Some remarks on Euler’s ¢ function
by

P. Erp0Os (Budapest)

Recently Schinzel [9] proved the following theorem:
Let g, 0y, ..., a be any finite sequence of non-negative integers or infin-
ity. Then there exists an infinite sequence 0f integers ny < my, << ... such that
_ p(mi)

@ lim ¥ =

. for 1<<i<gk.
Lo @ (M Hi—1) SO

He also shows that the same result holds for o(n), the sum of divisors
of n.

By combining the method of Brun with that of Schinzel I can prove
that (1) holds for all multiplicative funetions n%(n) which satisfy
(a) f(p)~>1  as
(b) D i —1] = oo

by
where p runs through the sequence of primes.

I omit the proof, which is not difficult. One can now ask .the question
whether the conditions (a) and (b) are necessary that (1) should hold.
Clearly (b) cannot be dispensed with, since if (b) does not hold then
f(n-+1)/f(n) is bounded, bus it is not clear to what extent (a) is essential,
e. 4., I cannot decide whether (1) holds for d(n) (the number of divisors

of n). In fact I cannot prove the existence of an infinite sequence ny sa-
tisfying

o
D — oo,

for a certain sequence ;> 1

a(ne+1) fd(ng) = 1(%).

(1) In fact one can conjecture that the quotient d(n-+1)/d(n) (1< n < 00)
is everywhere dense on the positive real axis. I can prove by Brun’s method that
d{n+-1)/d(n) is dense in a certain interval. The idea of the proof is as follows: Donote
by d’(n) the number of divisors of n composed entirely of prime factors < nl/10,
It easily follows by Brun’s method that ' (n--1)/@(n) is dense in (0, oo). (learly

dn+1) /dm1)
dw) /" dm)

can take only a bounded number of possible values. Thus our assertion follows by
a simple argument.
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Using Brun’s method I can prove (1) for »(n), where v(n) denotes
the number of prime factors of n. :
Let y dencte Huler's constant, ¢* = [J(1—1/p)~"? where p, runs

. »
through all primes. A simple computation shows that o <y; login
denotes the logarithm iterated k-times. Now we prove
THEOREM 1. Let f(n) tend io infinity so that

F(n) < logsnflogsn+ (a—y+ o(1))logn/(logsn)*.
Then )
lim ( max g(n+4)/ min g(n+4) = 1.
oo 1<i<(n) 1<i<i(m)
Next we show that Theorem 1 is the best possible. In fact we prove
THEOREM 2. Put

f(n) = logsnflogsn -+ (¢4 a—y)logsn[(loggn)* (¢ > 0).
Then

Lm( max @(n-+4)/ min e(n+§) = ¢

oo 1<i<i(n) 1<i<i(n)

By similar methods I can prove

TaeorREM 3(%). Let limg(n)/logsn = 0. Then there exists an infinite
sequence ny such that for all 1 <1 < g(ng)

(s 4)
@) 1= S i)

< l+4e,, where e —>0 as k- oo.

Theorem 3 is the best possible, since it can be shown that if
limg(n)flogsn > 0 then (2) does not hold, and also if limg(n)/logsn = oo
then
(3) lm max g(n+i)lp(nti—1) =ococ and

n—>00 1<ISO(N)
lim min ¢(n+i)/ep(n+i—1) =0.
n—o0. 1<i<<g(n)

‘We omit the proof of all these results. It would not be difficult to
formulate and prove the analogue of Theorem 2. All these results hold
with minor modifications also for o(n).

Denote by A4 (n) the number of solutions of ¢(l) = n. Several decades
ago Carmichael conjectured that there exist no integers with A (n) = 1.
This conjecture is still unproved and seems very deep. I have corresponded
with Kanold and Sierpifiski about finding infinitely many integers for
which A (n) = k. I prove the following

(2) I stated Theorem 3 incorrectly in my paper [5].
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THEOREM 4(). If there exists an integer m with A(n) = k then there
ewist infinitely 'many such integers.

Sierpinski conjectures that for every k> 1 there ave integers for
which A (n) = k, and that for every % > 0 there are such integers that
o{x) = n has & solutions.

Pillai (see P. Erdés [1]) was the first to prove that lim 4 (n) = oo,
and that for almost all integers A (n) = 0. Heilbronn observed (in a letter
to Davenport) that

I have proved ([1]) that for a certain ¢> 0 there exists an infinite sequence
7y 50 that 4 (nm) > i and I have conjectured that the same holds for
every ¢ < 1().

One can conjecture that for n > my(e)

l.\{):

A(k) > n*e,

B
i
—

. n -
but I cannot prove even that ' 4 (k)* > n'**, though perhaps this is not
k=1

very difficult. All the results here stated hold also for ¢(»), and the same
unsolved problems remain.
It is not difficult to prove that the 1nequa11t1es

(4) lp(n-+1)—

both have infinitely many solutions for a certain ¢ < 1, but I cannot
prove that they have infinitely many solutions for every ¢ < 1.

The proof of Theorem 2 is similar to but slightly more complicated
than that of Theorem 1; thus for the sake of simplicity we prove only
Theorem 1. Denote by 2 = P, < P, < ... < P} the primes not exceeding
f(n), by @1 <@, < ... <@, the primes of the interval (f(n), 1}105%),

and by R, < R, < ... the primes greater than }logn. Put 4, = [P,
define i=l

4 < f(n) < Appa.

o(n) <’ and |o(m--1)—o(m)] < m®

{*} Kanold and Sierpitski proved that A(n) = 2 for infinitely many integers
and Bierpifiski found integers m satisfying 4 (n) = k for many values of k; he did
the same for the equation o(y) = n. Schinzel [10] proved that A (n) = 3 for infinite-
ly many integers .
) () I can prove that the number of solutions of @) = n is less than
nexp(—clognloggn/logan) where expz = ¢® (see [4]).
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Now we show that for every & there exists an n, = ny(z), such that for

every n > no there exist f(n) consecutive integers m-1,..., m-f(n)
satistying (1 < 4" < f(n))
—2— <m<n,
© pim+) o1
m-+i
— - 1 1—=).
@ ”')n(l i) Tmrr SO ( Pi)
Clearly (5) will prove Theorem 1.
Define 81, 85, ---; 8y PY .
8 i 1 8341 1
[ 1 e
— ==+ 1—=- 1——
,U(l Qh) (+2)U( Pi)>l]1( Qh)’
(6) ” 1 sp4+1 1
(=g = (3] [ b=3)= 1 P-¢)
1— ) > (14— 1—=|> 1— |,
h=8; _1+1 @ 2 P]l P hzﬂ+1 O

where the []’ indicates that P runs through the primes P < P;, P1i.
It may happen that s; = s;_,. This will in fact be the case if and only if

1 ( . 1
— <1+ ) (1—¢).
Q% 141 PLZ P
(7) clearly implies '

i
3 & 1 \?
[
1 1 8;.1+1

i=

(7) ' 1—

But since Zz/zp < ¢, (7') and therefore (7) is satistied only for

off(n)) ¥
First we have to show that the s; are all defined. Since (7) is satisfied

only for o(f(n)) ¥'s, we have from (6)

Sf(m) i im)
1 £\f) 1 \/m i

- = 1 ’(“)(1 —) (1——) —.

[] (1-gp) = roarfes) [T 0-5) [ L

Now by a theorem of Mertens(®)
; .

[T(1=%) = s o)eosssn

q=1

= (1+o(1))e ™ [logsn

1
(5) The theorem of Mertens in question states that ” (1——;) = (1+o(1))x
n<Y

xe~*/logy (e.g. see [8], p. 351).
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and
1(n)

: 1\~ FmP
eIt -

PPy,

o)

Thus by a simple calculation

sf(n)

”(1"@2)2(1“() (1+2) login) °

h=1

£ /™
= (1+o(1)™ (1 + E) / logs .

Now, again by the theorem of Mertens(*) and the definition of the s,

! 1 f(n) |8 7
(1— Q—) = (14 0(1)) logsn/logyn < (14-0(1)f'™ (14 5 logyn
Bl h 3

or ng(n) < }logn, whence the s;, 1 <4 < f(n), are all defined. Put

8 1
B; = n @ B= n @n

&_1t1 8jm)+1
Let m satisfy

8)

(if 8; = 8;_; then B; =1).

ni2 <m<n,
m-+14 = 0 (modBy),

m = 0 (mod(4,B)),

1<i<f(n).

Such an m exists, since the moduli are relatively prime and by a well

known result on primes (e. g. see [6], p. 341; see also [12], p. 56) [ p < 4%;
DT

thus the product of the moduli is less than 400872 < u /2,
Bvidently m4-4 ean be divigible by at most 2lognflog,n R’s (since
R > tlogn and m-+{ < 2n). Thus

- 1 9 \2logn/logan
(9) L;I(1—E)>(1_@) = 1-o(1).

. From (8) it follows that for P < Py and 1 <1
only if Pli. Thus from (6), (8) and (9)

5 (1+—Z—) ] (1- +)

< f(n), Plm--i if and

p(m+1)

m—]—z (1+ 1))

—_
o] o
—_~
Ew
p—
T
\L

= (14o(1)
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if ¢ does not satisfy (7). If ¢ satisties (7), then from (6), (7), (8) and (9)

- 3] <20 <o -2}

k)
Thus in any case (5) is satisfied, which proves Theorem 1.
Now we have to show that Theorem 1 is the best possible. Let

plm+1)
< Tmri

log;n logzn
n) = — _
f(n) logn+(+ )(log'n
for some ¢ > 0; we shall show that
(10) lim( max ¢(n44)/ min ¢ (n+3)) > 1.

— 1gigt(n) 1<i</(n)

At least one of the integers n+14, 1 < i < f(n) is divisible by 4;. Thus
if (10) were false, there would exish for every &> 0 arbltranly large

integers » such that for all 1 <4 < f(n)
p(n+19) , 1
(11) o < (1+8)P[<Z(1— F) < (L4o(L))(14-&)e 7 /logsm
We have by (9)
pnti) 1 1
(12) ar = (o) ”(1—?) H(l—é-).

Pin+i Qn+i

Clearly for each @, there can be at most one of the numbers n4-1
n+2,...,74f(n) which are divisible' by @; (@; > #(n)). Thus by (11)
(12) and the theorem of Mertens ()

I(n) .
(L0 (1)) (L+ &) Mo [(1ogyny® > = qyj:f;)
14
1\@P+y) 1
> (o) [T(1-2) .
( o( )) ll P ﬂ [

= (140 (1))®e=™ og,n,

which, as can be seen by a simple computation, is false for sufficiently
small e. This contradiction proves that Theorem 1 is the best possible.

Proof of Theorem 4. Let 4(n) = k. We shall prove that for all
but o(z/logw) primes p <o A[(p—1)n] = &, and this will clearly prove
Theorem 4. If p > n-+1 and @(l) = n then ¢(pl) = (p—1)n (since all
prime factors of I are < nm-1). Thus A[(p—1)n] >k The solutions
¥y =pl of p(y) = (p—1)n may appropriately be called trivial solutions.
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Thus our proof will be complete if we succeed in showing that for every ¢
and @ > zple), for all but ew/loga primes p <, p(y) = (p—lw hag
only trivial solutions. First of all we can assume that for (¢ sufficiently
large)

(18) B>1t=1s), p—1z0(modk).

To see this we observe that it is well known and follows easily from Brun’s
method (see [11]) that the number of primes p <, p = 1 (modl) is
Tess than 6,4 /p(l)log(z/1). Thus the number of primes p < not satisfying
(13) is less than

200 1 1 ul o e i

e —— + 3 (*2' +1) < T
Ld I 2 logw

log K2t Fep (k) 212kl ’ g

(we take first % < #**, secondly %’ > &' and use the fact that the
number of integers =1 (modk?) and less than » is < @/k*+1.

Now let 2 < p < @ and let p satisfy (13). Let y be a non trivial
solution of ¢(y) = (p—1)n. If y has r distinet prime factors, then clearly
@(y) = 0 (mod?2™~?), and thus p—1 is divisible by a square > 2r% [m,
Thus )

Fr<mt or r<tnt2.

Tet y=¢g...q L<gR<..<gnH 7 <Lt++n+2. Since y=p
> g we have ¢&r > a®BEH) glso o, <2 since otherwise p—1
— g (y)/n would be divisible by a square greater than (1/n)a(/9¢+2 > ¢
for sufficiently large @, which contradicts (13). Thus there must exist
a prime ¢ > 2%, § = }(t+n+2) satisfying

(4) o <p<z, g¢>a (@P—Ln=0(mod(g—1), p#g.

To complete the proof of Theorem 4 we must show that the number of
primes p satisfying (14) is < (e/2)(w/1ogw). First we prove the following
LeMMA. The number of solutions of

(15) (p—1)n =a(g—1), p<wa, o F#n

8 iess than

——

a(loga) P

where c; = cy(n) depends only on n.

The proof follows easily from Brun's method (e. g. see [2], p. 540)
and we only outline it. Denote by r,,7,, ... the primes of the interval
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(n, #™) where 7, is sufficiently small. Tt ¢ > na™ satisfies (13)

hae we must
(16) ¢==0(modr;), g¢g==1l—nja (modr;), g¢< nrje+1
((16) follows from the fact that both p and ¢ are primes and 2" < p < x).

If 7 ta{a~mn), then the two residues in (16) are different, and thus we ob-
tain the lemma by a simple application of Brun’s method.

Now we split the number of solutions of (14) into three classes. In
the first class are the ¢’s greater than #'~™ where 7, is sufficiently small
Formula (14) then becomes '

(p—1)n=a(g—1), p<z, 1<a<nr™.

Thus by our lemma the number of solutions of (14) of the first class is
(for sufficiently small 7,) less than
[

- (loga)y®

4 loga’

- 1 1 x

an ST (Y <an s
- 1 7a )

1<asns® @ pla(a—n) p 1Oga’

aEn ”

To prove (17) we observe that

L) = STl 162

ﬁ::;, nafe—n) g:}b nia pla~-n
N 1 A 3
< 3 [ g rom<s 3 [Tfee ) o
a=1 pja

a=1 pja
3@y & @
< MY rom <y 322 ,
a @ LTINS S T o <y,

and (17) follows by partial summation.

The solutions of (14) of the second class are the ¢’s for which
r(g—1) < %Ioggsv (g < #'~™). It follows from Brun's method (see [117)
that the number of primes p < = satisfying -

p<a, g<a, p= 1{mod(g—1))
is less than
(18) I L ﬁa_el_ogi
logzp(g—1) qlogx

since by a well known result of Landau ([7], p- 218)

Y
log,y

o(y) >

Acta Arithmetica IV,

0
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Thus by (18) the number of solutions of the second class is legs than

cqwloggmz'i cgmlogzmzo( @ )
loga q  (logm)*" logw

(19)

where the Y indicates that ¢ > a°, »(g—1) < flog,g. Formula (19)
follows from the fact (see [1]) that if ¢ < ¢, < ... is ?he sequence of
primes satisfying »(g,—1) < : log,q,, then g, > n(logn)'*".

For the solutions of the third class we have

n(p-1)=a(g—1), p<w, & <g<a™,  w(g—1)>3loga.

We split the solutions of (20) into two subclasses. In the first sub-
clags are those for which v»(a) > %log,#. Here we have
»(p—1) = v(a)+v(g=1)—»(n) > Llog,w—»(n) > Slog,a.

It is known (see [1]) that the number of primes p << w satisfying
»(p—1) > (1+e¢)log,x is o(z/logz); consequently the numberlof solutions
of the first subclass is o(«#/logz). The number of solutions of the second
subclass is, by our lemma and the theorem of Mertens, less than

() o< o X =l

(20)

@ ’

P gy

pja(a—n)
(the }" indicates that o <« and »(a) < #log,®), since
[(2/3)logy] [(2/3)1ogy]

k .
vt 2 i) / W< A\j (logs+ e)* /5! < (logw)™®.
LJ @ k=1 p< p. k=1

. ”
Thus from (17), (19) and (21) we finally find that the number of solutions
of (14) is less than $ex/loge, and thus Theorem 4 is proved. .
By similar but more complicated arguments I can prove that if
there exists an integer n with 4 (n) =k, then the number of integers
7 < o satisfying 4 (n) = k is greater than cx/logz for every ¢ if 2 > wy(c).
By more complicated arguments I can prove that for every & there
exists an 4 = A(e) such that the number of primes p <z satisfying

p <, El(mod(q—l)), g>A

is less than ezflogw. Another theorem in this direction is the following:
Denote by »(k,n) the number of prime factors of » not exceeding k;
then for every & there exists an A = A(e) such that the number of in-
tegers n < @ for which

(I—e)logk < v(k, n) < (1+¢)logyk

does not hold for some % > 4 is less than ex. This result is known. (see [31).
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Similarly the number of primes p < « for which
(A—e)logek < »(k, p—1) < (14 2)log,k
does not hold for some % > 4 is less than swfloga.

Finally I can prove that for every ¢ there exists an 4 = 4(e) such
that the number of integers # < for which » = 0 (mod (p—1)) holds
for some p > 4 is less than. ex. From this it is easy to deduce that the
density of the integers which can be written as the least common multiple
of integers of the form p*(p—1), 0 < a is 0.

®
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