Minkowski proved that, if I,, L, are linear forms in #, y of deter-

minant A, then, given any ", y" y ; N
o that e y @,y", we can find (r,y) = (", ¥") (mod 1)

1L L} < 14

Ee conjectured that a similar result remained true for the product of =
lirear - forms; but this has been proved only for » = 3 and n = 4.
_The result proved by Minkowski may be restated in terms of qua-
d.mt;m)for;bns: If Qs(x, y) is an indefinite binary quadratic form of determs-
nant D, then, given any x*,y", we can find v = x* =y
so that o ! v =y motd)
Qu(e, )| < 3D

Put in this way, the result may be generalized in a different way, as

follows, ’

) Given a quadratic form @, in » variables ,, ..., ®,, we define the

inhomogeneous minimum M(Q,) by
MfQ) = sup | inf

* *
T ene, Ty Tp=T;(mod1)

[Qr(wly ey mr)]} .

Then ?he natural generalization for guadratic forms of Minkowski’s
re§ult is: “If Q. is any tndefinite quadratic form im r variables of deter-
minant D # 0, then
Q) < 13D
2]73y s;iving an example of an indefinite ternary form with M I(Qa)'
= |z D", Davenport [4] showed that such a wide generalization is

falsg. However, if we restrict ourselves to forms of signature zero the
conjecture is valid; I will prove

. TIFEOREM 1. Let Q,, be any indefinite quadratic form in 2n variables,
with signature zero and determinant D # 0. Then

JII(an) < %‘Dllﬂn .
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Equality is mecessary if Qs 18 equivalent to a multiple of the form
N1
Ron =Z By g1+ 200 Pom 1 -
=1

The proof of the theorem is quite typical of its kind; first we show
that @, represents an indefinite binary form of fajrly small discriminant;
after this “reduction”, we prove the theorem by induction on n, using
lemmas on inhomogeneous approximation to a given number by means
of binary forms. In contrast to the similar problem for the product of linear
forms, the reduction we need is reagonably easily performed; and so the
whole situation ig far simpler. In order to reduce the form, we have to
divide into cages; I will consider separately (1) incommensurable forms
that represent zero, (ii) forms that do not represent zero, and (iii) rational
forms that represent zero, and I prove separate theorems for these three
cases, from which Theorem 1 may readily be reassembled.

TerOREM 2. Let Q, be an indefinite non-singular quadratic form in v
variables which has incommensurable coefficients. Suppose that either

(i) r =3 and Q, represents arbitrarily small non-zero values
or

(i) r >4 and Q, represents zero properly.

Then M(Q,) =0.

THEOREM 3. Let Q. be a quadratic form in 2n variables of signature
zero and determinont D + 0, and suppose that @y, does not represent zero
properly. Then

~ My(@an) < | D" min[1, (5)"9P].

THEOREM 4. Let @y, be a rational quadratic form of signature zero
and determinant D # 0, that represents zero properly. Then

Mr(Qun) < 2D

Equality is necessary in Theorem 4 for the form R, referred to in
the statement of Theorem 1, for this has determinant (})*% and is at
least } whenever @, ..., %y, are all integers and @,.,, #, are both
congruent to %.

Meyer’s theorem tells us that all indefinite rational forms in at least
five variables represent zero, and in fact it iy probable that all indefinite
incommensurable forms in at least five variables have homogeneous
minimum zero (Davenport [5] has proved this for forms in a large number
of variables, subject to certain restrictions on the signature); thus, for
2n 2 6, any forms to which Theorem 3 applies will satisfy the hypotheses
of Theorem 2. If this is go, Theorem 2 tells us that the inhomogeneous
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minimum is zero; and so it is likely that all forms of signature zero in
at least six variables with non-zero inhomogeneous minimum come within
the scope of Theorem 4.

Davenport [4] showed that the inhomogeneous minimum of inde-
finite ternary quadratic forms is isolated — one would expect that this
would be true for our 2n-ary forms of signature zero. In fact, I have
shown that this is so — but I do not propose to give the proof. I note
that Theorems 2 and 3, when applicable, are definitely stronger than
Theorem 1, so that (at any rate for large n) in order to show that the
minimum whose existence is proved in Theorem 1 is isolated we need
only consider rational forms that represent zero.

In Section 2 I prove Theorem 2, which is rather easy. Then in Sec-
tion 3 I prove the approximation results that I need, and in Sections 4
and 5 I will prove Theorems 3 and 4 respectively.

I would like to express my gratitude to Professor L. J. Mordell and
Dr J. W. S. Cassels for a great deal of helpful criticism; and I must thank
the Department of Scientific and Industrial Research for a maintenance
grant while I was doing this work.

2. For the proof of Theorem 2, we need the following lemma, due
to Blaney [2]. )

Tmma 1. There is a constant C,, depending only on v, such that given
any real indefinite quadratic form @, of determinant D % 0, and any real
numbers Ty , ..., Ty, there is @ point (@y, ..., @) with each w; = #; (mod 1)
such that

0 < Qulry ..., 2) < C|DIM".

Using this lemma, we will now prove ,

THBOREM 2. Let , be an indefinite non-singular quadratic form in r
variables which has incommensurable coefficients. Suppose that either

() r = 3 and Q, represents arbitrarily small non-zero values,
or

(i) r > 4 and Q, represents zero properly.

Then M4 Q,) = 0.

By considering —@Q, instead of @, if necessary, we may suppose that
Q, has non-negative signature; denote the determinant of @, by D. Oppen-
heim has shown [7] that an incommensurable form in at least 4 variables
which represents zero properly takes arbitrarily small non-zero values,
and [8] that an indefinite form in at least 3 variables which takes arbi-
trarily small non-zero values takes them with both signs. Hence, the
second case of the theorem is included in the first, and we may suppose
that @, takes small positive values. Suppose then that @, takes the value
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7> 0 at a primitive lattice-poiﬁt. By a unimodular integral transfor-
mation, we may suppose that this lattice-point is (1, 0,...,0); we can
thus write @, in the form

Qulyy .y ) = N(@F Gp@at.. N — Q@ r(a, ...

where Q,_, is an indefinite binary form whose determinant is in modulus

’ ml‘)

equal to |D/y|. By Lemma 1, given any @ , ..., @, we can find 2, ..., z,
congruent to them mod 1 so that
0 < Q,_; <'|OD/yMe-N,

where ¢ depends only on ». We can now choose @, = @, (mod 1) so that

(@t a2yt ) — Q| < 1.
Then "
10,1 < 7+ 292 Q, < n+ 27" P|0D | 1AC-D,
Since r > 3, the right hand side tends to zero with . But » may be

made a8 small as we like, so the theorem follows.

3. We will now prove a few lemmas on approximation by means
of binary forms; Lemmas 4 and 5 are the ones which will be applied
later, Lemma 2 and 3 are just steps in the proof of Lemma 4.

LeMMA 2. Let ¢ be an indefinite binary quadratic form of determinant
—d. Then, given any @*,y" and any p with |u| = d'F, we can find (2,y)
= (z",y") so that

g (@, )+l < &l

Proof. Dividing through by a constant, we may suppose that d = 1
and x4 >0, and so p = 1.
Let ¢ be a positive value taken by ¢ at a primitive lattice point;

we can certainly ensure that e < 2. By an infegral unimodular transfor-

mation, we may assume that e is taken at (1, 0), so that
p(@,y) = e(w+hy)— ey

We must show how to choose %,y modl so that |p--pu| < u'h
First, we will choose ¥ > 0 as small as possible to ensure that
M.l,ljz_M > ia__/ul[ﬂ
Wiite H = ¢~y*—yu for short. We can certainly ensure that [(u-e—

— el <y < [...]"*41, and so we can ensure that
%e——,u,l/2 < H< e;]—l—ie-—/cl/z—}—26"1[(,u+ﬂ;e——,u,m)ezll/z.

Write o hy =&, 80 that it remains to choose 2 == 2"+~ hy to minimise
|e#"—H|. We know that H > }e— "% so by taking |¢| as small as possible
we can certainly ensure that |62’ —H| < u/* when H is negative. Hence,
we need only congider the positive values of H.
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For 0 < H < 4¢, we can obviously ensure |er’—H| < te <1 < pt'

For H >> {6, we choosé z so that s—} < [e7'H—1]"2 < ¢+3; then
les—H| < e[e”"H—}1Y%. This implies that

lo+ul = | —H| < u'®
so long as eH—1e" < 1—pe+2[(n+Lte—p'?)el® < pu. But the in-
equality on the nght is 46(ﬂ+—6— u?) < (p—1+ p'e)?, which is (z—1)2+
+ e p—1)+2¢p"*(u** —1)* = 0, which is certainly so since x >1 by
hypothesis. :

This proves the lemma.

To complete the proof of Lemma 4 we will also need the following
regult, which is quoted from Blaney [3]. [The first part of this lemma is
due to Davenport].

LevmA 3. Let @ be a binary quadmtw form of detemmmm —1, and

let 2 > 1 be a constant. Then, given any «*, y*, we can fmd z,y) = (@, ¥y
so that
=57 < ga,y) < 3P
Further, if 1> 3, we can satisfy the stronger inequalities
—2 < o < 22
virnure Y S Ve
LEMMA 4. Let ¢ be an indefinite binary form of determinant —d. Then,

for any o*, y* and any u, we can find (z,y) = (z*, y*) so that

lp(@, ¥)+ ul < max [27V2Y2 ) @141,

Proof. As in Lemma 2, we may suppose that d =1 and u > 0;
and after Lemma 2 it only remains to consider the case x << 1. In thls
case u—u'? is negative.

Case 1. x > 3%. We want to ensure that
(%) —plPtu <o < ptu ‘
Write (u+ u'®)/(u'* —u) = 1; then, since u > %, 2> 3. Hence we may

apply Lemma 3, and so we can certainly ensure that (x) is satisfied so
long as

1/2

Vi 21
V> e
V(A+1) (AL 9)

Substituting for 2 in terms of 4 and simplifying, this condition is

12 2 W [Vt )+ (F = It )+ 9 (Vii— w1,

which is
Vi(Vu—du) =1
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Write t = p'*. We now simply ‘need to show that 5t2—4t“—-21 >0 when
= (1—1) (4 —t—1).

9> 92 >1, and this is clear since Bt —d4t* —
Case 2. u < 3. This time, we must ensure that
— W L p < /H‘z_m-

By the first part of Lemma 3, we can certainly do this so long as
p(E@ ) = k-

> 4, which iy so since 0

(2= —

This condition is simply % <u<
LEwmA . Denote the binary form o*~ay—y* by P,. Given any 5,y
and any u, we can find (z,y)= (", y") so thai
1Py, y)+ pl <

Proof. Since P, is equivalent to its negative, we may suppose that
> 0. We now proceed more or less 28 in Lemma 4, noting that Py, y)

< max[|u*?,

(WH,) R
Ifu<< , we flrst choose y so that |y} < ;, and then we choose @
8o that ]w+~y| ; this leads to |Py+u| <1, a8 required.

It 3 T<p <4 +, we first choose y so that H = —y“ w is as small as
possﬂole but greater than —§; thus, we choose y 80 that

CVEE—D) <y <1HVE(u—;

We then have
3 <H<3+VB(u—7) <2

and g0 we can choose z = o+%4y mod 1 so that |f—H| <
[Pyt ] < L

I S<u<(3)"? we can ensure that Pd <1 a,s above; we
then have |[Py+u| < ,u-—%, which leads to |Py+u| < P gince ,u_:l‘
<t for 0 < p << )R

It (5 )3/2 < u, we simply apply Lemma 2 to the form P, of deter-
minant —5, and find that we can ensure that [P+ < Syt i

This completes the proof of the lemma.

1, that is,

4. We now prove

THEEOREM 3. Let Q,, be a quadratic form of signature zero and deter-
minant D, which does not represent zero. Then

Mr(Qu) < 13DMn-min[1, ().
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To prove this theorem, we will first show that @,, represents a binary
form of reasonably small determinant. When this has been done, we will
apply the lemmas of the previous section to prove the theorem for 2n > 4
by induction on n; the case 2n = 2 has of course been proved by Min-
kowski. If @,, represents arbitrarily small values, the theorem and more
follows from Theorem 2, so we may suppose throughout this section that -
1@y, is bounded below.

LeMMA 6. Suppose that the lower bound of the mon-negative values
represented by Qs is b >0, and that @, represents a value v, where
o< li%b. Then, after a unimodular integral transformation, we can write

sz. Q°n 13

where Q,, 1 represents no value in modulus less than

V(T + @y + L)

1.

Proof. Since v < 2b, ,, must represent » at a primitive point,
50 we can cerbtainly put @,, into this shape. Now, suppose on the contrary
that we can choose @, ..., Ty, not all zero, so that [Q,,_,| < tv. If
—39 < Qun_1 < 0, we simply choose @; 80 that |@;+&2+...| < %, and
then

—an-—l < an <

contrary to the definition of b. If on the other hand 0 << @Qy,.; < 10,
then by taking 2™, ..., 2%, for o, ..., @y, if necessary we may ensure
that 40 < Qa1 < }v. We then choose ; so that K |y + iyt < 1,
and then 0 = 1020 << @y = v(#+...Y —Qany < 41)——1161; = %’o < b, again
a contradiction. This proves the lemma.

I now quote two results, from Oppenheim [6] and Barnes [1] respec-
tively.

LeMMA 7 (Oppenheim). Suppose that @, is a quaternary quadraiic
form of determinant D > 0 and signature zero. Then either Q, is equivalent
1o one of eight special forms enumerated by Oppenheim [6], or |Q,] repre-
sents a value less than (D). The eight exceptional forms are

P, =t +ai—a’ -+ at— oy -+ 3 ye—72,

0—Qp s < 3v < b,

and seven others, all of which may be reduced to the shape
Q = p(@y+.. o)+ Qus, 24);

v s an indefinite binary form with determinant in modulus at most 1%1)[1/2.

Ly Wyt

LeMmA 8 (Barnes). If the ternary quadratic form Qs of signature —+1
and determinant D < 0 does mot represent zero, it represents a positive
value less than or equal to |+D'2.
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We note that the form P, mentioned in Lemma 7 hag determinant %,

and represents the indefinite binary form P, = £+ at—a' of determinant
5 5 9/9°

_to v

From these results, we deduce

LEMMA 9. Let @, be a quadratic form of determinant D > 0 and signature
zero, and suppose that |Q,| is boundet below. Then either Q, is equivalent
to the special form P, or else we can reduce Q, to the shape

Qs = po+..y Bt )+ Qu(@s, )5

y 8 an indefinite binary form of determinant in modulus less than ]’-7"1)}"/2.

Proof. Let the lower bound of values represented by |@,] be b; we
have supposed that b > 0. Then, given any & such that 0 <e< ;b, Q.
represents a value v such that b < |v| < b(1+¢), and taking —@, for @,
if necessary we may suppose that o > 0. By Lemma 6, we may make
a unimodular integral transformation and write @, = v(m+...)*—@,,
where (), does not represent arbitrarily small values. Let the lower bound
of the positive values represented by @; be «; then in a similar way we may

write Qs = u(%,...)"—@Q,, where a < % < a(l-+e).
We thus have '

Qu(®y, ...y 1) = W(‘”z‘l‘%s%‘(‘@m%: Dyt . )@yl @),

where v is an indefinite binary form of determinant 6, = —un, so that
|6y < ab(1+e)’, and @, does not represent arbitrarily small values;
write d, for the determinant of @,.

We note that a similar reduction may be applied to forms in more
than four variables, to put them into the shape Qu = w14 Qap_s.

By Lemma 7, b* < 1_10|6162| unless ¢, is equivalent to one of eight
particular forms; further, applying Lemma 8 to @y, we have a' < o] g,
and 5o a® < %[6,[(14¢). Thus, except in the particular cases already
mentioned, we bave b’ < Laldl(1-4e) and o < 418,1(1+¢), and so
@V < Z6P14e) (6P < B8 (14-¢)". By taking ¢ small enough,
we may ensure that (146)* < (£)°, and 8o v has determinant in mod-
ulus less than 2D, and @, has the shape asserted in the lemma.

On the other hand, all the forms other than P, excepted in Lemma 7
have this shape. This completes the proof of the lemma.

LemuMa 10. Let Q¢ be a quadratic form of determinant D and signature
zero, with |Qs| boundet below. Then we may write Qg n the shape

Qs(my, ...y @) = (0 + a3 @y -, ., Byt )+ Qul@y, -y 6),
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where either the form v, is an indefinite binary form with determinant in
modulus less than [SD"*, or the form v, is a multiple of P, = 2+ my —y* with
determinant in modulus at most 2| DI®, and where 1Q,| is bounded below.

Proof. As in Lemma 9, we can certainly write @, in the shape
w+Q,, where @, does not represent arbitrarily small values. We can
now apply the process again to @,, and obtain

Qs = (@t ok ) Falms ., Bb L) g (s, %),
We write 0, 6y, d; for the determinants of vy, v,, v,.
We now distinguish two cases.
First, if Q¢@yy ..., o, 0,0) = [’/’1""/’2]355:16:0 is not equivalent to
P,, we have || < {’ilézl as in Lemma 9; and even if y,+ y; is equivalent
o Py, we still have |8 < ¥|4,|. Hence,

12 10,0,8] < $16,0,5,] =

On the other hand, if Q4=,...,, 0,0) is equivalent to P,, f,hen
w(®, ;) will be equivalent to P,, and |6, = 2-2162[. As before, |8, <Z| 8,
and so [8,)° < (£)°]8,8,6] = (£)[D].

Lemma 11. Let @y, be a quadratic form in at least 8 variables of deter-
minant D and signature zero, with |Q,,| bounded below. Then we may
write Qon 0 the shape Qg = v+ Qyy_y, where y, is an indefinite binary
form of determinant in modulus at most (2)**|DI", and @y, .| is bound-
ed below.

(Note that (3)"'|D[* < 3D for n = 4.)

Proof. As in Lemmas 9 and 10, we can write

Qun = 1+ Yo+ Y3+ o+ Y,

where v, , ..., y, are indefinite binary forms with determinants 6, ..., d,.
Then, as in Lemma 10, we can ensure that

16 < §“:|5i+1f

Hence, [6,]" < (5)*~"6, ... 6, = ($)""|D|. .

We can now prove Theorem 3. We will first deal with the cases
2n =4 and 2n = 6, and then we will prove the theorem for 2n > 8 by
induction on #. The theorem is certainly true for 2n = 2, having been
proved by Minkowski.

Suppose then that @, is a quaternary quadratic form of determinant .D
and signature zero that does not represent zero. By Lemma 9 we can
put @, into the shape

Qu(@yy ooy Ty) = P(Lr+ U3 By+ Gry By, T2t ) Qo35 24),

J6.f < |D|.

3
13

for each ¢ =1,...,n.
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where y is an indefinite binary form of determinant —d, say, with
@ <ZD, and @, is a form of signature zero and determinant (—D/d).
By the case 2n = 2, given o, , 3, we can find ,,®, congruent to
them so that |@,] < |2D/d|"*. We have |}D/d["* > §d'*, and s0 we may
apply Lemma 4 with u=@,, ¢ =19 to find (2,2) = (B + auas+
+ @y, @, @5 +...) 80 that
Iy (20, 2) + Qo < max[27Y202, @4)Q,*] < &1 3D /A = | D]

Thus, we have shown how to choose (&, ..., %) = (@), ..., ®;) 8O that
10sl < |3D|"%. This proves that My(Qs) < |$D|"*, which is the assertion
of the theorem for 2n = 4.

We now prove the theorem for 2n = 6. Let ¢ be a senary form of
determinant D and signature zero that does mot represent zero. Then
by Lemma 10, we can write @, = y--Q, where v is an indefinite binary
form of determinant —d, say, and @, is a quaternary form of signature
zero and determinant —D/d that does not represent zero. We have to
distinguish two cases, corresponding to the alternatives in Lemma 10;
in case 1, d < |5D|*? and in case 2, p = »P,, with d =35»* and d
< BD|*®. In either case, we first apply the theorem with 2n = 4 to @,
80 as to choose w, ..., to ensure |Q,| < |}D/dY

Oasel. |}D/d™ > Ba¥"* > @, and so we may apply Lemma 4
with 4 = @,, and ¢ = p. We can thus choose @, &, to ensure that

10 = Ip+Qul < max (22, @PIQ] < @MED[AN < @IED/a°
= 1}DP*.

This iy all that we need.

Case 2. In this case, @ = »(P,+7"'@,), Where by homogeneity
we may suppose that » — 1. Then d = < H DY, so |D] > 4. We
have already ensured that |Q,] < |3D/d|"*, and so by Lemma 5 we may
choose @, 4, mod 1 80 as to ensure that

Q6| = 1P,+@Qul <max[1, |}D/d*] < |$D[.

This completes the proof for 2n = 6.

‘We now prove the theorem for 2n > 8; we will prove, by induction
on 7, that.if @y, is any form in 2n variables with signature zero and deter-
minant D that does not represent zero, then M;(Q,) < (§)"~*811D/*",
‘We have proved that this is so when 2z = 6, go our induction starts.
Suppose then that the result has been proved for forms in 2n—2
variables, and let @, be a form as above. By Lemma 11, we may write

Qo = 9(@1+ a1 @ty Byt )4 Qono(y, vy Ba)s
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where p is an indefinite binary quadratic form of determinant —d, say,
with |d]" < (—:—)"2""1D|, and @y, , is of determinant —D/d and satisfies
the conditions of the theorem. By our induction hypothesis, we can choose
Dy, vy Bay, (Mod 1) to ensure that

[Qon_ol < (H)™9P3LD/jaHe=n,

Hence, we can apply Lemma 4 with ¢ = y and 4 = Q,, , to ensure that
I Qunl < mmax[27H, AL D ).

NOW, dl/zm g(%)“"u)/d]“““”” < (%)("'"5)/6[%D/d]”"'m"l), since n>4 and
1> (), and so '
I’lP’i’QZn—zl < dlld‘(%)(""5”6[%D/d[l/4(n_n — d(n—z)/‘i(n—l)(%)(n—s)/éi%D‘lﬁ(n-—l)
< (%)(n—s)jﬁ+(n-—z)/6|21‘_D|1/4(n—1)IDI(n-Z)/M(nA]) < (%)(n—4 /3, ]%Dll/zn
’
as required, since m >4 and } > (5)° as before.

This completes the. proof of Theorem 3.

I have made no effort to prove best possible estimates for My (Q,n)
in Theorem 3; in fact, the results I have given can be improved quite
eagily for all 2n > 4.

5. In this final section we will prove

THEOREM 4. Let @y, be a rational form of signature zero and determinant
D £ 0 that represents zero properly. Then ’

M(Qen) < [D[™.

To prove Theorem 4, we need a reduction lemma; while I am about
it, I will prove a stronger result than is actually needed for the proof
of our theorem. The shape of the reduction described by the lemma makes
it clear that the minimum asserted by Theorem 4 may easily be isolated.

LeMMA 12. Let Q,, be a rational quadratic form of determinant D # 0
and signature zero that represents zero. Then we may transform Q, inio
the shape

Qunl®25 .+ vy Do)
= H (0 @h 0y - ah by o - Gy @) -+ Ho( s + g+ B Fo
A Hoy (D1 - g B, -+« ) Tz~ Qi
where —} < dai <%} and 0 < H; for i=1,...,m and §=2i,...,2n,
H; is an integer multiple of H;_, for ¢ =2,...,m,

m
and either m = n, in which case Quu_gy 15 omitied and D = (—1)’”AH (3H,),

i=1
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or else m = n—1 or m = n—2, in which case Qun_om 18 a binary or qua-

ternary form of determinant A = D|(— ” (3H,)* and signature zero
i=1

that does mot represent zero.
Proof. Q,, represents zero, so it represents zero at a prmutlve point;
after a transformation, we may suppose that @,,(1,0,...,0) = 0. ’]‘hus,

Qyn = @y(linear form in @, ..., %y,)+ (quadratic form in @, ..., m,).

Since @,,, is non-singular, there is at least one term involving x;, so we may
suppose that there is a term in z,@,. Thus, we may write

(*) Qo = (4 @@y +...) (224 O Qana(@s; ..

where h, a;, b; are appropriate rational constants, and @,,_, is a rational
form of signature zero and determinant —4D/R. By absorbing integral
multiples of @, ..., &, into z,, we may suppose that each [b] < 4, and
taking a suitable sign for x,, we may suppose that & > 0. It may be
possible to express @,, in the shape () in more than one way; let H; be
the lower bound of the possible k. Since @, is rational, H, is obviously
attained, and so non-zero; we pick on a definite expresgion

an = Hl(wl'*" . ) (w2+ bsma + (K] ‘l’" bznmm) '|‘an—-23

and assert that, when H, is minimal, all the b; must vanish. In fact, if a
b; fails to vanish, it is a fraction, and g.c. d. (1, by,..., by) = v, say,
is at most 4. We can then find a unimodular integral transformation
not involving &; which replaces (2,4 bsa;4...) by yu,. Since y < §, this
contradicts our assumption that H, is minimal. We have thus

an = H1($1+ “;mz“l“ aéma‘f‘- o + a’énwzn)mz+ Q27lr~-2(m3} e

By absorbing integer multiples of a,, ...
lajl < for § =2, ..., 2n.

We may now repeat the process until we are left with a form Qu_ym
that does not represent zero; by Meyer's theorem, @y,.., i8 at most a
quaternary form. We have thus put Q,, into the ghape postulated in the
lemma; since the relations between the determinants are obvious, it only
remaing to prove that H, divides H,,, for ¢ =1,..., m—1. For this,
it will suffice to prove that H, divides H, if m > 2, N ow by the minimal
property of Hi, aj = 0, for otherwise Ty, Ty a3 H, may take the roles
of @, @, Hy. Thus, if # is any integer, we have

Hy [(@ 4 7w5) + ag(a,— m,) a2+ aﬂf%‘l‘n-](”r“%)+1{2(9”5+‘-w)wr]'

= (Hy— rHy — ay Hy) 0y 2, -+ Hy(r + a}) w30, + (berms not involving ),

bﬁws 'i"' . ’ mm)y

) Wap) -

) Ty, into @, we may ensure that
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and so, again by the minimal property of H,, H, < |Hy—+H, —a; Hy|
= |H,—rH,| whenever H,—rH; # 0. It follows that H; divides H,;
go the proof is complete.

For our actual application, we need the following corollary:

COROLLARY 13. If Q., i a rational quadratic form of determinant
D # 0 and signature zero that represents zero, then we can put Q,, tnio
the shape
: anz‘"P(wr{'---;-’”z‘f‘---)‘f‘an-z(%;---;wzn)y
where either p = H (@, +...)@, with (JH)™ < |3D|, or ese v is an inde-
finite binary form whose determinant —d satisfies 1A < |3D|.

It is easy to deduce this corollary from the lemma. If m = » in the

I] GFEHY < iﬁ(%Hi)z == |1D|, and we have the

first cage of the coro]lary I m # n, then @y, s, is a form in 2n—2m
variables that does not represent zero, and so by Lemma 9 it represents
a binary form ¢ whose determinant & satisfies |8] < |4/Y™™; then
[8" ™ $H,)*™ < ID|, and so either |§|" < |}D] and the corollary is true
with y = ¢, or else (}H,)*" < |1D| and we may take p = Hy(;+...)%.

It is now an easy matter to complete the proof of the theorem. We
must prove that, if Q,, is our form, and 7, ..., &y, is any 2n-tuple of real
numbers, then we can find #, ..., ,, congruent to Ty y oery Ty 8O that

[@on(@1y .oy Ban)| < |i‘D11lm'

Note that Theorem 1 is obtained immediately by combining Theorems
2, 3 and 4; we have already proved Theorems 2 and 3, so, when we prove
Theorem 4 by induction, we may assume not merely Theorem 4 but the
whole strength of Theorem 1 for forms in 2n—2 variables.

We split into cases according to the alternatives in Corollary 13.
First, suppose that @, = 9-+@u_y, Where y has determinant —d,
|d|™ < |3D|. By Theorem 1, we can pick @, ..., &,y mod 1 so that [Qun
< 13D/dVC™3, We may now apply Lemma 4 with u = Q_s, to choose
@, 7, mod 1 go that

Q2nl = |9+ Qanal < max[@, d¥|3D[a"" "]
= max [d1/2, d(n-z)/4(n—1)&Dlm(n_l)] < liDP/m,
gince d" < |}D|. This is all that is required.
In the other case, we have
Quy, = H(wy+...) 03+ Qan_s»

where (}H)™" < [1D|. As before, we first pick @, ..., %m modl go that
|Qan—s| << | D/H?MC™D, We have now to pick @, = wg and #, = m; . First,

Acta Arithmetiea IV, . 7

lemma, then (3H;)™
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suppose that y == 0; we simply choose @, 5o that |m| < %, and then oy
50 that [Qu] < [EHa;zl < |}H| < |}D[™™. If on the other hand a; =0,
we can certainly ensure that |Qy,| < [D/H M by simply taking , = 0,
and we can ensure that [Qy,| < |$H| by taking @, = 1 and then choosing wl
Thus, we can certainly ensure that

(Qan| < min[|3H|, | D/HME"H] < |3DI".

This completes the proof of the theorem in all cages.
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