### Bibliographie

[1] R. Brauer, Beziehungen zwischen Klassenzahlen von Teilkörpern eines galoischen Körpers, Math. Nachr. 4 (1951), p. 158-174.

2] W. Feit, Characters of finite groups, Benjamin, Inc., New-York, Amsterdam 1967.

[3] N. Moser, Unités et nombre de classes d'une extension galoisienne diédrale de Q, Sém. Th. des Nombres, Univ. de Grenoble 1974, et Math. Sem. der Univ. Hamburg 48 (1979), p. 54-75.

[4] J. J. Payan, Sur le théorème des indices de Brauer-Walter, Sém. Th. des Nombres, Univ. de Grenoble 1975-1977.

[5] C. D. Walter, Braver's class number relation, Acta Arith. 35 (1979), p. 33-40.

LABORATOIRE DE MATHEMATIQUES PURES-INSTITUT FOURIER UNIVERSITÉ SCHENTIFIQUE ET MÉDICALE DE GRENOBLE 38402 St. Martin d'Hères, France

Regu le 8, 6, 1978

(1079)



# Limit theorems for uniformly distributed p-adic sequences\*

by

JEFFERY D. VAALER (Austin, Tex.)

1. Introduction. Let  $Q_p$  and  $Z_p$  denote the locally compact field of p-adic numbers and the compact ring of p-adic integers respectively, where p is a fixed prime. We suppose that  $\mu$  is Haar measure on  $Q_p$  normalized so that  $\mu(Z_p) = 1$  and that  $| |_p$  is the p-adic absolute value normalized so that  $|p|_p = p^{-1}$ . For  $J = 1, 2, 3, \ldots$  and  $j = 0, 1, 2, \ldots$  ...,  $p^J - 1$  we define

$$\varphi(j,J,y) = \begin{cases} 1 & \text{if } |y-j|_p \leqslant p^{-J}, \\ 0 & \text{if } |y-j|_p > p^{-J}. \end{cases}$$

Thus  $\varphi(j, J, y)$  is the characteristic function of the sphere  $S_j^{(j)}$  centered at j and having radius  $p^{-J}$ . A sequence  $\{x_n\}$ ,  $n = 1, 2, 3, \ldots$ , of p-adic integers is said to be uniformly distributed in  $\mathbb{Z}_p$  if

$$\lim_{N\to\infty} N^{-1} \sum_{n=1}^{N} \varphi(j,J,x_n) = p^{-J}$$

for each J and j. We define the *p-adic discrepancy* of  $\{x_n\}$ ,  $n=1,2,\ldots,N$ , by

$$A_{N} = \sup \left| \sum_{n=1}^{N} \varphi(j, J, x_{n}) - Np^{-J} \right|$$

where the supremum is taken over all  $J \ge 1$  and j,  $0 \le j \le p^J - 1$ . It is well known (see [3] or [4]) that  $N^{-1} A_N \to 0$  as  $N \to \infty$  if and only if the sequence  $\{x_n\}$  is uniformly distributed.

Let  $\omega \in Q_p$  and let

$$\omega = \sum_{m=1}^{\infty} a_m p^m = \sum_{m=1}^{-1} a_m p^m + \sum_{m=0}^{\infty} a_m p^m$$

<sup>\*</sup> This research was supported in part by the National Science Foundation, grant MCS77-01830.

be its canonical representation. We define the integer part of  $\omega$  to be the p-adic integer  $\sigma(\omega) = \sum\limits_{m=0}^\infty a_m p^m$ . If  $\{y_n\}$  is a sequence in  $Q_p$  we may consider the distribution in  $\mathbb{Z}_p$  of the sequence of integer parts  $\{\sigma(y_n)\}$ . Now suppose that  $1\leqslant K_1 < K_2 < \ldots < K_n < \ldots$  is a sequence of positive integers. The purpose of this paper is to investigate the distribution of  $\{\sigma(p^{-K_n}\omega)\}$  for  $\mu$ -almost all  $\omega$  in  $Q_p$ . Our results give p-adic analogues of theorems proved for real lacunary sequences by L. Gál and S. Gál [2] and by Philipp [5], [6]. In particular, let  $A_N(\omega)$  be the p-adic discrepancy of  $\{\sigma(p^{-K_n}\omega)\}$ ,  $n=1,2,\ldots,N$ , for  $\omega$  in  $Q_p$ . It follows easily from ergodic theory that  $\{\sigma(p^{-K_n}\omega)\}$  is uniformly distributed in  $\mathbb{Z}_p$  for  $\mu$ -almost all  $\omega$ . In the following theorem we give an almost everywhere bound on the discrepancy.

THEOREM 1. For  $\mu$ -almost all  $\omega \in Q_p$ ,

$$(1.1) p^{-1/2} \leqslant \limsup_{N \to \infty} \frac{A_N(\omega)}{\sqrt{N \log \log N}} \leqslant (30) p^{-1/2}.$$

We say that a function  $f: \mathbb{Z}_p \to \mathbb{R}$  has bounded p-adic variation if

$$V^*(f) = \sup_{0 \le J} \left\{ \sum_{j=0}^{p^{J-1}} \sup_{x, y \in S^{(j)}} |f(x) - f(y)| \right\}$$

is finite. Here  $V^*(f)$  is called the *total fluctuation* of f (see Ta bleson [7]). Let  $\mathscr{F}$  be the class of functions  $f: \mathbb{Z}_p \to \mathbb{R}$  with total fluctuation not exceeding  $V^*$ , satisfying

$$\int_{\mathbf{z}_n} f(y) \, d\mu(y) = 0,$$

and extended to all of  $Q_p$  by the requirement that  $f(\omega) = f(\sigma(\omega))$ . Our p-adic version of Theorem 3 in Philipp [6] is the following result.

THEOREM 2. For  $\mu$ -almost all  $\omega \in Q_n$ ,

(1.2) 
$$\limsup_{N \to \infty} \left\{ \frac{\sup_{f \in \mathcal{F}} \left| \sum_{n=1}^{N} f(p^{-K_n} \omega) \right|}{\sqrt{N \log \log N}} \right\} \leqslant (1.00) V^* p^{1/2}.$$

We remark that our proof of Theorem 2 is more complicated than the corresponding results for real lacunary sequences. We use an inequality which is similar to Koksma's inequality (see [3]) but one which does not directly involve the p-adic discrepancy. Let  $\{x_n\}$  be a sequence of p-adic integers and for each positive integer J define

(1.3) 
$$\Delta_{N}(J) = \max_{0 \le j \le p^{J-1}} \left| \sum_{n=1}^{N} \varphi(j, J, x_{n}) - Np^{-J} \right|.$$

THEOREM 3. Let  $f: \mathbb{Z}_p \to \mathbb{R}$  have bounded p-adic variation. Then for any positive integer M,

(1.4) 
$$\left| \sum_{n=1}^{N} f(x_n) - N \int_{\mathbf{Z}_p} f(y) \, d\mu(y) \right| \leq V^*(f) \{ N p^{-M} + A_N(M) + p \int_{-M+1}^{M} A_N(J) \}.$$

We now define  $A_N(J, \omega)$  by (1.3) with  $w_n = \sigma(p^{-K_n}\omega)$ . Also we suppose that  $M = M(N) = [(2\log p)^{-1}\log N]$ , where [] is the greatest integer function. Our main result is

THEOREM 4. For each positive integer L and for  $\mu$ -almost all  $\omega \in Q_{\nu}$ ,

(1.5) 
$$\limsup_{N \to \infty} \frac{\max_{L \leq J \leq M(N)} A_N(J, \omega)}{\sqrt{N \log \log N}} \leqslant (30) p^{-L/2}$$

and

(1.6) 
$$\limsup_{N\to\infty} \frac{\sum\limits_{J=L}^{M(N)} \Delta_N(J, \omega)}{\sqrt{N \log \log N}} \leqslant (100) p^{-L/2}.$$

In order to deduce Theorem 1 from Theorem 4 we argue as follows. It is clear that

If M = M(N) < J then

From (1.7) and (1.8) we have

$$(1.9) A_N(\omega) \leqslant \max_{1 \leq J \leqslant M(N)} A_N(J, \omega) + 2pN^{1/2}.$$

Thus the upper bound in Theorem 1 follows from (1.9) and from (1.5) with L=1. The lower bound in Theorem 1 is essentially trivial. For it is easily verified that  $\{\varphi(0,1,\sigma(p^{-K_n}\omega))-p^{-1}\}$ ,  $n=1,2,3,\ldots$ , is a sequence of identically distributed independent random variables on the probability space  $(\mathbf{Z}_p,\mu)$  with mean zero and variance  $p^{-1}-p^{-2}$ . By applying the law of the iterated logarithm to this sequence we obtain the lower bound in (1.1) for  $\mu$ -almost all  $\omega \in \mathbf{Z}_p$ . But  $Q_p$  is a countable

disjoint union of translates of  $Z_p$  by p-adic numbers  $\xi$  with  $|\xi|_p \geqslant p$  and  $\sigma(\xi) = 0$ . For such an  $\xi$  we have  $\sigma(p^{-K_n}(\xi + \omega)) = \sigma(p^{-K_n}\omega)$  whenever  $\omega \in Z_p$ . Hence the lower bound in (1.1) must hold for  $\mu$ -almost all  $\omega \in Q_p$ .

To prove Theorem 2 we first observe that by Theorem 3, with

$$M = M(N) = [(2\log p)^{-1}\log N],$$

we have

$$\sup_{f\in\mathscr{F}}\Big|\sum_{n=1}^N f(p^{-K_n}\omega)\Big|\leqslant V^*\big\{pN^{1/2}+A_N(M,\,\omega)+p\sum_{J=1}^MA_N(J,\,\omega)\big\}.$$

If we now use (1.5) with an arbitrarily large value of L and (1.6) with L=1 we obtain (1.2).

Thus it remains only to prove Theorems 3 and 4. We note that it suffices to prove Theorem 4 for  $\mu$ -almost all  $\omega \in \mathbb{Z}_p$ . Then the same argument used in the proof of the lower bound in Theorem 1 can be applied to extend the result to  $\mu$ -almost all  $\omega \in \mathbb{Q}_p$ .

## 2. Preliminary lemmas. Let $T: \mathbb{Z}_p \to \mathbb{Z}_p$ be defined by

$$T(a_0+a_1p+a_2p^2+\ldots)=a_1+a_2p+a_3p^2+\ldots$$

so that for each positive integer K the Kth iterate of T satisfies  $T^K(\omega) = \sigma(p^{-K}\omega)$ . The transformation T is  $\mu$ -measure preserving on  $\mathbb{Z}_p$  and it will be convenient to prove our results for the sequence  $\{T^{K_n}(\omega)\}$ . We shall write  $\| \|$  for the  $L^2$ -norm of an integrable real valued function on  $\mathbb{Z}_p$  with respect to Haar measure  $\mu$ . Also we define  $\psi(j,J,\omega) = \varphi(j,J,\omega) - p^{-J}$ .

LEMMA 5. For each integer  $L \ge 0$  and  $J \ge 1$ ,

(2.1) 
$$\left\| \sum_{n=L+1}^{L+J} \psi(j, J, T^{K_n}(\omega)) \right\|^2 \leqslant 3Jp^{-J}.$$

Proof. Since T is  $\mu$ -measure preserving,

$$\|\psi(j,J,T^{K_n}(\omega))\|^2 = \|\psi(j,J,\omega)\|^2 = p^{-J}(1-p^{-J})$$

by a simple calculation, Thus the left-hand side of (2.1) is equal to

$$(2.2) Jp^{-J}(1-p^{-}) + \\ + 2 \sum_{n=L+1}^{L+J-1} \sum_{m=n+1}^{J} \int_{\mathbf{Z}_{p}} \psi(j, J, \mathbf{T}^{K_{m}-K_{n}}(\omega)) \varphi(j, J, \omega) d\mu(\omega),$$

where we have used the fact that  $\int_{Z_p} \psi(j, J, T^{K_m-K_n}(\omega)) d\mu(\omega) = 0$ . Now if l is an integer greater than or equal to J then

(2.3) 
$$\int_{\mathbf{Z}_{p}} \psi(j,J,T^{l}(\omega))\varphi(j,J,\omega)d\mu(\omega)$$

$$= p^{-J} \int_{\mathbf{Z}_{p}} \psi(j,J,T^{l}(j+p^{J}y))d\mu(y) = p^{-J} \int_{\mathbf{Z}_{p}} \psi(j,J,T^{l-J}(y))d\mu(y) = 0.$$

If l is an integer,  $1 \le l < J$ , we may write  $j = a + p^l b$  where  $a \in \{0, 1, ..., p^l - 1\}$  and  $b \in \{0, 1, ..., p^{J-l} - 1\}$ . Therefore

$$\begin{array}{ll} (2.4) & \int\limits_{Z_{p}} \psi(j,J,\,T^{l}(\omega)) \varphi(j,J,\,\omega) d\mu(\omega) \\ & = p^{-J} \int\limits_{Z_{p}} \psi(j,J,\,T^{l}(a+p^{l}b+p^{J}y)) d\mu(y) \\ & = p^{-J} \int\limits_{Z_{p}} \psi(j,J,\,b+p^{J-l}y) d\mu(y) \,. \end{array}$$

In order to evaluate the integral on the right-hand side of (2.4) we consider two cases. First suppose that  $|j-b|_p > p^{l-J}$ , then

$$|p^{l-J} < |j-b|_p \leqslant \max\{|j-b-p^{J-l}y|_p, |p^{l-J}|y|_p\} = |j-b-p^{J-l}y|_p.$$

So in this case

(2.5) 
$$\int_{\mathbf{z}_{p}} \psi(j, J, T^{l}(\omega)) \varphi(j, J, \omega) d\mu(\omega)$$

$$= p^{-J} \int_{\mathbf{z}_{p}} (-p^{-J}) d\mu(y) = -p^{-2J}.$$

Next suppose that  $|j-b|_p \leq p^{l-J}$ . Then  $j=b+p^{J-l}c$  for  $c \in \{0,1,\ldots,p^l-1\}$ . Hence the right-hand side of (2.4) is equal to

$$(2.6) p^{-J} \int_{\mathbf{Z}_{p}} \varphi(j, J, b + p^{J-l}y) d\mu(y) - p^{-2J}$$

$$= p^{-J-l} \int_{\mathbf{Z}_{p}} \varphi(j, J, b + p^{J-l}c + p^{J}\omega) d\mu(\omega) - p^{-2J} = p^{-J-l} - p^{-2J}.$$

If we combine (2.4), (2.5) and (2.6) with the observation that  $j = a + p^{l}b$  implies  $b = T^{l}(j)$  we find that for  $1 \leq l < J$ ,

$$(2.7) \qquad \int\limits_{\mathcal{I}_{\mathcal{P}}} \psi(j,J,T^{l}(\omega)) \varphi(j,J,\omega) d\mu(\omega) \\ = p^{-J-l} \psi(j,J-l,T^{l}(j)) \leqslant p^{-J-l}.$$

Returning to (2.2) we obtain

$$(2.8) \qquad 2 \sum_{n=L+1}^{L+J-1} \sum_{m=n+1}^{J} \sum_{Z_{p}} \psi(j, J, T^{K_{m}-K_{n}}(\omega)) \varphi(j, J, \omega) d\mu(\omega)$$

$$\leq 2 \sum_{n=L+1}^{L+J-1} \sum_{m=n+1}^{J} p^{-J-(K_{m}-K_{n})}$$

$$\leq 2 \sum_{n=L+1}^{L+J-1} \sum_{m=n+1}^{J} p^{-J-(m-n)} = 2 \sum_{r=1}^{J-1} (J-r) p^{-J-r}$$

$$= 2 p^{-2J} \{J p^{J} - p - p^{2} - \dots - p^{J}\} \leq 2J p^{-J}.$$

Hence (2.1) follows from (2.2) and (2.8).

LEMMA 6. Let  $0 < \varepsilon \le 1/5$  and  $0 < \delta \le 1$ . There exists a positive integer  $H_0 = H_0(\varepsilon, \delta)$  such that: if  $R \ge 1$  and H, J and G are integers satisfying  $H_0 \le H$ ,  $1 \le J \le (1-\varepsilon)^{-1}(\log p)^{-1}\log 2H$  and  $0 \le G$ , then

$$\begin{split} \mu \left\{ \omega \in \mathbf{Z}_p \colon \left| \sum_{n=G+1}^{G+H} \psi(j,J,T^{K_n}(\omega)) \right| &\geqslant (1+\delta) 4R p^{J(2s-\frac{1}{4})} (H \log \log H)^{1/2} \right\} \\ &\leqslant 6 \exp \left\{ -(1+\delta) R p^{Js} \log \log H \right\}. \end{split}$$

Proof. For  $v = 0, 1, 2, \dots$  we define

$$A_{r}(\omega) := \sum_{n=(i+J)r+1}^{G+J(r+1)} \psi(j,J,T^{K_n}(\omega))$$
 .

Clearly  $\int_{\mathbf{Z}_p} A_r(\omega) d\mu(\omega) = 0$  and by Lemma 5  $||A_r||^2 \leqslant 3Jp^{-J}$ . Also the two sequences

$$(2.9) A_0, A_2, A_4, \dots, A_{2n}, \dots$$

and

$$(2.10) A_1, A_3, A_5, \dots, A_{2r+1}, \dots$$

are both sequences of independent random variables on  $(\mathbf{Z}_p, \mu)$ . To see this we write  $\omega = a_0(\omega) + a_1(\omega)p + a_2(\omega)p^2 + \ldots$  and note that  $a_0(\omega)$ ,  $a_1(\omega)$ , ..., is a sequence of independent random variables. It is easy to check that the functions in the sequence (2.9) each depend on certain finite subsets of the set  $\{a_0(\omega), a_1(\omega), \ldots\}$  and that these subsets are disjoint. Similarly, the sequence (2.10) consists of independent random variables.

Now,  $\exp\{x\} \le 1 + x + \frac{1}{2}(1+\delta)x^2$  for  $|x| \le \delta$ . Thus for any  $\lambda$  satisfying  $0 < \lambda J \le \delta$  we have

$$(2.11) \qquad \int_{\mathbf{Z}_{p}} \exp\left\{\lambda \sum_{\nu=0}^{B-1} A_{2\nu}(\omega)\right\} d\mu(\omega) = \prod_{\nu=0}^{B-1} \int_{\mathbf{Z}_{p}} \exp\{\lambda A_{2\nu}(\omega)\} d\mu(\omega)$$

$$\leq \prod_{\nu=0}^{B-1} \left(1 + \frac{1}{2} (1 + \delta) 3\lambda^{2} J p^{-J}\right)$$

$$\leq \exp\left\{\frac{3}{5} (1 + \delta) \lambda^{2} J B p^{-J}\right\}.$$

And similarly,

$$(2.12) \qquad \int\limits_{\mathbf{Z}_p} \exp\left\{\lambda \sum_{r=0}^{J-1} A_{2r+1}(\omega)\right\} d\mu(\omega) \leqslant \exp\left\{\frac{3}{2}(1+\delta)\lambda^2 J B p^{-J}\right\}.$$

Next we choose a positive integer Q such that  $J(Q+1) \leqslant H < J(Q+2)$ .

Then

$$\left|\lambda \left|\sum_{n=G+1}^{G+H} \psi[j,J,T^{K_n}(\omega)] - \sum_{
u=0}^{Q} A_
u(\omega)
ight| = \lambda \left|\sum_{n=G+J(Q+1)+1}^{G+H} \phi[j,J,T^{K_n}(\omega)]
ight| \le \lambda J \leqslant 1\,.$$

If  $B_1 = \left[\frac{Q}{2} + 1\right]$  and  $B_2 = \left[\frac{Q+1}{2}\right]$  then by the Cauchy-Schwarz inequality

$$\begin{split} &\int\limits_{\mathbf{Z}_{p}} \exp\left\{\lambda \sum_{n=d+1}^{G+H} \psi(j,J,T^{K_{n}}(\omega))\right\} d\mu(\omega) \\ &\leqslant 3 \int\limits_{\mathbf{Z}_{p}} \exp\left\{\lambda \sum_{r=0}^{B_{1}-1} A_{2r}(\omega) + \lambda \sum_{r=0}^{B_{2}-1} A_{2r+1}(\omega)\right\} d\mu(\omega) \\ &\leqslant 3 \left\{\int\limits_{\mathbf{Z}_{p}} \exp\left\{2\lambda \sum_{r=0}^{B_{1}-1} A_{2r}(\omega)\right\} d\mu(\omega)\right\}^{1/2} \left\{\int\limits_{\mathbf{Z}_{p}} \exp\left\{2\lambda \sum_{r=0}^{B_{2}-1} A_{2r+1}(\omega)\right\} d\mu(\omega)\right\}^{1/2} \\ &\leqslant 3 \exp\{(1+\delta) 3\lambda^{2} (B_{1}+B_{2}) J p^{-J}\} \leqslant 3 \exp\{(1+\delta) 3\lambda^{2} H p^{-J}\}, \end{split}$$

provided that  $0 < 2\lambda J \le \delta$ , using (2.11) and (2.12). Since an identical calculation holds for  $-\psi$ , we have

$$(2.13) \int\limits_{\mathbf{Z}_p} \exp\left\{\lambda \, \Big| \sum_{n=G+1}^{G+H} \psi(j,J,T^{K_n}(\omega)) \, \Big|\right\} \, d\mu(\omega) \leqslant 6 \exp\left\{(1+\delta)3\lambda^2 H p^{-J}\right\}.$$

It follows from (2.13) that for  $0 < 2\lambda J \le \delta$  and any  $W \ge 0$ ,

$$(2.14) \quad \mu\left\{\omega \in \mathbf{Z}_p \colon \left|\sum_{n=d+1}^{d+H} \psi(j,J,T^{K_n}(\omega))\right| \geqslant W\right\} \\ \leqslant 6 \exp\left\{(1+\delta)3\lambda^2 H p^{-J} - \lambda W\right\}.$$

We choose

$$(2.15) W = (1+3p^{-3sI})(1+\delta)Rp^{-J(1-2s)}(H\log\log H)^{1/2}$$

and

(2.16) 
$$\lambda = p^{J(i-s)}H^{-1/2}(\log\log H)^{1/2}.$$

Then using  $1 \le J \le (1-\varepsilon)^{-1} (\log p)^{-1} \log 2H$ , we find that

$$(2.17) 2\lambda J \leqslant C(\log 2H)(2H)^{\frac{1}{4}} H^{-1/2}(\log \log H)^{1/2}$$

for some absolute constant C > 0. The right-hand side of (2.17) is  $\leq \delta$  provided  $H \geqslant H_0(\varepsilon, \delta)$ . Thus we may substitute (2.15) and (2.16) into (2.14) and obtain the result.

We will also require the following elementary inequality. Lemma 7. If  $\beta \geqslant 1$  and x > 1 then

(2.18) 
$$\sum_{n=1}^{\infty} \exp\{-\beta x^n\} \leqslant (x-1)^{-1} \exp\{-\beta\}.$$

Proof. We have  $x^n = (1+(x-1))^n \ge 1+n(x-1)$ , and so the left-hand side of (2.18) is

$$\leq \sum_{n=1}^{\infty} \exp\left\{-\beta - n\beta(x-1)\right\} \leq \exp\left\{-\beta\right\} \sum_{n=1}^{\infty} \exp\left\{-n(x-1)\right\}$$

$$= \exp\left\{-\beta\right\} \{\exp(x-1) - 1\}^{-1} \leq (x-1)^{-1} \exp\left\{-\beta\right\}.$$

3. Proof of Theorem 4. Throughout this section we assume that  $0 < \varepsilon \le 1/5$ ,  $0 < \delta \le 1$  and that  $\eta > 0$ . To simplify some expressions we write

$$F(G, H) = F(G, H, j, J, \omega) = \Big| \sum_{n=G+1}^{G+H} \psi(j, J, T^{K_n}(\omega)) \Big|,$$

$$r(w) = r_{\delta}(w) = 4(1+\delta)(w \log \log w)^{1/2}$$

and

$$s(x) = s_p(x) = [(2\log p)^{-1}\log 2^{x+1}].$$

For any positive integer N we define integers u and v by  $2^u \le N < 2^{u+1}$ ,  $2^{v-1} \le 2^{\ln(1-\epsilon)} < 2^v$ . By using Lemma 12 of Erdös and Gál [1] with only a trivial modification we can determine integers  $m_l$  satisfying  $0 \le m_l < 2^{n-l+1}$  for  $l = v, v+1, \ldots, u+1$ , and an integer  $N^*$  satisfying  $1 \le N^* < 2^{1+\frac{1}{2}u(1-\epsilon)} < 2N^{\frac{1}{2}(1-\epsilon)}$  such that

$$(3.1)$$
  $F(0, N)$ 

$$\leqslant F(0, 2^u) + \sum_{l=v}^{u} F(2^u + m_{l+1} 2^{l+1}, 2^l) + F(2^u + m_v 2^v, N^*).$$

Next we will show that if  $u_0 = u_0(\varepsilon, \delta, \eta, p)$  is sufficiently large then

(3.2) 
$$\sum_{u=u_0}^{\infty} \sum_{J=1}^{s(u)} \sum_{j=0}^{p^J-1} \mu\{\omega \colon F(0, 2^u, j, J, \omega) \geqslant p^{J(2s-1/2)} r(2^u)\} < \eta$$

and

(3.3) 
$$\sum_{u=u_0}^{\infty} \sum_{l=v}^{u} \sum_{m=0}^{2^{u-l+1}-1} \sum_{j=0}^{s(u)} \sum_{j=0}^{p^{J}-1} \mu\{\omega \colon F(2^{u}+m2^{l+1},2^{l},j,J,\omega) \\ \geqslant p^{J(2^{u}-1/2)} 2^{\frac{1}{2}(l-u)} r(2^{u})\} < \eta.$$

Both (3.2) and (3.3) are established by applying Lemmas 6 and 7. We give the details only for (3.3) as (3.2) is similar and in fact easier. First

we observe that

(3.4) 
$$\mu\{\omega \colon F(2^{u} + m2^{l+1}, 2^{l}) \geqslant p^{J(2s-1/2)}2^{\frac{1}{2}(l-u)}r(2^{u})\}$$

$$\leq \mu\{\omega \colon F(2^{u} + m2^{l+1}, 2^{l}) \geqslant p^{J(2s-1/2)}2^{\frac{1}{2}(u-l)}r(2^{l})\}.$$

We use Lemma 6 with  $G = 2^u + m2^{l+1}$ ,  $H = 2^l$  and  $R = 2^{l(u-l)}$ . Since  $v = 1 + \left[\frac{1}{2}u(1-s)\right]$  and  $2^v \le H$  we find that

$$1 \leqslant J \leqslant s(u) \leqslant (\log p)^{-1} \log(2^{1+\frac{1}{2}u}) \leqslant (1-\varepsilon)^{-1} (\log p)^{-1} \log(2^{1+p}).$$

Thus the required condition on J is satisfied. Therefore

$$(3.5) \qquad \sum_{l=v}^{u} \sum_{m=0}^{2u-l+1} \sum_{J=1}^{s(u)} \sum_{j=0}^{y^{J-1}} \mu\{\omega \colon I^{l}(2^{u}+m2^{l+1},2^{l},j,J,\omega) \\ \geqslant p^{J(2s-1/2)}2^{\frac{1}{2}(u-l)}r(2^{l})\} \\ \leqslant 6 \sum_{l=v}^{u} \sum_{J=1}^{s(u)} \exp\{(u-l+1)\log 2 + J\log p - (1+\delta)2^{\frac{1}{2}(u-l)}p^{Js}\log\log 2^{l}\}.$$

Now an easy calculation shows that  $\log \log 2^{l} \ge \log u - 2$ . Thus if u is sufficiently large (depending only on  $\varepsilon$ ,  $\delta$ , and p) then the right-hand side of (3.5) is

(3.6) 
$$\leq \sum_{l=v}^{u} \sum_{J=1}^{s(u)} \exp\{-(1+\frac{1}{2}\delta)2^{\frac{1}{2}(u-l)} p^{Js} \log u\}.$$

Applying Lemma 7: twice and (3.6) is

$$\leq (p^s-1)^{-1}(1+(2^{1/4}-1)^{-1})u^{-(1+\frac{1}{2}\delta)}$$

This clearly establishes (3.3) if  $u_0 = u_0(\varepsilon, \delta, \eta, p)$  is sufficiently large. Finally we apply (3.1), (3.2) and (3.3) to estimate  $\Delta_N(J, \omega)$ . For each positive integer N,  $M(N) \leq s(u)$ . Thus for all J satisfying  $1 \leq J \leq M(N)$  and all  $N \geq N_0(\varepsilon, \delta, \eta, p)$  we have

$$\begin{array}{ll} (3.7) \quad \varLambda_{N}(J,\,\omega) &= \max_{0\leqslant j\leqslant p^{J-1}} F(0,\,N,\,j,\,J,\,\omega) \\ &\leqslant p^{J(2s-1/2)} r(2^u) + \sum_{l=v}^u p^{J(2s-1/2)} 2^{\frac{1}{4}(l-u)} \, r(2^u) + N^* \\ &\leqslant p^{J(2s-1/2)} 4 \, (1 + (1-2^{-1/4})^{-1}) \, (1+\delta) \sqrt{N \log \log N} + 2N^{\frac{1}{4}(1-s)} \end{array}$$

except on a subset of  $Z_p$  which has Haar measure less than  $2\eta$ . Since  $\eta > 0$  was arbitrary,

$$\limsup_{N\to\infty} \frac{\max\limits_{L\leqslant J\leqslant M(N)} \varDelta_N(J,\,\omega)}{\sqrt{N\log\log N}}\leqslant (30)(1+\delta)p^{L(2\varepsilon-1/2)}$$

for  $\mu$ -almost all  $\omega$  in  $\mathbb{Z}_p$ . This proves (1.5). Also from (3.7) we have

$$egin{align*} \sum_{J=L}^{M(N)} arDelta_N(J,\,\omega) \ &\leqslant p^{L(2s-1/2)} (1-p^{2s-1/2})^{-1} \, 4ig(1+(1-2^{-1/4})^{-1}ig) (1+\delta) V \overline{N \log \log N} + \\ &+ 2 N^{4(1-s)} \log N \,, \end{aligned}$$

from which (1.6) easily follows.

**4. Proof of Theorem 3.** Let  $f: \mathbb{Z}_p \to \mathbb{R}$  have bounded p-adic variation. For  $J = 0, 1, 2, \ldots$  we define  $f_J: \mathbb{Z}_p \to \mathbb{R}$  by

$$f_J(\omega) = p^J \int\limits_{S^{(j)}} f(y) \, d\mu(y)$$

where j is the unique integer in  $\{0, 1, 2, ..., p^{J}-1\}$  such that  $\omega \in S_{J}^{G}$ . Clearly we may assume without loss of generality that  $f_{0}(\omega) = 0$ . We also define

$$v(j,J,f) = \sup_{x,y \in S^{(j)}} |f(x) - f(y)|.$$

Then for any positive integer M,

(4.1) 
$$\left| \sum_{n=1}^{N} f(x_n) \right| \leq \left| \sum_{n=1}^{N} f_{\mathcal{M}}(x_n) \right| + \left| \sum_{n=1}^{N} \left\{ f(x_n) - f_{\mathcal{M}}(x_n) \right\} \right|.$$

Now.

$$\begin{aligned} |\sum_{n=1}^{N} \left\{ f(x_{n}) - f_{M}(x_{n}) \right\} | \\ &\leq \sum_{m=0}^{p^{M-1}} \left| \sum_{n=1}^{N} \varphi(m, M, x_{n}) p^{M} \int_{S_{M}^{(m)}} \left( f(x_{n}) - f(y) \right) d\mu(y) \right| \\ &\leq V^{*}(f) N p^{-M} + \sum_{m=0}^{p^{M-1}} v(m, M, f) \left| \sum_{n=1}^{N} \varphi(m, M, x_{n}) - N p^{-M} \right| \\ &\leq V^{*}(f) \left\{ N p^{-M} + A_{N}(M) \right\}. \end{aligned}$$

We estimate the other term on the right of (4.1) by a recursive argument. We have

(4.3) 
$$\left| \sum_{n=1}^{N} f_{M}(x_{n}) \right| \leq \left| \sum_{n=1}^{N} f_{M-1}(x_{n}) \right| + \left| \sum_{n=1}^{N} \left\{ f_{M}(x_{n}) - f_{M-1}(x_{n}) \right\} \right|$$

where

$$\begin{aligned} (4.4) \qquad & \Big| \sum_{n=1}^{N} \left\{ f_{M}(x_{n}) - f_{M-1}(x_{n}) \right\} \Big| \\ & \leq \sum_{l=0}^{p^{M-1}-1} \Big| \sum_{n=1}^{N} \varphi(l, M-1, x_{n}) \left\{ f_{M}(x_{n}) - f_{M-1}(l) \right\} \Big| \\ & = \sum_{l=0}^{p^{M-1}-1} \Big| \sum_{j=0}^{p-1} \sum_{n=1}^{N} \varphi(l+p^{M}j, M, x_{n}) \left\{ f_{M}(l+p^{M}j) - f_{M-1}(l) \right\} \Big|. \end{aligned}$$

In view of the identity

$$\sum_{j=0}^{p-1} \left\{ f_{M}(l+p^{M}j) - f_{M-1}(l) \right\}$$

$$= \sum_{j=0}^{p-1} \left\{ p^{M} \int_{S_{M}^{(l+p^{M}j)}} f(y) \, d\mu(y) - p^{M-1} \int_{S_{M-1}^{(l)}} f(y) \, d\mu(y) \right\} = 0,$$

the right-hand side of (4.4) is

$$(4.5) = \sum_{l=0}^{p^{M-1}-1} \left| \sum_{j=0}^{p-1} \left\{ f_{M}(l+p^{M}j) - f_{M-1}(l) \right\} \left\{ \sum_{n=1}^{N} \varphi(l+p^{M}j, M, x_{n}) - Np^{-M} \right\} \right|$$

$$\leq A_{N}(M) \sum_{l=0}^{p^{M-1}-1} \sum_{j=0}^{p-1} \left| f_{M}(l+p^{M}j) - f_{M-1}(l) \right|$$

$$\leq A_{N}(M) \sum_{l=0}^{p^{M-1}-1} \sum_{j=0}^{p-1} p^{2M-1} \int_{S_{M}^{(l)}-p^{M}j} \int_{S_{M-1}^{(l)}} \left| f(x) - f(y) \right| d\mu(y) d\mu(x)$$

$$\leq A_{N}(M) p^{p^{M-1}-1} v(l, M-1, f) \leq A_{N}(M) p^{V*}(f).$$

It follows from (4.3), (4.4) and (4.5) that

$$\begin{split} \Big| \sum_{n=1}^{N} f_{M}(w_{n}) \Big| & \leq \Big| \sum_{n=1}^{N} f_{M-1}(w_{n}) \Big| + p V^{*}(f) \Delta_{N}(M) \\ & \leq \Big| \sum_{n=1}^{N} f_{M-2}(w_{n}) \Big| + p V^{*}(f) \{ A_{N}(M) + A_{N}(M-1) \} \end{split}$$

and so

$$\left|\sum_{n=1}^{N} f_{M}(x_{n})\right| \leq p V^{*}(f) \sum_{J=1}^{M} \Delta_{N}(J).$$

Thus (4.1), (4.2) and (4.6) combine to establish the inequality (1.4).

### ACTA ARITHMETICA XXXIX (1981)

#### References

- P. Erdös and I. S. Gál, On the law of the iterated logarithm, Proc. Amsterdam 58 (1955), pp. 65-84.
- [2] L. Gál and S. Gál, The discrepancy of the sequence  $\{2^nx\}$ , ibid. 67 (1964), pp. 129-143.
- [3] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, John Wiley & Sons, New York-London 1974.
- [4] H. G. Meijer, The discrepancy of a g-adic sequence, Proc. Amsterdam 71 (1968), pp. 54-66.
- [5] W. Philipp, Mixing sequences of random variables and probabilistic number theory, Memoirs AMS 114, Providence, R. I., 1971.
- [6] Limit theorems for lacunary series and uniform distribution mod 1, Acta Arith. 26 (1975), pp. 241-251.
- [7] M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press, 1975.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF TEXAS Austin, Texas 78712

Received on 19, 6, 1978

(1082)

## Class number formulas for quaternary quadratic forms

by

PAUL PONOMAREY\* (Columbus, Ohio)

Introduction. This paper may be regarded as a sequel to [4]. Unless otherwise indicated, the notation and terminology are taken from [4], especially § 1, § 3 and § 5.

We recapitulate some of the results on class numbers derived in [3], [4]. Let V be a definite quadratic space of dimension four over the field of rational numbers Q. Let  $\Im$  be an idealcomplex of maximal lattices on V (cf. [4], § 3). Let  $\Delta$  denote the reduced discriminant of  $\Im$  and H the number of proper similitude classes in  $\Im$ . In the case where V has square discriminant  $\Im$  is uniquely determined, and an explicit formula for H was given in [3] (Theorem, p. 297).

If the discriminant D(V) of V is not a square, we put  $K = Q(\sqrt{D(V)})$ , and denote the discriminant of K by  $\Delta_K$ . It was shown in [4] (Prop. 7) that

$$\Delta = \Delta_K(p_1 \dots p_e)^2 (q_1 \dots q_f)^2,$$

where  $q_1, \ldots, q_f$  are the anisotropic finite primes of  $V; q_1, \ldots, q_f$  split in K, and  $p_1, \ldots, p_e$  are distinct rational primes which remain prime in K. In § 6 of [4] explicit formulas were obtained for H (Theorems 1, 2) under the following conditions:

(i) f = 0,

(ii) The fundamental unit of K has norm -1.

In this paper we obtain such formulas for H without making either of these restrictions. As a result, we completely solve the problem of determining the proper class number of an arbitrary idealcomplex of maximal quaternary lattices (cf. [4], Prop. 11, for the indefinite case). As a special case of these formulas we obtain, in the classical language, a formula for the number of proper classes of positive definite integral quaternary forms of discriminant  $\Delta_K$ .

By scaling, we may assume that  $\Im$  contains the maximal integral lattices of V. When D(V) is a nonsquare, there is a unique quaternion

<sup>\*</sup> Partially supported by NSF grant MCS 76-08746 A01.