On the Kusmin-Landau inequality for exponential sums
by
L. J. MorpELL (Cambridge)
Let throughout this paper aj, a,,...,a, be n real numbers. Put
= e(x), and
(1) . 8 = 6(2a))+ e(2as)+-...+¢(2ay,).

e’LZ'

A very important question in both analysis and number theory is
to find estimates for |§|. These of course depend on the nature of
the a’s; and simple results have been found when the a’s satisfy the
conditions

(2> O<6<a2—a'1<'-'<a’n_an—l <¢<n~

The question has been of interest to quite a few mathematicians
including van der Corput, Kusmin, Landan, J: arnik, Popken, Karamata
and Tomie ().

When ¢ = =—6 in (2), we have
(3) 18] < cot £6.

Previous estimates for this § had been found by van der Corput
and Kusmin, but (3) is due to Landan who showed that it was a best
possible result. When ¢ is not specialized in (2), estimates for |8| have
been found by Karamata and Tomic. They give results of various kinds
6. gy

(4) 218} < cot 36+ tan i,

ie(—0)e(2a,)

®) 28— 28inf

< cotO-+tan ip.

(*) References to the first five are given by Koksma in [2]; the remaining two
have written a joint paper [1].
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Other results were found by Popken. Write Ada, = ay 11— Oy
A%a, = A(da,), ... He imposed the conditions
6) 0 <6< da, <[t (r=1,2,...,n—1),
Aa, =0 (r=1,2,...,n—2),
(7) APa, =0 r=1,2,...,m—3).

The last condition is dropped if n
n < 2. He then proved

(8) 18] <
a best possible result.

All these authors prove their results geometrically except that
Landan translates the geometrical argument into a transformation of
the series. Simple as his method ig; it does not really reveal what underlies
these results, and it might not be easy to deduce Popken’s result in this
way. I notice another simple method depending upon a well known and
obvious transformation of a series. From this all, the estimates above
and some new ones follow in a natural manner.

Lot Ay, Agy-ies Ang iy gy oeey i D@ tWO sebs of numbers. Then evi-
dently, if 4 = 07 Ung1 = 0,

n
2 Aol l/‘r+1) = 2 el A= 2r_y
r=1

Estimates for either sum follow easily if either [w,— fir| O |A—An_y]
is a monotone sequence. Replace A, by A./(u,— piry1), then

' A A
(9) ’2 }’ N Zl ( ';T'f‘l - /’Lr—l_ll'{'r).

Put u, = 4 in (9) which then becomes

21' Z (a A;M Ai:iz,)'

=1

< 3, and both the last are dropped if

1/sinf,

Subtract 3 from each of the terms in the bracket. Then

n
A +}*r+1 Z’r-—l'l‘ }-r
2 —_—
2’1* 2 (/1 . z,_l—ﬂr)

(10)
r=1
e ) ( Ayt )
——11()‘1 2+1 +l 1_Z1_A%)+
n—1
}-r"" lr+1_ Zr—1+ A
+ 2wl
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Put now A, = e(2a,). Then

(11) 28 = e(2a)(1+icob(a,— @)+ e(2a,)(1 — icot (@, — an 1))+
n-1
+ D) ie(2a,)(cot(a,.;— a,)— cot(a,— a,_,)).
r=2

It is now easy to deduce inequalities for |S] by imposing conditions
on the a’s. Thus with the condition (2)

I<tb<y—a <...<tp—0a, , <p<m,

we have at once the results of Karamata and Tomic. Since cotx decreases

steadily in 0 < 2 < =,

1 1
<

™ Qp— @y
S0 (o — @) ntn1)

—+ cot (@ — a;) — cot(

Qg — Oy Ay~ Ay, _
gcot( 5 )—}—tan( "2 1),
and so

2181 < eot — +tan§

For a slight modification of this result, put
n—1 -

8 = je(2a)+ D e(2a,)+}e(2a,).

r=2

(12)

Then from (11),

21| < [e0t(a3— ay)| 10t (@n— @p_y)| + cOb(ay— a;) — COB(ay— Bn_,) -

< m/2, then
< cotf.

N If we now impose the condition @
(13) 18]

This is a sharper result than (4) with any ¢
We also can improve on (5). Since

< =2 gince cotf < coti(6/2).

. ginz+icosx ie(—x,
1+ icoty = + = (_ ) y
sing sinz

we have from (11) that if ¢ < =/2,

1e(2a1) 6(a; — a,)
sin (a,— a,)

ie (2‘1%) ¢ (an_‘ a‘n—l)
sin (a, — ay,_,)

28— < 0t (@ — a;)— coti (@, — ap_y)

< cotf—cotg.
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We give in (14) below a new result which can be an improvement
n (18). Let A be any number. Write (10) as

22'1 _Al(’l‘“z +1)+/1( ”“+l")+

j'n—l'_l'n
N Aty
+Zur~x>(,I W
) T T

Then with 1, = e(2a,), 2 = ¢(2a), a real, and with the conditions (2),

Zr—1+ Zr) /1 (A'IL-1+ Z-n _ 11+ j-2)
Arhl“‘ﬂr ln—l"‘}'n '11—‘12 ’

- an—l)l -+

»— @)|(cot (@ — ay) — Ot (g, — ap_y)) -

2|8'| < 2|sin(a, — a)||coti(a, — a;)| 4 2[sin(a, — a)||cot(ay

+2 max |s1n
=2,

e as

If we impose again the condition ¢ < =/2, we have

(14) 181 < 2 Tosx Ism(aT——a){cotB

We come now to Popken 8 result. Write (9) a

7
j‘l ) (ln ) ( lr_l )
I = RO : . —
TZJ " #l(ﬂl—,uz ™ o Z Nt ta— 1ty

Put 1, = e(2a,), p, = ¢(260,) with real 6's. Then

n—1

¢(2a,) ¢(2ay_1) )
D elaa) = 1 0(@0,—20) | 1= e(2 1—20,) |

=1
(24,) o )
o(26, .
"'Z (e(za —e 26,+1) o(26,1)— e (20,)
Put now '
(15) : 2, = 6,4 6,1,
and so
n-1
1 1
2| Mea)|€ o g
20| < i+ W0

+ y' 1 I
o sin (0, —0,_y) 8in (0., —0y)
‘We impose now the conditions

(16) 0< =0, < .o < Op—by_; < 7/2.
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K

Then
5 njle(za) <1 1, 1 1.
L4 TS sin(0,—6,) ' sin(0,—0,_y)  sin(6,—6,)  sin(6,—0, ;)

and so changing » into n-+1

n
(a1 | X 6(0:+0r.0)| < 1/sin(6,—8y),
T=1
provided
(18) 0 < 0y—0; < oo < Oy —0, < m[2.

This result (17) is best possible. For take 8, = (r—1)6. Then (17)
becomes

"Z‘e(zr—l)og < 1/sind,
r=1
or
e(6)—e(2n+1)0 1

1—6(20) I\ Sin g’

or
1
sin f

sinnd

sin 6 ’

and equality holds if nf = =/2.
We now investigate what (17) becomes when expressed in terms of
the o’s and the conditions that (18) imposes on the a’s defined in (15).
‘We put 0, = 0 and then show that it suffices to take the conditions

(19) <o, <nfd, O0<a—a,_ ;<=4 ((r=2,3,...,n),

(20) a—3a, =0, a—3m+dm >0,

(21) Aa, = a, ;—8a, ,+3a,,—0, =0 (r=1,2,...,2—3).

The condition a; < =/4 is redundant since (20) and (19) give 3a;—a,
< wf4. Next from (15) with 6, =0,
(22) 0, = 20y, 03 = 2a,— 2a;, 0, = 2a5—2a,+ 24y, ...,
Op = 2ap_1— 20, _o+...+(—1)"2a;.

The condition 0 < a; < n/4 is obvious from (18). The other conditions in
(18) become -
23) O0<a < ay—2a; < a3—2a,+20; <

< a,,_oa,,_1+ A (=120, < wfd.
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It is easy to see from (19) that each of these terms is < w/4. Thus
U—20; = Gy Oy —ay < T[4, Gg—20+20) < G ay— (24— 20y) < /4.
Generally by induction
tp— 201+ .. (—1)""2a,
= = Gy~ (@ — 2o (—1)720,) < wfh.
Algo the terms in (22) form a monotone sequence since
Op— 281 (=120, — (g~ 200y +. ..+ (—1)*2ay)
= Op— 80y_q+ 4y — 4Cy_y ...+ 4 (1),
>ty — 3 3+ 4a, 4.+ 4(—1)"a

on substituting for a, from (21) with »—3 in place of . On continuing

the process, it suffices to show that both
ay—3a,+4a, >0, a,—3a, =0,

and these are given in (20). Hence we have proved that subject to (19),
(20), (21),

(24) | ) e(2a,)

=1

< 1/sin2a,.

We shall now deduce Popken’s result. We put @ = a-+4,, a
= a+4,y,...,a, = a+4,, and take 20 = 4,—34,. The conditions (19)
become

(25) 0,<A,—A,_1<1r/4 (r=2,3,...,m).

The conditions (20) become
A,—34,—24 20, A;—34,4+44,4+2a>0.

The first here holds with equality sign. The second iaecomes

(26) A4, = A;—24,+4, > 0.

The condition (21) becomes

27 L4220 (r=1,2,...,n—38),

The result (17) now becomes Popken’s result

| Dotz
Pl

< 1/sin(4;—A4,),
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and (25), (26), (27) are Popken’s conditions. It may be noted that Pop-
ken’s conditions A4, > 0 are redundant. Thus if we add 4’4, >0
and A°4; > 0, we get A4, > 0 ete.
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