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JrprREy D, VAALER (Austin, Tex.)

1. Iuroduction. Let @, and Z, denote the locally compact field of
p-adic numbers and the compact ring of p-adic integers respectively,
where p is o fized prime. We suppose that p is Haar measure on @, nor-
malized so that u(Z,) -= 1 and that | |, ig the p-adic absolute value
normalized so that |pl, =p™. For J =1,2,3,... and j == 0,1,2, ...
ey ¥ =1 we define

1 1' i o —d| = g
el J,y) == I L ly '”P “-19—;
' lO if Ey —7 |1J > 7,
Thus ¢(j, J, 4) is the characteristic function of the sphere 89 centered

at j and having radiug p~7. A sequence {v,}, n = 1,2, 8, ..., of p-adic
integers is said to be wniformly distributed in Z,, if R '

N
limp N ¢ o, ) = pY
Lizo n;: plf,d,2) =p

for each J and j. We detine the p-adic discrepancy of {z,}, n = 1,2, ..., N,
b)r . . ) o :

¥y .
AN = 5“—1‘71 2 @{J, J: ) “‘“-NP—JJ
< el :
where the supremum s taken over all J 21 and j, 0<j<p’~1 It
iy well known (see [3] ox [41) that N7 4y-+0 a8 N—o0 if and only if the
sequanice {u,} Is unifornly distributed.
Let 0 e, and lob

< S o
o = Za'mﬁm == Eampm + ZI“um

Hpwal He=] M ()
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be its eanonical vepresentation. We define the integer part of o to be the

@
olw) = ¥

H=0
sider the distribution in Z, of the sequence of integer parts {o(y,)}. Now
suppose that 1<K, < K, <<... <K, < ... i o sequence of positive
integers. The purpose of this paper is to investigate the distribution of
fo(p~fnw)} for p-almost all @ in Q,. Our results give p-adie analogues
of theorems proved for real lacunary sequences by T GAl and 8. Gal [2]
and by Philipp [5], [6]. In particalar, let Ay (@) be the p-adic discrepaney
of {o(p~Fre)}, 0 == 1,2, ..., N, for o in Q,. It follows easily from creodie
theory that {o{p~ rw)} is uniformly distributed in Z, for yeahmost ol o,
In the following theorem we give an almort everywhere bound on the
digerepancy.
THEORBM 1. For u-almost all o e@l,,

/I (n)) .

Y ¥loglog ¥

p-adic Infeger @, p™. I {1} I8 u gequence in @, we may con-

“I2 L limsap - = (80)pT Y.

N—roo

(1.1) P

We gay fhat a function f: Z -8 has bounded p-adic varviation if

a1
PHO s N sup () ~f )]
e JHD ,ysSf])

is finite. Here V*(f) is called the total fluctuation of f (sec Ta bleson [77).
Let F be the class of functions f: Z,~R with total flnetuation not exceed-
ing V¥ satisfying

[ fnduty) =
Py

and extended to all of @, by the requirement that flw) == flo(w)}. Our
p-adie version of Theorem 3 in Thilipp [6] i3 the following result.
TrropuM 2. For g-almost all o eQ,,

v
> flp~Enw)]
Limsguy | 275000 S
Nereo VN loglog ¥

| <5 (LOO)V* 9V,

We remark that our proof of Theorem 2 is more complicated than
the corresponding results for real lacunary sequences. We use an ine-
(uality which. is similor to Koksma's inequality (sec [3]) but one which
does not directly involve the p-adic diserepancy. Let {w,} bo a sequeuce
of - -adic integers and for each pﬂsmvc integer J define
(L.3)

Axld) = max 1 \ o(f, T, 2, Np“"‘

03 j%p" 1,,‘,‘1
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TuporEM 3. Let f: Z,~R have bounded p-adic variation. Then Jor

any posnwe wmideger M,

{1.4) 1 S-’ fla)—N ff (N duly) l
7¢==1 ”IJ
M
- Lo L
< VAN A ()4 3 A ()
. il
We now define Ay (J, @) by (L3) with @, == o(p~*n ). Also we suppose
that B e M(N) = [(2logp)~'log N], where [ 1 is the groatest integer
function. (‘)m: main resull is
Tunoryy 4. For each vositive integer L and for p-almost all w € Q,,

mﬂx (J )
1.5 lim sup 775 "'“‘) e < (30)
(-2 N--*wp l/Nlogloa N
and
w |
”}“L AN(_JJ (,#)) .
1.6 limsup T2F e 2 (100)p™ 7,
- Nwmp %% loglog,N

In order to deduce Theorem 1 from Theorem 4 we argue as follows.
It is clear that

(1.7}
It M « M(N)<J then

Aplw) = sup dp(J, o).

st

max. IZ (4,d, o “‘Knco))}-{-N d
ojsin?

(1.8} AT, @) <

Nl

Ty

max IZ (m, M, o(p "‘nm))l 4 Np

D pM—~11

A M, o)+ Np”“ < A (M, 0)-+2p N,

2

From (1.7) and (L.
(1.9}

8) wo have

max  Ay{J, @)+ 2pN"

1S M(NY

Thus the wpper bound in Theorem 1 follows from (1.9) and from {1.5)
with I - L. The lower bound in Theorem 1 is essontially iviviel, For it
is casily 'V(.'I‘lfl({l that {p(0, 1, o(p~*rw))~p~}, n =1,2,3,..., is a se-
quence of identically (,hqmbuu‘(l independeont random wma.hles Dn the
probability space (£, ¢) with mean zero and variance p~l~p7% By
applying the law of the itcrated logarithm. to this sequence. we obtmn
the lower hound in (1.1) for g-almost all m e Z,. Bub QI, is o countable

Ay (w) =
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disjoint nnion of translates of Z, by p-adic numbers & with |&l, 2 p and

o(£) = 0. For such an & we hmm o(p7En (54 w)) = o{pFnw) \»hvnever

o € Z,. Hence the lower bound in (1.1) must hold for w-almost all w & -
To prove Theorem 2 we firgt observe that by Thoorem 3, with

M= M(N) = [(210gp)‘110fJN 1
we have

sup) S‘f Am)'<v { NYE L A M, 0) -+ p Z’AN J, w)}
S =l
If we now use (1.5) with an arbitrarity larze value of I and (1. 6) with
L =1 we obtain (1.2).

Thus it remaing only to prove Theorems 3 and 4. We note that it
suffices to prove Theorom 4 for w-almost all w = Z, Zpo Then the game argu-
ment used in the proct of the lower bound in Theorem 1 can be applicd
to extend the result to p-almosgt all @ eQ,.

2. Preliminary lemmas. Let 1 Z,—Z, be defined by
(-t a4 aap?-+...) = -y G p -l 0Pt
80 that for eqach posmve integer K the Kth iterate of T aznmsfms T ()
== g($ ¥ w). The transformation T is prmeasure. preserving on Z, and
it will be eomvenient to prove pur results for the sequence {TKn (w } We

ghall write | || for the Z2-mnorm of an mtogmblc, real valuod function on
Z, with respect to Ilaar measure g, Also we define p{f, 7, o)

=g(f,d, w)—p™". “
Lemya 5. For each dnteger T2 0 and J > 1,
L
(2.1) - u % i, 7, T ()| < 87977,
n=Jy+l

Proof. Since T is u-moasure preservmg,
[6(3, 7, T%n (@)t &= b (s 5 @) = p77 (1—p~7)
by a stmplé caleulation, Thus the left-hand mde of (2.1) is equal to

(22)  JIp™(1—p )+ P
Lbd-1

w2 Y X el er*f*nc leldy ds @)du(e),

ol 1 gremn sl Jp
where "we ‘havo used the fact that j 'lp(j, g TFm~Ea (o)) du{w) == 0. Now

i 7 is an mteger gtreamer Lhan or equml to J then '
@38) - folf; 7, Tw)p u,J w)dp(w)
.. zl, . : . . .
f—ép"?zf ¥, J, T(i+p’ y))dn(y_) =p7 f w,J, T (y) ape(y) = 0.
A _ _ ,

Zy
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T¢ 1 is an integer, 1 < 1 << J, we may write j = « --9'b where a €{0,1, ...
vy pr—13 and be{0,1,..., 97" —1}. Therefore

(2.4) fw i, @) pld, 7, w)du(w)
[, I, Tat b+ pTy) du(y)

Z
=p’ s b3 duy) .
=97 [, J, b+ 9" nduly
oy
In order to evalupte the integrol on the right-hand. side of (2.4) we con-
gider two cases. First suppose that |j—0), > P, then

7 < |§ b, < max{|j=b—p "y, Py} = [f~b—p Tyl

8¢ in this case
@5 [T @l d, o)aue)
Z,
’ =p’ f(ﬂ?"’)dﬂ(y) = —p~
2y

Next suppose that |j—b|, < p"’. Then j = b_—}—p"“’c for cef{0,1,...
..., p'—1}. Hence the right-hand side of (2.4) is cqual to

@6) 277 [o(i,J, b+ y)duiy)—p™¥

7, . |
=™ [od, J, bbp ot p w)dp(0) -7 = p
‘ 2y . . _ .
£ we combine (."2.4), (2,5) and (2.6) with the observation that j == o+ p'b
implies b = TH(§) we find that for 1 <1< J,

[ (5, T (@) p(d, , o) dp(e)
“ J —J-1
we 97 (T — 1, T(J))<P

(2.7)

Returning to (2.2) we obtain

LJw=y  J
(2.8) 2 folg, 7, 25 ) pli, I, @)dp(e)
yham L) el 233
- F
| <2 gt T p_J—(Km"' )
nmDtl mendl
LtJ-1 N |
< \V =t g S )T
<z Y Moy éi "
nmItl me=nt1 '
e oI —p - T} S TP
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Henee (2.1) follows from (2.2) and (2.8). m
Lmawa 6. Let 0 < eI 1/5 amd 0 < 8 1. There ewists o positive in-
t(’gm Hy == My (e, ) sueh that: if B> 1 and II J and G are integers satisfying

o5 Hy 1l J s (L—e) " Hlogp) oo 2IT wMT 0= G, then
Gl .
plocz,: | ;:1 pli I, T (o)) |2 (1 6)4-]\‘,})"{-"“"‘”(]110{1'](‘){_!,']1)”’"‘}

Gexp{ - (L-- 8) Rp"loglog H}.

Lroof. Fov » = 0,1, 2, ... wo dofine

[+58 J"l(r'uf- 1)
A {ew) == ‘}J

M G )

yl(j, J, 't (cu)) .

Clearly f A (w)dp{w) == 0 and by Lemma b 4, < 8Jp™. Also the

two seq lu TG0

{2.9) L T Y I
and
{2.10) Ay, Ay, Ay, o, Agpgs oo

are both sequences of independent vandom vadables on (Z,,) 1t). To geo
this wo write o = ay(w)+ ay(e}p--ay(w)p?--... and note that (),
@y(w)y ..., I8 & sequence of independent | d]l(l()lll variables. Tt is casy to
cheek t]1.1t the funetions in the sequence (2.9) each depend on certain
finite subsels of the set {u,(c) y @ (@), ...} and that these subsets are
digjoint. Sinilarly, the secuence (2.10) consisty nf independent random
variables,

Now, exp{m} 5 L-f-w - 3(1-
Q< A % 5 wo have

8w for | ¢ Thus for any A satistying
i\ o tal

(2.11)

’f i"’ﬂl'{ \“ Ay (e }dﬂ m) = I _{ /f exp{Ady, (o)} dp (o)
) P Lal]
! M|
£ [ T3 (L1 dysarp)
(el

< exp{R(L-- ) 2T Bp 7}
And similarly,

J.l

f exp {

41, lrﬂ

(2.12) g-(;l. b §Y AT By}

Aoy (m)} dpe(w) =1 u‘xp{

Next we ehoose a positive integer Q such that (@-+1) < U < J(Q-1-2).

icm
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Then
G-I (—‘3, GHIL x
2 3wl 7 2 @) = Y Ade)| =2 olf, 7, 1% (o) |
n=(f1 yeuh fe== ({4 Q4-1) +1
LA =1,
Q-1 .
It B [Q;- --lmi'l.] and f2, = [)‘}l] then by the Cauchy-Schwarz ine-
quality
1
fexpfa > wii, s, o "(m))} ()
)y oAt
PR By—1
fuxp {A M Ao, ()2 ) Ay (@) }dy(a:)
0 1v=0 )
By -1 By-i "
5' f exp | ':M \ Ay (o)) dp w} { f expl '21 by Aﬂvﬁ‘,,ﬁ(cla)}dﬂ(m)}
‘p =0

< Sexp{(L-1- §) 34 (B, B} p~7) < 3.e.:<p.L(.1. L )3 II;[)_J},

provided that 0 < 247 << 4, using (2.11) and (2.2). Since an identical
caleulation holds for —v, we have

foxp {l’

It ioIluws from (2.13) that for 0 < 24J < 6 and any W = 0,

G
3 pld, o, 7’ " cu)“d"u

P Hll

) s Gexp{(1-+ 0312 Hp 1.

a1

: - I

(2.14) ‘u{m €Z,: ‘ 2" 1 w1 “(to))} P2 TI}
sl

<5 Gexp {1+ 8)3EHY ™ — AW).

We choose

(2,15) W oen (L 8p7 ) (11 8) Rp~ /U2 (1 log log H)'*
andl
(2.16) A o p 8T Toglog 0)YE

Then using & o7 o =0 (L&) (logp)~log2H, we find that

(2.7 40 = (o2 (2 EH log log )™

for some absolute constant ¢ = 0. The right-hand side of (2.17) is < 3
provided H 3 Iy (e, §), Thus we may substitute (2.15) and (2.18) into
(2.14) and obtain the vesult.
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We will also require the following clementary Inequality.
Lemma 7. If §21 ond @ > 1 then
(2.18) Z exp{ —fo"} < (m—1) " oxp{ —f}.
Proof. We have 2" = (1 (L) 2 Leg-n(w—~1), and so the lelt-
hand gide of (2.18) is

Z oxp { =B —nfi (0 —1)} &5 {ncp{wﬁ} \ exp{ -l --1)}

Tyl . FO] .l

=~ exp { —#Hexp (@ 1) =1} < (w—~1)"Fexp { ~F}.

3. Proof of Theorem 4. Throughont this section we assume {hatb
0<eg1/B, 0< 01 and that %> 0. To simplify some expressions
we write

: aLm -

> wli I, T w) |,
nm 1 : )
#(@) = 74(2) = 4(1 -} 8)(wvlogloga)*

F(Gpﬂ) "’F(G;H;j:*]:w) ""‘""

and :
s(z) = 8, (e} = [(2logp) " log2*"].

For any positive integer N we define integers » and v by 2% < N < 2%,
2l g M- 2 2% By using Temrna 12 of Hrdos and Gal [1] with only
a trivial modiﬁcaﬁniﬂu we can. determine integers m, satisfying 0 < m, < 241

for 1 = v, v+1, ..., u-+-1,'and an integer N satisfying 1 s N* < 21Hiuli-9)
< 2N16-9 guch that
(3.1) F(0, )
. .
< F(0, 2% - 2 F(2% 1y, 21, OF) - (2% 4-m, 27, V).
Imp
Noxt we will show that if w, = wu,(s, 8, n, p) is suthiciently large thon
oo 8uw) pl—1
32) 313N wle: F(0,2%5,J, o) p p e} <
ety Sl foml)
and
m"‘f u Uty sfu) pl-1 :
B3) 3 3 33 N we: FE4ma®, 25,7, 0)

Usmtty Imv i) I

= pJ(Qrs—llﬂ.) 2{(!—-u) ?.(215 } < 1.

Both (3. 2) and (3. 3) are establlshed by applying Lemmas 6 and 7. We
give the details only for (3.3) as (3.2) is similar and in fact eagier. First

icm
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we observe that ]
(3.4)  p{o: Y Hmtt, 8) 3 plee 1 gii-vy guyy

< M{W 1;1(21( - m]zl-{-l’ 22} = pJ(2=—1/2)2i(u—1)-’.(21)}.
We use Lemma 6 with ¢ =2%1md™, H = 2! and B = 2¥e-D
o == L--[du(l—e)] and 2° s H we find that

e F =g (u) < (fogp) ™ log (2171 (L — &)~ Hlogp) " Hog (2'79).

Thus the vequired condition on J is gatistied. Therefore _

woott-ll.y &) 2 iy

Since

(3.5) \" 2_{ 2 2: ufo: ﬂ(2”—}-m2’+1 2,5, J, w)
lmu s Jral
>pJ("s—II2)2i(u T)T(zl)}
I
<6 Z Z exp {{v—1--1)log?2 -- Jlogp (1+ 8) 23N g7 Joglog 2%}
fmt Jul '

Now an easy calculation. shows that loglog?;’}lbgu*z. Thus i % is
su;ﬁfluenﬂy lawrgo (dependmg only on & d, and p) then the right-hand side

of (3.5) is
u s

(3.6) < F\: D expl—(1-+46) 21 p7*Tog u}.
) S ]

Applying Lerorms 7 twice and {3.6) ia

,\_A; ( _1) ( 21/4 ul) u—(l»i- 1) .

This clearly establishes (3.3) if w4, = u,le, 8, 9, p) i8 sufficiently large.
Finally we apply (3.1), (3.2) apd (3.3) to estimate dy(J, w). For
each positive integer N, M(N)< s(w). Thus for all J sm‘msfymg 1dJ

' g;]!f( Ny and all .N“\.Nu(e, 4, 7n,p) we ha,vo
(8.7) Ay(J, ») == max IF0,N,j,J,0)
vesfeagd 1
< p.r(nawm),r.(zu) e 2? P.r(zamuz) oHI=4) g (o) 4

Ly

a5 g7 U (1 (L — 27 1)) (1L 4 8)Y Nloglog N - 2302

excopt on o subsot of Z, which has Hznm measure less than 27. Since
7> 0 was arbitrary,
max  AylJ, o)

VNloglog ¥

Jim gup

Nerso

1+ g)pHeid
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for w-almost all w in Z,. Thiy proves (1.5). Also from (3.7) we have

M(N)

Z An(, w)

Je L
< A (] Py 4T e (1 — 27V (L )Y N loglog N -
P P g
42N Aleo N,

from which (1.6) casily follows.

4. Proof of Theorem 3. Let f: Z,~R lwve hounded p-mdie viria-
tion. For o == 0,1,2,... we define fy: Z,—R by

Folw) =27 [ fln)iuy)

P

where § is the unique integer in {0, 1, 2, ...,p" —1} such that o e8¥.
Clearly we may assume without logs of generality that fy(w) = 0. We
also define

v(fy dy f) = Sup. 1@ —F .

w,umSE}’)

Then for any positive integor M,

x

(4.1) | Z e )| | X P Faetw} -
f=al ol

Now,

N :
(42) | D {f @) ~futwn)}|

=)
aﬂM—«l
NP> S, 3, 0¥ [ (100, ) )
'm-xﬂ uu—l H‘,{?‘)
ahl N !
£ V(I NpH 2 ey, M, ) ‘ N, M) = Np “”I
Mhuad n-wl

< VN -y (D).

We estimate the other term on the right of (4.1) by ‘@ recurdive argument.
We have

(4.3) } me(m

\| S’fflt' 1 n

+ ]X{fw ) = fage1 ( n)}l

el
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where
&
way | 2 Uarlen) ~faa ()|
e oMl ¥
< 3| Dol M=, ) = faen O]
Lo ) #ril

J,M{%, 4 w1 N

| 3 D ek 0™, M,y e far (ot p™) — Farmr (U} |

st
Lo Fes) el

In view of the identity

bt
2 {Faclbl p5) —~Fare € }
i)
el .
= M [ fdu) -t [ F)dutm)] =0
R s, |

the right-hand side of (4.4) is

(4.5)
2,11{-:%.1 Fim 1 N
2 \,_,{fnup 3=t 03] X 009, 3, ) — N7
}l["‘\ 1)1—1
<Ay N 3 Facll 9" = Faea D)
tmo y-—-nn
],M- pi=1
<Ay 3 J o [ i@ —rwlasy)au
s s
Mm .
< AN(jl[p S“ v(l, M=1, f) < Ag(M)pV*(F}.

It follows from (4.3), (4.4) and (4.3) that

l y Farlor) | = \“‘fnr - () ‘ L p V() Ay (M)
The wl
N
| Y faral@) | VAN () + A5 (A — 1)}
)
and 80
hd s 4’?{1
(4.0) | 3 farlwd | 2V D) An()-
] el

Thus (4.1), (4.2) and (4.6) combinge to establish the inequality (1.4). m



94 : . J. D. Vaaler

References

[11 P. Exdés and I. 8. Gal, On the law of the derated logarvithm, Dyoo. Amngterdan
58 (1955), pp. 65-B4. ‘

[2] I. G4l and 8. GAY, The discrepancy of the sequence {2%g}, ihid, 67 (1964)
129-143. » PP

[81 L. Euipers aud . Niederreiter, Uniform distribution of sequences, .Tohn.

Wiley & Sons, New York-London 1974
[4] H. G. Meijer, The discrepancy of a g-odie ssquence, Prow. Anstordan 71 (1968)
PP, 54-66, ’
[6]1 W. Philipp, Mizing sequences of random veriables and probabilistic swamber
theory, Memoirs AMS 114, Providenee, . L, 1971,
[6] *'L-mmt theorems for lacunary sories and waiforny distribulion mod 1, Acta
Arith. 26 (1875), pp. 241-251. ‘ T
[71 M. H. Taiblceson, Fourier analysis on locol flelds, Princoton Univ, Dreoss, 1975

DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF THXAS
Austin, Texaz 78712

Received om 19,6, 1978 (1082)

U

icm

ACTA ARITHMETICA.
XXXIX (1981)

(lass number formulas for quaternary quadratic forms
_ by _
PaUL PoNOMAREY® (Columbus, Ohio)

Tutroduction, This paper may be regarded as o sequel to [4]. Unless
otherwise indicated, the notation and terminology are taken from [4],

" especially §1, §3 and §5.

We recapitnlate some of the results on class numbers derived in [3],
[4]. Let V be a definite quadratic space of dimension four over the field
of rational numbers Q. Let I be an idealcomplex of maximal lattices
on ¥V {cf. [4], §3). Let 4 denote the reduced discriminant of Jand H
the number of proper similitude classes in. 3. In the case where V has
square discriminant iy uniquely determined, and an explicit formula
for H wag given in [37 (Theorem, p. 297) .

1f the diserimivant D () of ¥ is not a square, we pub K == Q(V D(VY),
and denote the diseriminant of K by Agx. It was shown in [4] (Prop. 7)
that '
' A = Ag(Py. P (s )
where gy, ..., ¢; are the anisotropic finite primes of V; qq, ...y gy splib
in X, and 9y, ..., P, are distinet rational primes which remain prime in
K. In §6 of [4] explicit formulas were obtained for H (Theorems 1, 2)
under the following conditions:

@) f=0,

(if) The fundamental vynit of K has norm w1, :

In this paper wo obtain such formulas for H without making either
of these restrictions. As o result, we completely solve the problem of
determining  the proper clags number of an arbitrary idealeomplex of
maximal quaternary lattives (of. [41, Prop. 11, for the indefinite case).
As o special ease of these formulas we obtain, in the clagsical language,
a Formula for the number of proper clagses of positive definite integral
quaternary forms of discriminant dg. L

By scaling, we may assume that I contains the maximal integral
lattices of V. When D(V) iy & nonsquare, there is a unigue quaternion
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